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Abstract: Nanoparticles have enormous applications in textiles, cosmetics, electronics, and 

pharmaceuticals. But due to their exceptional physical and chemical properties, particularly 

antimicrobial, anticancer, antibacterial, anti-inflammatory properties, nanoparticles have 

many potential applications in diagnosis as well as in the treatment of various diseases. Over 

the past few years, nanoparticles have been extensively used to investigate their response on 

the neuronal cells. These nanoparticles cause stem cells to differentiate into neuronal cells and 

promote neuronal cell survivability and neuronal cell growth and expansion. The nanoparticles 

have been tested both in in vitro and in vivo models. The nanoparticles with various shapes, 

sizes, and chemical compositions mostly produced stimulatory effects on neuronal cells, but 

there are few that can cause inhibitory effects on the neuronal cells. In this review, we discuss 

stimulatory and inhibitory effects of various nanoparticles on the neuronal cells. The aim of 

this review was to summarize different effects of nanoparticles on the neuronal cells and try 

to understand the differential response of various nanoparticles. This review provides a bird’s 

eye view approach on the effects of various nanoparticles on neuronal differentiation, neuronal 

survivability, neuronal growth, neuronal cell adhesion, and functional and behavioral recovery. 

Finally, this review helps the researchers to understand the different roles of nanoparticles 

(stimulatory and inhibitory) in neuronal cells to develop effective therapeutic and diagnostic 

strategies for neurodegenerative diseases.
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Introduction of nanoparticles
Nanoparticles or nanomaterials are one millionth of a millimeter, ~100,000 times 

smaller than the diameter of a human hair. Most nanoparticles are too small to be 

seen with the naked eye and even with conventional lab microscopes. Nanoparticles 

can be derived from both natural and synthetic sources. Over the past few years, 

synthetically derived nanoparticles generated tremendous interests and based on 

the chemical compositions, nanoparticles can be broadly classified into two major 

classes such as organic materials, which are liposomes, dendrimers, carbon nanotubes, 

emulsions, and other polymers, and inorganic materials, which include metals.1–3 

Nanoparticles can be synthesized in different sizes (1.0–500 nM) and shapes (cones, 

cubes, rods, tubes, and shells).4–6

There are various applications of nanoparticles in biotechnology, biosensing, 

catalysis, magnetic fluids, separation techniques, energy storage, and environmental 

modification7–12 and also in biomedical field, especially in diagnostics, and drug or gene 

delivery.13–19 Interestingly, nanoparticles have been extensively used as drug carrier 

systems for therapeutic molecules with the primary aim to improve the therapeutic effect 

and decrease their side effects and drug/gene delivery.20–23 One of the major attributes 
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of nanoparticles is their precise targeting, biocompatibility, 

bioavailability, and multifunctional capabilities.24–26 In the 

recent past, several attempts have been made to study the 

effect of different classes of nanoparticles on cancer cells.27–38 

In addition, interests have also been generated to study the 

effects of nanoparticles on neurons and there are several 

reports that suggest that nanoparticles promote neuronal 

differentiation, and neuroprotection studied in both in vitro 

and in vivo conditions.3,39–43 To get better therapeutic results, 

various types of nanoparticles have been studied in neurons, 

and among those, carbon-based nanoparticles are mostly 

reported,4,44–48 followed by gold and silver nanoparticles 

(AgNPs).49–51

Despite having many beneficial properties, nanoparticle 

also raises few health hazard and toxicity issues. To better 

understand the safety profile of the nanoparticles, several 

attempts have been made to know whether nanoparticles 

cause any side effects or toxic effects. It has been shown 

that nanomaterials possess highly activated surfaces that 

are capable of inducing carcinogens, mutagens, or health 

hazard responses.52–54 Furthermore, it has been reported that 

carbon nanotubes induced fibrogenesis on nanostructured 

substrates.55 Moreover, nanoparticles are 100 times smaller 

than normal red blood cells, which increase the potential for 

interaction, and there is evidence that nanoparticles interact 

with proteins, DNA,56 lung cells, and viruses. The current 

assumption is that nanoparticles such as silica featured as 

hydrophilic, hydrophobic, or even amphiphilic that can be 

taken up by human membranes may pose serious threats. 

Hence, understanding nanoparticles’ interaction with living 

cells and other biologic systems, especially with central 

nervous system (CNS), is critical. Nanoparticles have potential 

functionality and toxic effects on human neuronal cells 

because they can pass through biologic membranes.57 It is 

known that the biologic half-life of silver in the CNS is longer 

than that in other organs, suggesting that there may be some 

significant physiologic functions, consequences, and risks to 

the brain because of prolonged exposure. In addition, effects 

of nanoparticles on the blood–brain barrier (BBB) were also 

evaluated, and it was found that administration of Ag, Cu, or 

Al/Al
2
O

3
 nanoparticles showed disrupted BBB function and 

induced brain edema formation.58 Moreover, AgNPs induced 

BBB destruction and astrocyte swelling and caused neuronal 

degeneration.59 In the present review, we have discussed 

various nanoparticles and their impacts on the neuron’s 

biology and tried to evaluate their responses (stimulatory or 

inhibitory), which were studied in both in vitro and in vivo 

models, respectively.

Stimulatory effect of nanoparticles 
on neuronal cells
Nanoparticles have tremendous capabilities to stimulate neu-

ronal cells toward neuronal cell proliferation, axonal growth, 

neuronal cell adhesion, and neuroprotection (Figure 1). It has 

been demonstrated that nanoparticles can also differentiate 

stem cells into neuronal cells. The nanoparticles with dif-

ferent shapes such as nanotubes, nanofibers, nanocone, and 

nanoemulsion have been used to test their effects on the 

neuronal cells. For example, nanotubes and nanofibers pro-

moted neuronal regeneration, activated hippocampus neurons 

activities, neurons growth, and neuronal protection.44,45,49,60–64 

In addition, there are few reports about use of nanoscaffold, 

Figure 1 Stimulatory effect of nanoparticles on neuronal cells in an in vitro condition.
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nanocomplexes, and nanomembrane in neuron regeneration 

and neural tissue reconstruction.65–67 The stimulatory effects 

of some of the nanoparticles are diagrammatically depicted in 

Figure 2. Like shapes of the nanoparticles, size of the nano-

particles is also important in inducing biologic response.68 

For example, nerve growth factor (NGF)-encapsulated 

chitosan nanoparticles with size 80–90 nM caused differ-

entiation of canine mesenchymal stem cells into neurons,69 

whereas calcium phosphate–lipid  nanoparticles with size 

30 nM caused neuronal differentiation.70 In another report, 

it has been found that prodrug  nanoparticles with 50 nM 

size improved neuronal survival.71

Nanoparticles are either used alone or in combination or 

conjugation with other molecules to achieve better response 

on the neuronal cells. It is not easy to discuss each nanopar-

ticle in detail, so we briefly describe the impact of nanopar-

ticles on neurons. For example, it was reported that the use 

of the nanoparticle triiodothyronine along with retinoic acid 

caused neuronal differentiation.72 In addition, treatment of 

triiodothyronine along with retinoic acid also caused a sig-

nificant increase in the expression of neural lineage-specific 

markers. Moreover, treatment of triiodothyronine also caused 

10-fold increase in the gene expression of β-III-tubulin, 

and five-time increase in microtubule-associated protein 2 

gene expressions.72 It was reported that three-dimensional 

poly(3,4-ethylenedioxythiophene) doped with hyaluronic 

acid nanoparticles conjugated with chitosan or gelatin matrix 

caused neuronal cell differentiation.73 In another study, it was 

reported that poly(3,4-ethylenedioxythiophene) coated with 

microelectrodes have significantly reduced neuronal death 

and neuronal damage as compared to noncoated controls.74 

Carbon dots (C-dots), a class of fluorescent nanoparticles 

with pure carbon core, have great bioanalytical potential. 

In addition, the application of multifunctional fluorescent 

C-dots caused neuronal differentiation in adult stem cells.75 

In another study, it was reported that fluorescent C-dots 

(40–800 μg/mL) caused reduction of acidification of 

synaptic vesicles and increased the ambient level of the 

neurotransmitters.76

Interestingly, it was reported that treatment of NGF-loaded 

heparinized cationic solid lipid nanoparticles (HCSLNs) 

caused differentiation of induced pluripotent stem cells 

(iPSCs) into neuronal cells.77 In addition, presence of neuron-

specific staining in differentiated neuronal cells confirmed 

that NGF-loaded HCSLNs caused neuronal cell differentia-

tion.77 Recently, it was reported that traceable microRNA-124

-loaded nanoparticles, efficiently delivered into neural stem 

or progenitor cells, promoted neuronal differentiation and 

maturation.78 Similarly, it was reported that nanocrystalline 

glass-like carbon (NGLC) can induce neuronal differentia-

tion. It was reported that NGLC caused differentiation of the 

dopaminergic neurons derived from the substantia nigra of 

the transgenic mouse embryo’s brain.79 Nanoparticles caused 

not only the neuronal differentiation but also the formation of 

new cells. For example, treatment of nanoparticles caused an 

increased formation of daughter neuronal cells.80 In another 

report, it was demonstrated that polyvinylidene fluoride 

and poly vinylidenefluoride-co-trifluoroethylene or BaTiO3 

Brain

Animal testing

microRNA-124-
loaded nanoparticles

Nanocrystalline
glass-like carbon

Retinoic acid-loaded
polymeric nanoparticles

Neurons

Neurogenesis

Figure 2 Stimulatory effect of nanoparticles on neuronal cell tested in animal models.
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(barium titanate) stimulated and promoted differentiation of 

SH-SY5Y neuroblastoma cells.81

Nanotopography is also an important factor in neuronal 

differentiation. For example, nanostructured zirconia sur-

faces produced by supersonic cluster beam deposition of 

zirconia nanoparticles promoted neuronal differentiation 

and maturation of the hippocampus neurons.82 Neurogenic 

niches constitute a powerful endogenous source of forma-

tion of new neurons to repair brain cells. Furthermore, it 

was reported that retinoic acid nanoparticles (RA-NPs) 

caused neurogenesis in the neural stem cells when the 

stem cells were exposed to blue light.83 Application of 

nanoparticle extracellular matrix along with conductive 

fiber film promoted neurite adhesion, neural alignment, 

and elongation of neuritis.84 The NGF-conjugated mesopo-

rous silica nanoparticle was reported to promote neuron 

proliferation and neurite growth in pheochromocytoma 

(PC12) cell line.85 In the same study, it was reported that 

use of NGF-conjugated mesoporous silica nanoparticle 

significantly promoted differentiation of neuron-like PC12 

cells and growth of neurites compared to NGF alone.85 

This report suggests that use of nanoparticles along with 

NGFs improves neuronal cell differentiation many fold. 

Nanopatterned SU-8 surface using nanosphere lithography 

was reported to enhance neuronal cell growth.86 Moreover, 

nanotopography also promoted neuronal differentiation of 

human iPSCs.87

The treatment of nanoparticles not only induces neuronal 

differentiation but also improves functional or behavioral 

recovery in animal models (Figure 2). For example, Zhang 

et al reported that treatment of small interfering RNA along 

with retinoic acid resulted in attenuation of neuronal loss and 

restoration of memory deficiencies in mice. Moreover, an 

intracerebroventricular injection of microRNA-124-loaded 

nanoparticles into a mouse model of Parkinson’s disease 

caused an increased formation of new neurons in the olfactory 

bulb.88 In the same study, it was found that microRNA-124- 

loaded nanoparticles enhanced migration of new neurons 

into the lesioned striatum of mice and caused improvement 

of motor function.88 In another study, it was reported that an 

administration of triiodothyronine in a rat model of ischemic 

stroke was reported to cause a 34% decrease in tissue infarc-

tion and a 59% decrease in brain edema.89

In another report, it was demonstrated that RA-NPs 

enhanced vascular regulation of neural stem cell and 

promoted neuronal cell survival and neuronal cell differ-

entiation after ischemia effect.90 In addition, it was found 

that treatment of RA-NP protected endothelial cells from 

ischemic death and stimulated the release of prosurvival, 

proliferation-stimulating factors for neural stem cells.90 It 

would be interesting to investigate the effect of triiodothyro-

nine or microRNA-124-loaded nanoparticles in other animal 

models to check whether it can also enhance functional and 

behavioral recovery. In addition to use of nanoparticles for 

the neuronal differentiation, nanoparticles have also been 

used to deliver drugs in the neuronal cells. For example, 

it was reported that the minicircle DNA and nanoparticles 

were used to deliver a neurotherapeutic gene into neural stem 

cells.80 In the same study, it was demonstrated that minicircles 

DNA along with magnetofection technology caused the 

overexpression of brain-derived neurotrophic factor gene 

in neural stem cells.80

We have summarized other nanoparticles based on their 

stimulatory actions in tabular form. For example, in Table 1, 

we have listed the nanoparticles with stimulatory effects 

on neurons tested under both in vitro culture and in vivo 

conditions. The stimulatory effects of nanoparticles caused 

an increased neuronal cell differentiation and promoted 

nerve regeneration, hippocampal neuron activity, cell 

viability, neuronal growth and cerebral neuronal induction, 

and gene expression in nigral dopaminergic neurons. They 

also promoted neuronal growth, axonal guidance, Schwann 

cells’ guidance, neural tissue reconstruction, neuronal–glial 

interaction, neurogenesis, and neuroprotection. These nano-

particles with different shapes, sizes, and chemical compo-

sitions improved nerve regeneration, neuronal recovery, 

neuronal signaling, neuroprotection, and neurogenesis in 

various animal models. These nanoparticles were also able 

to improve functional and behavioral recovery of the motor 

functions in the animal models of Parkinson’s disease and 

spinal cord injury.

Inhibitory effect of nanoparticles 
on neuronal cells
Despite having therapeutic potentials, nanoparticles pose 

safety concerns. There are few nanoparticles, which are also 

reported to have inhibitory effects on the neuronal cells. These 

nanoparticles caused opposite and damaging action on the 

neuronal differentiation. The inhibitory effect on the neuronal 

differentiation is diagrammatically depicted in Figure 3. It 

was reported that cerium oxide nanoparticles displayed anti-

oxidant properties in both in vitro and in vivo conditions and 

caused an inhibitory effect on the neural stem cells by inhibit-

ing the neuronal cell differentiation.91 In addition, detailed 

computational analyses showed that cerium oxide altered 

pathways and networks relevant to neuronal development and 
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inhibited neuronal differentiation.91 It was found that cerium 

oxide caused a decrease in neuron-specific β3-tubulin expres-

sion, a marker of neuronal differentiation, and glial fibril-

lary acidic protein, a neuroglial marker.91 In contrast to this 

report, cerium oxide nanoparticles promoted neurogenesis 

and abrogated hypoxia-induced memory impairment through 

AMP-activated protein kinase–protein kinase C–cAMP-

response element binding protein (CREB)-binding protein 

signaling cascade in the rat.92 In another study, nanoparticle 

exposure did not impair cell viability and neuroinflammation 

in primary hippocampal cultures, but significantly decreased 

the neuronal differentiation markers in human SH-SY5Y 

cells.93 We do not know the reason of the contradicting 

responses of cerium oxide on neuronal cells, and the pos-

sibility of using different concentrations or different sizes 

of cerium oxide could be one of the reasons. Nevertheless, 

detailed studies must be undertaken with different sizes of 

cerium oxide to understand cerium oxide’s role.

Polyamidoamine (PAMAM) dendrimer has many biologic 

applications that include delivering gene or drug molecules to 

the cells. Despite having potential therapeutic and diagnostic 

application, PAMAM also caused some cytotoxic effects. 

It was reported that PAMAM dendrimer exposure caused an 

adverse effect on neuronal cell differentiation and adverse 

effect associated with oxidative stress and DNA damage.94 

In addition, PAMAM dendrimer was reported to inhibit 

neutrosphere growth. In the same study, it was reported 

that PAMAM reduced number of microtubule-associated 

protein 2-positive cells after 10 days of differentiation.94 

In another report, AgNPs induced inflammatory response 

in neuronal cells.9 It was reported that AgNPs entered the 

nuclei of mouse neuronal cells and induced progression 

of neurodegenerative disorder.9 It was reported that silver 

nitrate treatment increased cellular superoxide dismutase 

activity and decreased mitochondrial membrane potential, 

leading to neuronal death.11 In addition, even a low concen-

tration of AgNPs interrupted early neuronal processes and 

facilitated neuron apoptosis by increased cellular oxidative 

stress and mitochondrial disruption.11 In another study, it was 

reported that silica-indocyanine green/poly (ε-caprolactone) 

nanoparticles caused no neuronal differentiation because of 

mitochondrial damage.95 We have summarized other nano-

particles that are having inhibitory and cytotoxic effects 

on neurons, in tabular forms. For example, inhibitory and 

cytotoxic effects on neurons studied in in vitro models are 

shown in Table 2, whereas inhibitory and cytotoxic effects 

studied in animal models are shown in Table 3.

Risks and challenges of nanoparticles 
on neuronal cells
Despite having so many beneficial properties, the nano-

particles also cause some health concerns because of their 

small size and chemical compositions. Researchers were 

Table 1 List of various nanoparticles with stimulatory effects on 
neurons

Name of nanoparticles Activities measured

Nanofibrous scaffold Promoted nerve regeneration65

Carbon nanotube Promoted hippocampal neurons’ 
activity97

Nanofibers Promoted nerve regeneration98

Gold nanotubes Promoted nerve regeneration49

Silica Increased cell viability99

Gold nanocone Increased neuronal growth100

BNDF-PS80-PBCA Promoted neuronal differentiation101

Gatifloxacine Promoted cerebral neuronal induction102

NTS-polyplex nanoparticle Promoted gene expression in nigral 
dopaminergic neurons103

Core–shell nanoparticles Promoted nerve regeneration104

Poly(lactide-co-glycolide) 
nanoparticles

Promoted nerve regeneration105

Electrospun fiber scaffolds Promoted neuronal growth60

Magnetic nanoparticles Reversed Parkinson’s syndrome106

Zero valent zinc nanoparticles Promoted neuronal proliferation107

Curcumin–docosahexaenoic 
acid-loaded carriers

Promoted neuronal survival42

Graphene and carbon 
nanotube

Promoted neuronal biocompatibility108

Active microcarriers Promoted neuronal differentiation109

Gelatin/nanoceria 
nanocomposite fibers

Promoted neuronal regeneration61

Poly lactic acid scaffolds Promoted neuronal growth66

Micellar nanocomplexes Promoted axonal guidance110

Nanoporous surface Promoted neuronal differentiation111

Fluorescent polymeric 
nanovehicles

Promoted neuronal modulation112

Electrospun poly(methyl 
methacrylate) nanofibers

Promoted Schwann cells guidance113

Nanofiber membrane Promoted neural tissue reconstruction114

Nanowires Promoted nerve regeneration115

Titanium dioxide nanoparticle Promoted neuronal–glial interaction116

Microgroove electroactive 
composite film

Promoted neuronal guidance117

Tenascin-C mimetic peptide 
amphiphile nanofiber

Promoted neuronal growth63

Chitin and carbon nanotube Promoted neuronal growth46

Solid lipid nanoparticles Promoted neuronal protection118

Electrospun silica nanofiber Promoted neuronal growth64

Peptide nanofibers Promoted neurogenesis119

Galantamine/chitosan 
complex nanoparticles

Promoted neuronal protection120

Hybrid microfluidic system Promoted neuronal differentiation121

Multiwalled carbon nanotubes Promoted neuroprotection45

Carbon nanomaterials Promoted neuronal adhesion44

Cationic nanoemulsion Prevented neuroinflammation122

Nanofiber hydrogels Promoted nerve regeneration43
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interested to find out whether nanoparticles do exert some 

negative effects on the neuron biology. Recently, it has been 

reported that the use of low concentration of AgNPs caused 

neuronal damage96 and also treatment of silica nanoparticles 

impaired the mitochondrial function during neuronal differ-

entiation.96 In another study, it was reported that PAMAM 

dendrimers with various surface functional groups caused 

cytotoxic effects on neuronal differentiation in human neural 

progenitor cells.94 These nanoparticles upon testing under 

in vitro conditions promoted neuronal damage and induced 

neurodegeneration, neuronal cytotoxicity, and neurotoxicity. 

Like in vitro models, nanoparticles have also been tested in 

animal models, which induced neuronal damage, neuronal 

degeneration, neuronal damage, neuronal toxicity, cell death, 

and impaired BBB. We have listed other nanoparticles that 

are also reported to cause toxic effects on neuronal cells, in 

Tables 2 and 3.

Summary
Nanoparticles have many potential applications, which 

include the promotion and activation of neuronal cell dif-

ferentiation as reported in both in vitro and in vivo models. 

Nanoparticles can also reverse the neurologic impairments in 

the animal models of neurologic disorders such as brain isch-

emia and Parkinson’s and Alzheimer’s diseases. Research has 

shown that many nanoparticles promoted neuronal differen-

tiation and enhanced neuronal survival and neuronal growth 

and maturation. But there are few nanoparticles that do not 

promote neuronal differentiation and cause neuronal damage 

or neurotoxicity. To achieve better response on the neuronal 

cells, researchers have used different sizes and shapes of 

nanoparticles. Sometimes one nanoparticle is conjugated with 

another nanoparticle or biomolecules to enhance the effects. 

Nanoparticles not only induce neuronal differentiation but 

also induce functional or behavioral recovery in animal 

models. The size of nanoparticles is also an important factor 

for their actions on the neurons. The researchers must know 

the size of nanoparticles before testing them for anticipated 

response. Most of the current data are based on morphologic, 

anatomical, and behavioral parameters, and still we do not 

know molecular mechanisms behind nanoparticle action 

on neurons. It would be interesting to study the molecular 

mechanism of the nanoparticle action on neurons.

Figure 3 Inhibitory effect of nanoparticles on neuronal cells tested in an in vitro condition.

Table 3 List of nanoparticles with inhibitory effects on neurons, 
which are tested in animal models 

Name of nanoparticles Activities measured

Trimethyltin Induced neuronal degeneration125

Cadmium telluride  
quantum dots

Induced neuronal damage and 
function128

Carbon nanotubes Induced neuronal toxicity48

Nanofiber Impaired blood–brain barrier124

Graphene Induced neuronal damage123

Airborne nanoparticle Induced cell death130

Table 2 List of various nanoparticles with neurotoxic effects on 
neurons tested in in vitro conditions

Name of nanoparticles Activities measured

Silver nanoparticles Promoted neuronal damage116

Trimethyltin Induced neuronal degeneration125

Copper oxide nanoparticles Induced neurodegeneration126

Magnetite nanoparticles Induced neuronal cytotoxicity127

Nanocrystals containing  
phospholipid micelles

Induced neurotoxicity129
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Future direction
The nanoparticles hold a great promise for both diagnostic 

and therapeutic applications for various neurodegenerative 

diseases. They are also viable candidates to deliver neuro-

protective molecules in the body for both diagnostic and 

therapeutic applications. The success of nanoparticles in 

neural areas depends on the consistent data generation, which 

depicts less variability in both in vitro and in vivo models. 

The cytotoxic effects of nanoparticles also need to be properly 

studied with proper dosages and correct treatment modali-

ties to minimize the risk. Nanoparticles with stimulatory or 

inhibitory actions can be first studied through in vitro models, 

then through in vivo models. The results of both in vitro and 

in vivo studies must be compared and analyzed before calling 

nanoparticle stimulators or inhibitors. This strategy would 

help the researchers to identify and select potential nano-

particles for therapeutic and diagnostic purposes. Finally, 

nanoparticles with higher efficacy and ability to repair the 

damaged neurons with the least side effects in both in vitro 

and in vivo models hold great promise for the patients suf-

fering from various neurodegenerative diseases.

Availability of data and material
The data analyzed are available from the corresponding 

author upon a request.
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