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Phylogeny and evolution 
of the genus Cervus (Cervidae, 
Mammalia) as revealed 
by complete mitochondrial 
genomes
Paweł Mackiewicz1*, Maciej Matosiuk2, Magdalena Świsłocka2*, Frank E. Zachos3,4,5, 
Ghaiet M. Hajji6, Alexander P. Saveljev7, Ivan V. Seryodkin8, Tarlan Farahvash9, 
Hamid Reza Rezaei10, Rasoul Vaez Torshizi11, Stefano Mattioli12 & Mirosław Ratkiewicz2

Mitochondrial DNA (mtDNA) lineages are recognized as important components of intra- and 
interspecific biodiversity, and allow to reveal colonization routes and phylogeographic structure 
of many taxa. Among these is the genus Cervus that is widely distributed across the Holarctic. We 
obtained sequences of complete mitochondrial genomes from 13 Cervus taxa and included them 
in global phylogenetic analyses of 71 Cervinae mitogenomes. The well-resolved phylogenetic trees 
confirmed Cervus to be monophyletic. Molecular dating based on several fossil calibration points 
revealed that ca. 2.6 Mya two main mitochondrial lineages of Cervus separated in Central Asia, the 
Western (including C. hanglu and C. elaphus) and the Eastern (comprising C. albirostris, C. canadensis 
and C. nippon). We also observed convergent changes in the composition of some mitochondrial genes 
in C. hanglu of the Western lineage and representatives of the Eastern lineage. Several subspecies 
of C. nippon and C. hanglu have accumulated a large portion of deleterious substitutions in their 
mitochondrial protein-coding genes, probably due to drift in the wake of decreasing population size. 
In contrast to previous studies, we found that the relic haplogroup B of C. elaphus was sister to all 
other red deer lineages and that the Middle-Eastern haplogroup E shared a common ancestor with the 
Balkan haplogroup C. Comparison of the mtDNA phylogenetic tree with a published nuclear genome 
tree may imply ancient introgressions of mtDNA between different Cervus species as well as from the 
common ancestor of South Asian deer, Rusa timorensis and R. unicolor, to the Cervus clade.

Due to sufficient variation, the lack of recombination and simple maternal inheritance, mitochondrial DNA 
(mtDNA) has become very useful in various phylogenetic and evolutionary studies. These analyses often found 
clear phylogeographic patterns enabling the inference of evolutionary and biogeographic histories for many 
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 mammals1–9. Among mammalian taxa that show complex phylogenetic and phylogeographic mtDNA patterns 
is the genus Cervus, which underwent a successful radiation together with other  ruminants10.

Different species and subspecies of Cervus occupy a variety of habitats so that the range of Cervus is the 
largest among all  cervids11. However, many similarities in the morphology make the taxonomic classification 
within the Cervinae difficult, especially within the highly plastic genus Cervus. The genus Cervus has a wide 
range across Eurasia and North America and is usually taken to include the following species: Western red deer 
(Cervus elaphus), Central Asian red deer (C. hanglu), wapiti (C. canadensis), sika (C. nippon) and Thorold’s or 
white-lipped deer (C. albirostris)12 (Fig. 1). C. elaphus and C. hanglu are also described as the Western mtDNA 
lineage or clade, whereas wapiti and sika deer are classified to the Eastern mtDNA lineage or  clade13,14. The posi-
tion of C. albirostris has been ambiguous (see Fig. 1).

Cervus elaphus is one of the best-studied mammal species with respect to intraspecific mtDNA phylogeny 
and phylogeographic  history2,3,13,15–21. It plays a major role in shaping forest vegetation in  Europe22 and is an 
important game  animal23. Five extant mtDNA haplogroups have been identified in contemporary C. elaphus: 
Western (A) in western and central Europe; Eastern (C) in central-eastern and south-eastern Europe; Italian/
Mediterranean (B) native, but extinct, to the Italian mainland, introduced on the Tyrrhenian islands Sardinia 
and Corsica and in northern Africa; Mesola (D) in the Po delta region of Italy and south-eastern Poland; and 
Caucasian (sometimes called Caspian or maral) (E) in the Caucasus and south-western  Asia2,15,18,21,24 (Fig. 1). 
Additionally, several extinct lineages based on fossil samples have been  identified2,3,13,17.

Several analyses provided inconsistent results on the phylogeny of Cervus. For example, some studies indi-
cated the monophyly of the genus Cervus15,25,26 but in others, different Cervus taxa were separated by representa-
tives of Rusa13,27–29. C. hanglu was usually assigned to the Western  clade3,13–16,28,30 but other analyses grouped this 
species with the Eastern  clade2. Most analyses showed that C. albirostris is a member of the Eastern  lineage13,26,28,31 
but other authors found it closer to the Western  lineage32.

Potential reasons for such disagreements are the use of a single molecular marker and/or biased taxon sam-
pling. The majority of these studies were based on short mtDNA control region or cytochrome b sequences only, 
which may produce not fully resolved phylogenies. This also hampers taxonomic decisions or in-depth studies 
of evolutionary processes and estimations of divergence times within and among species of Cervus. For example, 
the split of the Western and Eastern lineages varies among studies from 374 kya or 1.37  Mya2 to 6  Mya14.

Thus, to arrive at a better-resolved and dated phylogeny of Cervus species and to draw conclusions about 
mitogenome evolution in deer we analysed 13 newly sequenced mitochondrial genomes representing C. elaphus 
and C. canadensis and enlarged our dataset with mitogenomes of other deer species available in GenBank. We 
aim to make maximal use of the phylogenetic signal carried by mtDNA and produce novel insights from protein 
coding genes.

Results
Comparison of deer mitogenomes. The compared mitochondrial genomes of Cervus show an organiza-
tion typical of other mammals but are variable in size, which is associated mainly with the different length of the 
control region. Eastern lineage mitogenomes (median: 16,432; min–max: 16,353–16,663) are significantly longer 
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(p = 3.6E−06) than Western lineage mitogenomes (median: 16,352.5; min–max: 16,350–16,357). Mitogenome 
length of Rusa timorensis and R. unicolor (median: 16,436.5; min–max: 16,434–16,477) is similar to the Eastern 
lineage (p = 0.49) but statistically longer than for the Western lineage (p = 6. 3E−04).

Despite the conserved genome organization, we noticed differences in nucleotide composition of these mitog-
enomes and individual genes, usually in their third codon position. In the correspondence analysis plot, the 
mitogenomes from the Western lineage were clearly separated from C. nippon mitogenomes (Figs. 2, S1). C. 
canadensis mitogenomes occupied an intermediate position, whereas C. albirostris was represented by distant 
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Figure 2.  Correspondence analysis plots obtained for the nucleotide composition of 13 protein-coding genes 
(PCG), RNA genes and control region (CR) as well as selected PCG from various Cervus taxa: a—C. albirostris; 
c—C. canadensis; c_ala—C. canadensis alashanicus; c_kan—C. canadensis kansuensis; c_sib—C. canadensis 
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yarkandensis; n_cen—C. nippon centralis; n_hor—C. nippon hortulorum; n_kop—C. nippon kopschi; n_sic—C. 
nippon sichuanicus; n_tai—C. nippon taiouanus; n_yak—C. nippon yakushimae; n_yes—C. nippon yesoensis. The 
plots for other genes and control region are shown in Fig. S1.
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points. Generally, mitogenomes from the Western lineage and most C. canadensis have more thymine and 
adenine. In turn, C. nippon mitogenomes are richer in cytosine and C. albirostris also in guanine. C. albirostris 
shows differences in composition from other mitogenomes in the atp6, nd2, nd3, nd4, nd6 and 12S rRNA genes 
(Figs. 2, S1). Likewise, C. hanglu also deviates from others in the composition of the cox2, nd6 and 16S rRNA 
genes (Fig. S1). We also noticed that mitogenomes of Japanese deer, i.e. C. nippon yakushimae, C. n. centralis 
and C. n. yesoensis, showed deviating nucleotide compositions in atp6, atp8, cox2 and nd5 (Fig. S1). C. nippon 
yakushimae occupied a distant position in the plot also for the cytb, nd2, nd3, nd4 and nd4L genes, whereas the 
two other subspecies showed a nucleotide bias in cox3 and the control region (Figs. 2, S1). Similarly, the genes 
atp8, cox1, cox2, cox3, nd1, nd2, and nd4L of C. elaphus barbarus differed in their nucleotide compositions from 
other red deer haplogroups (Figs. 2, S1).

C. hanglu showed contradictory results. In line with its phylogenetic position as sister to C. elaphus (see 
below), the nucleotide compositions of most studied sequences are similar in these two species, but for some 
other mitochondrial genes, C. hanglu was closer to representatives of the Eastern clade: C. nippon and C. canaden-
sis in the case of cox3, cytb, nd1 and nd3 as well as C. albirostris and C. canadensis in the cox1, nd5 and tRNA 
genes (Figs. 2, S1).

The similarity in the nucleotide composition is reflected in substantially smaller p-distances (the proportion 
of different sites) than expected between individual genes from C. hanglu and the Eastern lineage representatives 
in comparisons with the distances obtained from the MrBayes phylogenetic tree (Figs. 3, S2). The p-distance is 
substantially smaller for the cox1, cox2, cox3, nd3, nd4, nd4L and nd5 genes, especially between C. hanglu and 
C. canadensis. Similar findings are visible in plots showing relationships between the distance in the tree and the 
p-distance (Figs. 4, S3). Points representing distances between C. hanglu and the Eastern lineage deer are often 
positioned on the left of a regression line due to the smaller p-distance. Besides the protein-coding genes, the 
large shift is also visible for tRNA genes (Fig. S3).

Phylogenetic analyses of mitogenome sequences. All three phylogenetic approaches produced the 
same very well-resolved tree topology (Fig. 5). Out of 68 internal nodes, 45 obtained the maximal support with 
all these methods, 57 with at least two methods and 62 with at least one method. Only four nodes of closely 
related mitogenomes were weakly supported. Representatives of Muntiacini and Cervini are clearly separated 
into two separate clades. Within Cervini, Rucervus, Axis, Dama, Elaphurus, Panolia and Cervus are all monophy-
letic (Fig. 5). Rucervus and Axis are sister taxa, as are Elaphurus and Panolia. The genus Rusa is non-monophyl-
etic in our tree due to the position of R. alfredi as sister to the other Rusa species and Cervus combined.

The genus Cervus is clearly separated into the Western and Eastern mtDNA lineages, which are both mono-
phyletic and highly supported (Fig. 5). The Western lineage comprises C. hanglu and C. elaphus. Within the latter, 
C. elaphus barbarus (haplogroup B) is sister to all other C. elaphus samples grouped into two well-supported 
clades. The first comprises samples of haplogroup A from more western localities in Europe. The other haplotypes 
are clustered in the second group, in which the Mesola lineage (haplogroup D) is sister to a clade comprising the 
East-European lineage (haplogroup C) and the Middle-Eastern lineage (haplogroup E).

In the clade of eastern species, C. albirostris is sister to C. canadensis and C. nippon combined. The two new 
wapiti mitogenomes from C. c. sibiricus and C. c. xanthopygus are clustered with high support with C. c. nannodes 
and poorly with C. c. songaricus, respectively (Fig. 5). The sika group consists of two subgroups, Japanese deer 
and samples from Taiwan and mainland Eastern Asia.

Estimating divergence times within Cervini. Cervini started its evolution after separation from Mun-
tiacini ca. 10.4 Mya (Fig. S4). Later, the next split separated the Axis + Rucervus lineage from the remaining Cer-
vini ca. 7.5 Mya. At ca. 5.7 Mya, Axis and Rucervus split as did the Dama clade and the remaining Cervini. About 
4.4 Mya, Panolia + Elaphurus separated from the remaining taxa, and approximately one million years later these 
two genera split. Rusa alfredi and R. timorensis + R. unicolor separated from their respective sister taxa at ca. 3.6 
Mya and ca. 2.9 Mya, respectively.

The deepest split within Cervus into the Western and Eastern lineages was estimated at ca. 2.5 Mya. The split 
between C. hanglu and C. elaphus as well as between C. albirostris and C. canadensis + C. nippon occurred at ca. 
1.9 and 1.7 Mya, respectively (Fig. 6). Finally, C. canadensis and C. nippon separated ca. 1.6 Mya. The Japanese 
lineage of C. nippon evolved from the mainland deer ca. 1.1 Mya, whereas the northern and central Japanese 
subspecies split from the southern one ca. 0.8 Mya. C. elaphus haplogroups identified within the Western lineage 
have an age from 0.7 to 0.3 Mya. Our datings are in agreement with the fossil deer C. magnus (2.25–1.26 Mya), 
which is considered to be ancestral to or close to the ancestor of C. canadensis after the split of the Western and 
Eastern  lineages33. In turn, C. nestii, used by us as a calibration point (2.1–1.95 Mya), is most likely associated 
with the Western  lineage34,35. The age of C. grayi (1.3–1.25 Mya) fits the timing of the C. nippon lineage to which 
this fossil is  ascribed36. C. elaphus acoronatus is the oldest representative of red  deer35, and its age (1–0.8 Mya) is 
in agreement with our molecular dating for the oldest branch of the C. elaphus clade.

The results of molecular dating were compared with the δ18O curve 37, which is used as a climate proxy 
(Fig. S4). The comparison indicates that the emergence of many clades within Cervus corresponds well to the 
increase in climate oscillations in the Pleistocene since its beginning ca. 2.6 Mya.

Analysis of substitutions in mitochondrial protein-coding genes. We found that amino acid 
sequences of mitochondrial genes accumulated variable numbers of deleterious mutations in different deer line-
ages (Table S1). The largest proportion of deleterious mutations was accumulated in the lineages of C. nippon 
(0.37) and C. hanglu (0.33), whereas the smallest was found in C. albirostris and C. canadensis (0.12 and 0.13, 
respectively). This proportion in C. nippon was statistically significantly greater (p = 0.023) than in C. albiro-
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stris, C. canadensis and C. elaphus. We also compared the distribution of scores describing the deleterious effect 
(Fig. 7). The more negative the Provean score is, the more negative the impact on the biological function of a 
protein by a given substitution. C. nippon and C. hanglu were characterized by a larger number of substitutions 
with more negative effect and demonstrated significantly lower scores in pairwise comparisons with all other 
deer lineages (p < 0.041 and p < 0.019, respectively). 

We checked if the individual protein-coding genes were subjected to positive selection in Cervus evolution. 
A significant (p < 0.044) excess of nonsynonymous over synonymous nucleotide substitutions was demonstrated 
by four approaches (original and modified Nei-Gojobori methods with Jukes-Cantor and proportion models) for 
atp8 in the comparisons of: C. canadensis xanthopygus (XAN1) with C. canadensis alashanicus (KU942399 and 
KP172593) as well as C. elaphus barbarus (TUN1) with C. elaphus hippelaphus (KT290948), C. elaphus (EAST2) 
and C. elaphus maral (MAR1). Significant (p < 0.045) positive selection was also yielded by six approaches, the 
four mentioned above as well as Liu-Wu-Luo38 and Pamilo-Bianchi-Li39 methods, for cox1 between two Japanese 
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Figure 3.  Comparison of p-distances for all pairs of Cervus species with the distances obtained from the 
MrBayes phylogenetic tree for selected protein-coding genes. The species pairs were arranged according to the 
tree distance. Ca—C. albirostris; Cc—C. canadensis; Ce—C. elaphus; Ch—C. hanglu; Cn—C. nippon. The plots 
for other genes and the control region are shown in Fig. S2.
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deer, C. nippon yesoensis (NC_006973) and C. nippon centralis (NC_006993). When the protein-coding genes 
were agglomerated into groups of Cervus species, significant (p < 0.029) positive selection was still observed for 
atp8 in C. elaphus by the four approaches.

Tajima’s and Fu’s neutrality tests calculated for nucleotide sequences of protein-coding genes did not provide 
very low or very high values of their respective statistics, but we observed the most negative values for the Western 
deer species (D = − 1.3) and C. elaphus (D = − 0.6) (Table S2). For the Eastern deer species, the statistics were 
much closer to zero (from − 0.3 to 0.1) except Fs for C. canadensis and C. nippon. In these cases, this parameter 
reached or exceeded 1. The highest positive D and Fs values were found for C. nippon from mainland Asia, 0.97 
and 1.24, respectively.
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Figure 4.  Relationships between the distances in the MrBayes phylogenetic tree and p-distances for all pairs 
of Cervus species and selected protein-coding genes. A regression line (red line) with 95% confidence interval 
(grey area) is shown. Ca—C. albirostris; Cc—C. canadensis; Ce—C. elaphus; Ch—C. hanglu; Cn—C. nippon. The 
plots for other genes and the control region are shown in Fig. S3.
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Figure 5.  The consensus of trees obtained in three approaches for the alignment of control region and 
genes coding for 13 proteins, two rRNAs and 22 tRNAs with a total length of 16,306 bp from Cervinae 
(Muntiacini + Cervini). Numbers at nodes, in the following order, correspond to: posterior probabilities 
estimated in MrBayes (MB) and PhyloBayes (PB) as well as support values obtained by the approximate 
likelihood ratio test based on a Shimodaira-Hasegawa-like procedure (SH) and the bootstrap method (BA) 
calculated in IQ-TREE. Values of the posterior probabilities and bootstrap percentages lower than 0.50 and 
50%, respectively, were indicated by a dash "–". Letters (A–E) next to Cervus elaphus clades refer to intraspecific 
phylogeographic haplogroups. C. albirostris (NC_016707) is likely a contamination or incorrect labelling 
because its sequence is more similar to Rusa unicolor than other samples of R. unicolor to each other, whereas 
two other sequences assigned to C. albirostris are clearly separated from NC_016707 and are grouped with 
Cervus sequences with high support. The same holds for C. elaphus macneilli (KX449334), which is a subspecies 
of the wapiti native to Western China and typically called C. canadensis macneilli. Therefore, this sample could 
also be mislabelled or contaminated. Alternatively, these two specimens can be a result of mitochondrial 
introgression. C. canadensis nannodes sample (NC_050863) was translocated or imported for farming to South 
 Korea120 from its native site in California in North America. The specimen C. elaphus (NC_007704) from New 
Zealand is also an introduction by humans.
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Discussion
Evolution of deer mitogenomes. The differences between cervid mitogenomes have accumulated over 
time since their divergence. The mitogenome sequences of the Western deer lineage became shorter during their 
evolution, whereas the Eastern lineage preserved a length similar to the sister taxa Rusa timorensis and R. uni-
color and probably to the common ancestor. However, in some taxa, e.g. C. canadensis alashanicus, C. albirostris, 
C. nippon yesoensis, C. nippon hortulorum and C. nippon centralis, the mitogenome increased in length mainly 
due to insertions in the control region.

Deviating nucleotide compositions are present especially in the mitogenomes of C. albirostris and C. hanglu as 
well as C. elaphus barbarus. The nucleotide bias could be related to the isolation and separate evolution of these 
deer populations and perhaps a founder effect and genetic drift, which led to the accumulation of differences in 
the nucleotide composition when compared to their common and widespread relatives.

C. hanglu is included within the Western mtDNA lineage. Therefore, the similarity of selected genes from C. 
hanglu and the Eastern lineage deer in their composition could result from convergent evolution or inheritance 
from the common ancestor (ancestral polymorphism). To decide between these possibilities we repeated the 
correspondence analysis including the nucleotide composition of sequences inferred in the common ancestor of 
Cervus. A similar composition of such sequences to those from C. hanglu and the Eastern lineage deer would be 
indicative of the ancestral state. The analysis showed that the composition of cox1 and cytb could have evolved 
convergently, whereas that of cox3, nd1, nd3, nd5 and tRNA genes probably represents a plesiomorphic (ances-
tral) state (Fig. S5). Interestingly, the Central Asian geographic distribution of C. hanglu is closer to that of the 
Eastern lineage. Thus, it is not inconceivable that similar evolutionary pressures related to environmental and 
climatic conditions influenced the mitochondrial genes involved in energy production. The similar nucleotide 
composition of C. hanglu and Eastern lineage representatives is responsible for a decrease in p-distance between 
their mitochondrial sequences.

Phylogenetic relationships within Cervini. Our trees are characterized by high statistical node support, 
and the phylogenetic relationships among the studied taxa corresponded to those from some other  studies26,31. 
Our findings based on mtDNA suggest that Rucervus eldii should be moved into Panolia eldii40 based on mtDNA 
(albeit nuclear DNA seems to suggest otherwise,  see44), which is grouped with Elaphurus davidianus and sep-
arated from Rucervus duvaucelii that is clustered with Axis. Similarly, Przewalskium albirostris (or albirostre) 
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should be classified as Cervus albirostris25,41 because it is grouped with the other Cervus species. The phylogenetic 
position of Elaphurus has been debated in the context of its hybrid  origin28,29,42,43. Its female parent was related to 
Panolia/Rucervus eldii as indicated by mtDNA trees, similar habitat and some morphological features, whereas 
the male parent could have been Cervus, e.g. C. canadensis, due to the same karyotype, several morphological 
and behavioural similarities as well as phylogenetic relationships in the trees based on nuclear genes, which are, 
however, not well-resolved. In fact, hybrids between Elaphurus and C. elaphus seem to be  fertile44.

The genus Rusa is paraphyletic with respect to Cervus in our mtDNA tree, which has also been found by 
other  authors25–27,29,43. However, the phylogenetic analyses involving nuclear data did not yield R. unicolor45 or 
R. timorensis29 as sister taxa to Cervus. To reconcile these results, one could assume ancestral polymorphisms or 
mitochondrial introgression from the lineage of R. timorensis and R. unicolor to the common ancestor of Cervus 
or in the opposite direction. Since Cervus and Rusa are related taxa, occasional crossbreedings between them 
could have been possible in the past. In agreement with that, a high probability of interspecific gene exchange 
was suggested between C. albirostris and P. eldii, C. albirostris and R. unicolor as well as C. nippon and R. unicolor 
based on nuclear genome  studies45.

Our phylogenetic trees consistently yielded the monophyly of Cervus. This has also been found based on 
cytochrome  b15,25 and more mitochondrial  markers26,31, but those studies included a smaller number of taxa and/
or provided weaker support. In other analyses, the monophyly was disrupted as R. timorensis and R. unicolor 
were grouped with the  Eastern13,27,28 or  Western27 lineage of Cervus. Our study including the largest number of 
species represented by complete mitogenomes clearly supports the monophyly of the genus Cervus.

Phylogenetic relationships between species within the genus Cervus. Our phylogenetic analyses 
confirmed two well-supported clades of Cervus corresponding to the western and eastern part of its range. The 
Western lineage includes C. elaphus and C. hanglu. In the Eastern lineage, C. albirostris was sister to C. canaden-
sis and C. nippon combined. The same, albeit less supported topology, was received by Ludt et al.15 based on 
cytochrome b, and C. hanglu was also found part of the Western lineage in the trees based on the control region 
and cytochrome  b3,13,14,16,28,30. However, in a recent study based on a large number of cytochrome b sequences C. 
hanglu was sister to C. elaphus, C. canadensis and C. nippon  combined2.
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Figure 7.  Box-plots of Provean scores in various deer species: Ru—R. unicolor and timorensis; Ca—C. 
albirostris; Cn—C. nippon; Cc—C. canadensis; Ch—C. hanglu; Ce—C. elaphus. The scores quantify negative 
effects of amino acid substitutions on proteins. The thick line indicates the median, the box shows quartile 
ranges, and the whiskers denote the range without outliers shown as circles. The dashed line shows the threshold 
assuming deleterious (< − 2.5) and neutral (> − 2.5)  mutations94.
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The assignment of C. albirostris to the Eastern lineage is also supported by other phylogenetic  studies13,26,28,31 
with one  exception32. Moreover, C. albirostris, C. canadensis and C. nippon share morphological similarities in 
rump-patch colours and antler conformation but they were considered as convergent  features46,47. The sister 
group relationship between C. canadensis and C. nippon for mtDNA is also an ubiquitous result across many 
 studies2,13,14,16,26–28,30,48,49.

Contrary to the mitochondrial tree (Fig. 5), nuclear genome  analyses45 showed a close relationship of C. 
canadensis and C. hanglu, which both combined were sister to C. elaphus. C. nippon was a sister taxon to these 
three, and C. albirostris was sister to all other Cervus species. To reconcile these conflicting phylogenies based on 
nuclear and mitochondrial genomes, one could hypothesise ancient introgression events of the mitochondrial 
genome between C. albirostris and C. nippon and another between C. nippon to C. canadensis. This scenario 
assumes that the phylogenetic tree based on nuclear  data45 reflects the true evolutionary relationships among 
Cervus species. However, it may not be the case because the interspecific gene exchange between C. albirostris 
and P. eldii, C. albirostris and R. unicolor as well as C. nippon and R. unicolor45 could disturb the true phyloge-
netic signal in the nuclear genome. It would explain a more distant position of C. albirostris and C. nippon in the 
tree based on the nuclear data due to attraction by Rusa. Moreover, only one representative of C. elaphus was 
included in the nuclear genomic  study45 and not from a native locality but from New Zealand, where there are 
many hybrids because of human-mediated translocations.

Although mtDNA can be subjected to introgression, mitochondrial genes are located on a single molecule 
and are inherited  together50,51. Therefore, the individual markers carry the same phylogenetic signal in contrast to 
nuclear genes, which are more susceptible to incomplete lineage sorting and hidden gene  paralogy51–58, which can 
cause disagreement between gene and species trees. To arrive at a better species tree within Cervini, additional 
detailed genomic analyses with more taxa and based on orthologous genes are necessary.

Phylogenetic relationships within the Western lineage of Cervus. The obtained tree topology and 
the current distribution of mtDNA clades (Fig. 5) indicate that the ancestor of C. elaphus had a common origin 
with C. hanglu in Central Asia, and then migrated to Europe. A newly sequenced mitogenome of C. elaphus bar-
barus, which carries the B  haplogroup59 originally native to the Italian  Peninsula60, is sister to all other C. elaphus 
mitogenomes. Before its extinction on the Italian mainland this lineage was introduced by humans to Sardinia, 
Corsica and North Africa. Among the other red deer lineages, the western lineage A is sister to the monophyletic 
assembly of eastern haplogroups C, D and E so that the intraspecific relationships mirror geographic distribu-
tion.

Haplogroup A is the glacial refugial lineage in south-western Europe and at the end of the last glacial expanded 
from the Iberian Peninsula and southern France to Central and Northern  Europe2,13. The other dominant haplo-
group in Europe today is C, which recolonised the eastern parts of the continent from a refuge in the  Balkans2,13. 
Taxonomically, A and C roughly represent the western and eastern European subspecies: C. e. hippelaphus or 
C. e. elaphus and C. e. pannoniensis, respectively. Haplogroups B, D and E are also in good accordance with the 
Mediterranean subspecies C. e. corsicanus on the Tyrrhenian islands and C. e. barbarus in North Africa (B), the 
recently described C. e. italicus in the Mesola Po delta region (D)61 and C. e. maral in Asia Minor and further 
east (E). Geographic outliers such as D haplogroup in a few Polish red  deer24 may reflect true biogeographic 
 patterns3 or human translocations.

The placement of haplogroup E sample from Iran within European haplogroups C and D suggests migrations 
from Balkans to Asia. Alternatively, haplogroup E could be a remnant of broader Cervus range in the past. Closer 
relationships between haplogroups C and E are confirmed in morphological similarities, e.g. massive antlers with 
a relatively simple crown, a frequent fourth tine or „dagger” below the crown and scarcely developed  mane47,62.

Phylogenetic relationships within the Eastern lineage of Cervus. All trees yielded a monophyletic 
eastern group of Cervus species with high support, comprising C. albirostris, C. canadensis and C. nippon. Based 
on these relationships and current geographic ranges of Cervus, it can be hypothesised that the ancestor of the 
Eastern lineage lived in Central China. C. canadensis expanded north-westwards giving rise to sibiricus but other 
populations evolved in China (alashanicus and kansuensis), from where another migration route led to the north 
and west (represented by songaricus) as well as in the opposite direction to North-eastern Asia, which is today 
inhabited by the subspecies xanthopygus. For a more detailed picture nuclear markers as well as data on C. c. 
wallichi are necessary. C. nippon shows two monophyletic, well-supported clades: on the mainland plus Taiwan 
and in Japan. The former lineage separated into a north-eastern subspecies C. n. hortulorum, a south-eastern 
subspecies C. n. sichuanicus and C. n. kopschi, whose common ancestor could have migrated to Taiwan, where 
it evolved into C. n. taiouanus.

The monophyly of Japanese deer suggests a single colonisation event and was also obtained based on shorter 
sequences of cytochrome  b13, the control  region63 and complete  mitogenomes64. However, in the tree based 
on longer cytochrome b  sequences13 and other trees based on the control  region65–67, the northern and central 
subspecies grouped with the mainland clades, which suggests at least two colonisation events. Nevertheless, 
even when assuming the monophyly of Japanese deer, it is possible that the mitochondrial lineages of Japanese 
C. nippon split already on the Asian mainland and later colonized the islands in two waves from Sakhalin and 
the Korean Peninsula. A late arrival of sika in Japan would be supported by the oldest C. nippon remains found 
on Honshu, which are from 0.220  Mya36.

C. canadensis nannodes, native to California, is grouped with high support in the phylogenetic tree with C. 
canadensis sibiricus, which indicates that the American wapiti could carry mtDNA from this subspecies or its 
relatives. This close relationship is supported by evident affinities in morphology between C. canadensis sibiricus 
and North American  wapitis47. It contrasts with the phylogenetic results based on the control region, which yields 
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that the North American wapiti is related, albeit with poor support, with C. canadensis xanthopygus16,30 or C. 
canadensis songaricus14. Our results are more congruent with those based on cytochrome b, in which American 
wapiti were grouped with C. canadensis sibiricus and also C. canadensis songaricus3,13–15. According to Meiri 
et al.68, colonisation of North America occurred around 15 kya, and the northeast Siberian source population 
became extinct within the past 500 years.

Estimating divergence times within Cervini. The best approach to estimate divergence times is to 
include calibration points within the studied group but most previous studies used only the split between Cer-
vini and  Muntiacini8,27,28,31. Only Doan et al.13 applied a point located within Cervini, namely the separation of 
Axis and Rucervus from other taxa. Therefore, besides the Cervini-Muntiacini split, we used three more points 
placed within Cervini.

Figure 8 shows a comparison of our estimates with those from previous studies for selected nodes in Cervini 
phylogeny. Our calculations correspond very well to the median calculated overall estimates and agree with some 
other  authors8,26,69. Relatively old nodes were produced by methods that used old events as calibration point, e.g. 
the split between Cervidae and Bovidae (25.8 Mya)14, Rangifer tarandus and Cervus nippon aplodontus (13.9–13.6 
Mya)45 as well as Cervini and Muntiacini (16.7–15.0 Mya)27, which is much older than the oldest known fossils 
of Muntiacini, i.e. 11–9  Mya70. Too old calibration points can result in imprecise estimates of divergence times 
for younger nodes. On the other hand, some authors applied points that were probably too young, e.g. assump-
tions on the oldest Muntiacini at 9–7  Mya64,71 or 10–8  Mya31, which shifted divergence events to more recent 
times. The inclusion of fossil calibrations can strongly impact molecular dating, e.g. young estimates of the node 
separating eastern and western deer were shifted back in time when a fossil calibration point was added to the 
tip dates of ancient  samples2.

Evolution of deer populations and mitochondrial protein-coding genes. The evolution of Cer-
vini since the Late Miocene is connected to the expansion of open woodlands and grasslands associated with 
climate  changes72,73. Accordingly, our results showed that many Cervus clades emerged since 2.6 Mya (the Early 
Pleistocene), when the oscillations of colder and warmer periods became more intense. Changes of climate to 
drier and colder could cause the expansion of grasslands and more open habitats as well as the appearance of 
new corridors, which enabled the migration and the dispersal of  deer15,31. Also the uplift of the Tibetan Plateau 
and the Himalayan range in the Late Pliocene and Early Pleistocene could have influenced the spreading and 
diversification of deer in  Asia74. The evolution of deer could follow a contraction–expansion  model6,75,76. During 
glacials, its larger populations were fragmented into smaller isolated ones in refugia, which were subjected to 
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bottlenecks and genetic drift. This resulted in distinct lineages with different gene pools, which later expanded 
during interglacials.

Analyses of nucleotide substitutions in protein-coding genes showed their different evolution in individual 
deer lineages, e.g. a higher proportion of more deleterious mutations in C. nippon and C. hanglu, which may be 
due to decreasing population sizes in the past and a larger impact of genetic drift in the small, isolated popula-
tions. We also found that two genes (atp8 and cox1) were subjected to positive selection in some deer lineages, 
which could be associated with changing climatic and environmental conditions after migration of deer into 
new habitats, e.g. the expansion of the genus Cervus from Central Asia to Europe and its further diversification, 
split of C. canadensis into separate populations in Asia or the colonisation of separated islands by the Japanese 
deer subspecies.

The application of neutrality tests to sequences of protein-coding genes suggests that the Western lineage 
populations expanded recently after a bottleneck related to migration from Central Asia to Europe. On the other 
hand, C. nippon populations could have been subjected to isolation by geographic barriers or a recent bottleneck, 
which is reflected by the patchy distribution of its subspecies in Asia.

Materials and methods
Sample collection and DNA extraction. The novel mitogenome sequences were obtained for 11 indi-
viduals of Cervus elaphus representing all five phylogenetic haplogroups (A-E) as well as for two wapiti subspe-
cies (Altai wapiti, C. canadensis sibiricus and Manchurian wapiti or izubra, C. c. xanthopygus). Table S3 includes 
the sampling localities and geographic coordinates for the analysed specimens. No live animals were used in 
our survey. We worked in the laboratory with only DNA isolates of Cervus from Italy (C. elaphus italicus) and 
Tunisia (C. elaphus barbarus), not their tissue samples. These samples were the same ones as used by Hajji et al.59 
(for Tunisia red deer) and Zachos et al.61 (for Mesola red deer). Samples from Tunisia were legally collected in 
the wild from animal faecal samples. The DNA isolates of Mesola red deer originated from blood and hair tis-
sue fragments collected from live-captured animals, marked and released over the years 1994–1998 during a 
long-term study of red deer ecology in a Natural Preserve with the permission of the Italian Ministry of Forestry 
which manages the protected area since 1954. Tissue samples of deer from Iran (C. elaphus maral) were collected 
from animals found dead in the wild. In the case of tissue samples from Poland and Russia, in these two coun-
tries, the hunting situation is very similar. In Russia, the red deer, including the Siberian (C. canadensis sibiricus) 
and Far Eastern (C. canadensis xanthopygus) subspecies, is a legal object of hunting in accordance with Federal 
Law No. 209-FZ of July 24, 2009 "On hunting and the conservation of hunting resources and amendments to 
certain legislative acts of the Russian Federation". In Poland, the list of hunting mammals was determined by 
the Order of the Minister of the Environment (Rozporządzenie Ministra Środowiska of 11 March 2005) (see 
Journal of Laws of 2005, No. 45, paragraph 433). The order came into effect on 17 August 2014. Thus, tissue 
samples from animals killed during legal hunting in Poland and Russia do not require specific permissions. Total 
genomic DNA was extracted using the DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany) following the 
manufacturer’s protocol.

PCR and sequencing. The PCR thermal cycling was performed in 5 µL reaction volumes containing 2 
µL genomic DNA (~ 20 ng), 1.7 µL Qiagen Multiplex PCR Master Mix (1 ×), 0.3 µL primer mix (0.2 µM of 
each primer), and 1 µL RNase-free water. The reaction conditions were the same for all used primer pairs and 
consisted of an initial denaturation step at 95 °C for 15 min, followed by 35 cycles at 94 °C for 30 s for dena-
turation, annealing for 90 s, extension at 72 °C for 60 s, and final elongation for 30 min at 60 °C. For details of 
the annealing temperature for different primer pairs see Table S4. We applied a set of 37 primer pairs for rapid 
amplification of deer mitochondrial genomes belonging to the Western and Eastern lineages, and to generate 
overlapping reads. Table S4 contains the primers used in this study, including 27 primer pairs newly designed 
with the FastPCR  software77 on the basis of available mitogenomes of Cervus (Table S5). The amplicons were 
purified with the shrimp alkaline phosphatase (SAP) and Exonuclease I (Thermo Scientific) in an enzymatic 
reaction following the manufacturer’s protocol. Purified PCR products were bidirectionally sequenced using a 
BigDye™ Terminator Cycle Sequencing Kit v.3.1 (Applied Biosystems, Foster City, CA, USA). Unincorporated 
dideoxynucleotides were eliminated from the sequencing reaction with an ExTerminator Kit (A&A Biotech-
nology, Gdynia, Poland), and sequences were analysed on an automated ABI 3130 Genetic Analyzer (Applied 
Biosystems, Foster City, CA, USA).

Sequence analysis. Mitogenomic sequences were manually revised and aligned using the sequence-edit-
ing program BioEdit, version 7.0.5.378. All analysed protein-coding genes, as well as tRNA and rRNA genes, were 
identified using the MITOS online mitochondrial genome annotation  server79 and the reference mitogenome 
sequences of Bos taurus (NC_006853). To avoid nuclear DNA sequences of mitochondrial origin (pseudogenes/
numts), we also checked all coding regions for open reading frames and stop codons.

Statistical analyses. For statistical analyses, we applied the Shapiro–Wilk test to for normality of the stud-
ied variables and Levene’s test to test for homogeneity of variances in the analysed groups. As these assumptions 
were not fulfilled, we applied non-parametric tests. The difference in mitogenome length and Provean scores 
between deer lineages were verified by means of a Kruskal–Wallis test with Dunn’s post-hoc test in pairwise 
comparisons between the groups. The pairwise proportion test was also applied in the comparison of distribu-
tions of deleterious mutations between these groups. In the pairwise comparisons, we applied the Benjamini–
Hochberg  method80 for p-value correction to control for the false discovery rate. Differences were considered 
significant if p-values were lower than 0.05. Statistical tests and correspondence analyses of nucleotide composi-
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tion of mitochondrial sequences were performed with the R software using the packages car, FactoMineR, FSA 
and  stats81.

Phylogenetic analyses of mitogenome sequences. Phylogenetic analyses were performed on com-
plete mitogenomic sequences—13 red deer and wapiti mitogenomes newly obtained in this study and 58 mitog-
enomes downloaded from GenBank including 24 Cervus mitogenomes and 34 other representatives of Cervinae 
(Table S5). We studied all mitogenomic loci: control region, 13 protein-coding genes, 12S and 16S rRNAs, and 22 
tRNAs. The sequences were aligned in MAFFT using an accurate algorithm L-INS-i with 1000  cycles82. Sites of 
protein-coding sequences suitable for phylogenetic analyses were selected in GBlocks assuming codon organi-
zation of the  sequences83, whereas poorly aligned regions in other sequence types were removed using trimAl 
applying the best automated  method84. The resulting alignments were inspected in  JalView85. The final alignment 
consisted of 16,306 bp.

We run three phylogenetic analyses: the maximum likelihood method in IQ-TREE86, as well as Bayesian infer-
ence in  MrBayes87 and  PhyloBayes88. We took into account all potential partitions in finding the best substitution 
models, i.e. three codon positions for individual protein-coding genes and separate partitions for individual 
RNA genes and the control region.

In IQ-TREE analyses,  ModelFinder89,90 was used to select the best-fitting scheme of substitution models 
(Table S6). To assess significance of branches, we applied the Shimodara-Hasegawa-like approximate likelihood 
ratio test (SH-aLRT) with 10,000 replicates and non-parametric bootstrap with 1000 replicates. In the tree search, 
we used a more thorough NNI (nearest neighbor interchange) search and assumed 1000 initial parsimony trees 
and 100 top initial parsimony trees to optimize with the NNI search to initialize the candidate set.

In MrBayes, we used the partitioned scheme of substitution models from  PartitionFinder91 (Table S6). Never-
theless, we applied mixed models to specify appropriate substitution models across the large parameter  space92. 
The models describing heterogeneity rate across sites were taken from the PartitionFinder results. Two independ-
ent runs using 32 Markov chains were applied. The trees were sampled every 100 generations for 10,000,000 
generations. We generated a posterior consensus tree based on the trees from the last 6,581,000 generations, 
when the runs had reached convergence, i.e. the standard deviation of split frequencies had stabilized and was 
much below the recommended threshold of 0.01.

In PhyloBayes, we applied the CAT-GTR+Γ model with parameters inferred from the data. Two independent 
Markov chains were run for 100,000 generations. The last 50,000 were collected from each chain to compute a 
posterior consensus after reaching convergence, when the largest discrepancy observed across all bipartitions 
(maxdiff) was much below the recommended threshold of 0.1. The consensus tree of the trees obtained by the 
three approaches was calculated in IQ-TREE.

The proportion of different sites (p-distance) between deer sequences was calculated in MEGA  1193. They were 
compared with distances obtained from the MrBayes phylogenetic tree calculated as the sum of branch lengths.

Inferring ancestral sequences and analysis of substitutions in protein-coding genes. Ancestral 
sequences of 13 individual mitochondrial proteins of deer as well as the most probable amino acid substitutions 
were inferred using the maximum likelihood method in MEGA  1193 for each protein alignment applying the 
best substitution model found in MEGA 11. Rusa unicolor and R. timorensis were used as outgroup taxa. Based 
on the inferred sequences and substitutions, we assessed the deleterious effect of these mutations using the 
standalone version of Provean with non-redundant GenBank database and default assumptions, i.e. a clustering 
of BLAST hits was performed by CD-HIT assuming 75% global sequence identity, the top 30 clusters of closely 
related sequences from the supporting sequence set were used to generate the prediction, and the threshold 
− 2.5 was assumed for separation of deleterious and neutral  mutations94. To check for the presence of positive 
selection in deer protein-coding genes, we applied all methods and models with codon-based Z-test and Fisher’s 
exact test available in MEGA 11. Tajima’s test of neutrality was also conducted with this software, whereas Fu’s 
test was done with  DnaSP95.

Ancestral sequences of selected mitochondrial genes in the common ancestor of Cervus were inferred in IQ-
TREE using the fixed tree found in this program based on the complete mitogenomic sequences including Rusa 
unicolor and R. timorensis as an outgroup. For each data set we applied the best-fitting scheme of substitution 
models taking into account appropriate partitions.

Molecular dating. Divergence times were estimated using BEAST 1.10.496 for two data sets, one including 
representatives of Muntiacini and Cervini (as described above) and the other consisting of 39 Cervus sequences 
only. We assumed substitution models as proposed by PartitionFinder (Tables S6 and S7). For the first data set 
we introduced four calibration points. The normal distribution with the mean of 10.825 and a standard devia-
tion of 1.1215 with 95% HPD interval of 12.67–8.98 Mya was assumed for the split of Cervinae into Cervini and 
Muntiacini based on our previous estimations conducted for cervid  mitogenomes8. This corresponds well with 
the oldest representative of Muntiacini dated to 11–9  Mya70. Additionally, we assumed the lognormal distribu-
tion prior with the offset of 5.3 Mya for the split of Axis and Rucervus based on the oldest fossils of Axis dated 
to 6.6–5.3  Mya97,98. This assumption also agrees with the oldest Rucervus dated to 7–5  Mya99. The divergence of 
Rusa and Cervus clades was assumed according to the oldest Rusa dated to 3.4–2.6  Mya100. We applied the log-
normal distribution prior with the offset of 2.6 Mya. Finally, we used the exponential distribution prior with the 
offset of 1.95 Mya and the 95% HPD of 2.6 Mya for the separation of two Cervus clades: C. elaphus + C. hanglu 
and C. canadensis + C. nippon + C. albirostris. This assumption was based on the fossil C. nestii dated to 2.1–1.95 
Mya from  Olivola101, which probably belongs to the lineage of C. elaphus + C. hanglu33,35. For the Cervus set, we 
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assumed the normal distribution for the age of the root with the mean of 2.59 Mya and 95% HPD 2.03–3.15 Mya 
as obtained in the dating for the Muntiacini and Cervini set.

In the case of the Muntiacini and Cervini set, we applied the Yule process model, whereas for the Cervus set, 
we used the coalescent constant size model because it was yielded as the best fitting according to the marginal 
likelihood values calculated in path sampling and the stepping stone  algorithm102,103. In these calculations, we 
applied a chain length of 10,000,000 and a number of path steps of 20. Besides the coalescent constant size model, 
we considered the following models: coalescent Bayesian SkyGrid, coalescent GMRF Skyride with time-aware 
and uniform smoothing, coalescent Bayesian Skyline piecewise-constant and piecewise-linear, speciation Yule 
and Birth–Death process. For both data sets, we applied the lognormal relaxed clock model rather than the 
strict clock because the coefficient of variation of the relaxed clock was quite high (0.43 and 0.61, respectively). 
Posterior distributions of parameters were estimated with a sampling frequency of 1000 steps for 1 billion and 
800 million generations for the first and the second dataset, respectively.

Convergence and sufficient sampling were checked using loganalyzer and Tracer 1.7 (http:// beast. bio. ed. ac. 
uk/ Tracer). All parameters had an Effective Sample Size (ESS) exceeding 200. The phylogenetic trees were sum-
marized in TreeAnnotator with a 10% burn-in and assuming common ancestor heights. The final trees were 
visualized in FigTree 1.4.3 (http:// tree. bio. ed. ac. uk/ softw are/ figtr ee).

Data availability
Raw sequencing data of the deep-sequenced genomes are available on the National Center for Biotechnology 
Information under project accession number OL679912–OL679924 (https:// www. ncbi. nlm. nih. gov/ nucco re/ 
OL679 912; https:// www. ncbi. nlm. nih. gov/ nucco re/ OL679 913; https:// www. ncbi. nlm. nih. gov/ nucco re/ OL679 914; 
https:// www. ncbi. nlm. nih. gov/ nucco re/ OL679 915; https:// www. ncbi. nlm. nih. gov/ nucco re/ OL679 916; https:// 
www. ncbi. nlm. nih. gov/ nucco re/ OL679 917; https:// www. ncbi. nlm. nih. gov/ nucco re/ OL679 918; https:// www. ncbi. 
nlm. nih. gov/ nucco re/ OL679 919; https:// www. ncbi. nlm. nih. gov/ nucco re/ OL679 920; https:// www. ncbi. nlm. nih. 
gov/ nucco re/ OL679 921; https:// www. ncbi. nlm. nih. gov/ nucco re/ OL679 922; https:// www. ncbi. nlm. nih. gov/ nucco 
re/ OL679 923). Sequences in Fasta and GenBank formats are also available on FigShare under https:// doi. org/ 
10. 6084/ m9. figsh are. 20337 573. Other data supporting the findings of the study are available in this article and 
its Supplementary Information files, or from the corresponding authors upon request.
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