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Abstract: Molecular and sequencing technologies have been successfully used in decoding biological
mechanisms of various diseases. As revealed by many novel discoveries, the role of non-coding
RNAs (ncRNAs) in understanding disease mechanisms is becoming increasingly important. Since
ncRNAs primarily act as regulators of transcription, associating ncRNAs with diseases involves
multiple inference steps. Leveraging the fast-accumulating high-throughput screening results, a
number of computational models predicting ncRNA-disease associations have been developed. These
tools suggest novel disease-related biomarkers or therapeutic targetable ncRNAs, contributing to the
realization of precision medicine. In this survey, we first introduce the biological roles of different
ncRNAs and summarize the databases containing ncRNA-disease associations. Then, we suggest
a new trend in recent computational prediction of ncRNA-disease association, which is the mode
of action (MoA) network perspective. This perspective includes integrating ncRNAs with mRNA,
pathway and phenotype information. In the next section, we describe computational methodologies
widely used in this research domain. Existing computational studies are then summarized in terms
of their coverage of the MoA network. Lastly, we discuss the potential applications and future roles
of the MoA network in terms of integrating biological mechanisms for ncRNA-disease associations.

Keywords: non-coding RNA; disease association; network mining; deep learning; mode of action;
integrative analysis

1. Introduction

Proteins are the most useful biomarkers for diseases and also the most effective thera-
peutic targets. However, the Human Genome Project revealed that about 98% of the genome
does not encode proteins. Meanwhile, an intriguing phenomenon of RNA-mediated inhibi-
tion of protein synthesis was observed in the early 1990s [1]. These unknown transcripts
that are not translated into protein are called noncoding RNAs (ncRNAs), and are now
considered as regulatory mediators of the biological system.

NcRNAs play important roles in various molecular mechanisms, such as RNA edit-
ing, silencing, gene activation, and protein translation [2]. Some of them are known as
biomarkers of a certain disease and/or as a drug target. Additionally, ncRNA expression
profile can be used as a drug response predictor [3]. In the pharmaceutical industry, various
ncRNA-based therapeutics are undergoing clinical trials [4].

The academic interest of each ncRNA varies, depending on its time of discovery, se-
quencing technology, and so on. NcRNAs discovered so far include microRNAs (miRNAs),
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long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), small interfering RNAs
(siRNAs) and piwi-interacting RNAs (piRNAs).

In this review, we focus on the computational studies for discovering association be-
tween diseases and ncRNAs, such as miRNAs, lncRNAs, and circRNAs. First, we describe
each type of ncRNAs and its association with diseases. Databases containing ncRNA-
disease associations are also summarized. Then, we propose a novel perspective called the
Mode of Action (MoA) network, a heterogeneous network-integrative approach inspired by
the pharmaceutical domain. We also provide a brief overview of the computational method-
ologies used in various studies, grouped into network mining and network learning. The
following sections are at the heart of this review, summarizing the computational models
on non-coding RNA-disease associations (ncDAs) through the MoA network perspective,
and also show how this integrative approach is becoming a new trend. After reviewing the
studies based on their coverage of the MoA network, the future role of the MoA network in
computational ncRNA-disease association prediction is discussed.

2. Types of ncRNAs and Its Association with Diseases
2.1. miRNA

First discovered in 1993 from C. elegans, miRNA is a small single-stranded ncRNA
molecule with a length of about 21–24 nucleotides [5]. At the molecular level, miRNAs
interact with complementary mRNA molecules and regulate the expression level of target
genes. Important biological processes affected by miRNA include cell development [6],
apoptosis [7], inflammation [8] and DNA damage response [9].

Since circulating miRNAs are stable and easily detectable, they have been used as
biomarkers for some diseases [10]. For example, patients with myocardial infarction
showed high expression of miR01, miR-133, miR-208 and miR-499 [11–13], which control
cardiac conductance by regulating action potential or expression of sarcomeric contractile
proteins. Recent studies reported that miR-29a and miR-29b contribute to the pathogenesis
of diabetes mellitus by regulating insulin signaling pathways [14].

2.2. lncRNA

lncRNA is a ncRNA molecule with a length of more than 200 nucleotides. Since the
discovery of the first lncRNAs in the early 1990s, studies have investigated the functions of
lncRNAs. LncRNA is now known as a crucial regulatory component that acts as a decoy,
scaffold, miRNA sponge and so on [15]. Biological processes affected by various lncRNAs
include dosage compensation, genomic imprinting, or cell differentiation [16].

Increasing evidences support the association between lncRNA and disease. For in-
stance, BACE1 was reported as an essential factor for the production of the toxic amyloid
precursor protein, which serves a major role in Alzheimer’s disease [17]. Additionally,
a recent study revealed that the expression level of HAND2-AS1 is high in liver cancer
stem cells. It recruits a chromatin-remodeling complex, resulting in the activation of BMP
signaling to promote self-renewal of cancer cells [18].

2.3. circRNA

In the 1970s, circular forms of linear single-stranded RNA molecules were reported
in several RNA viruses, which was the first discovery of circRNA [19]. CircRNA is a
continuous loop that is covalently closed and has one to five exons, which are usually
generated by back-splicing. This RNA molecule acts mainly as a miRNA sponge and
deactivates miRNA’s mechanisms by binding with the seed regions of miRNA [20]. It
also participates in other RNA–protein interactions and protein translations by forming
a complex with proteins. Biological processes affected by circRNA include cell survival,
proliferation [21] and the TGF-β signaling pathway [22].

Unlike linear RNAs, circRNAs lack free ends, which makes them 2.5 times more stable
than their linear counterparts [23]. Owing to its stability and abundance, circRNAs are
regarded as potential circulating biomarkers for diseases diagnosis or drug response [24].
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It has been reported that circRNA_0025202 regulates the miR-182-5p/FOXO3a axis in
breast cancer, resulting in tamoxifen sensitivity and tumor progression [25]. Additionally,
circHIPK3 has been reported as miRNA a sponge that affects the viability, migration, and
proliferation of retinal endothelial cells [21].

2.4. The ceRNA Hypothesis

Competing endogenous RNA (ceRNA), first hypothesized by Salmena et al. [26]
in 2011, refers to the network of ncRNAs that regulate each other through competition
for their targets, e.g., miRNAs and mRNAs. The ceRNA hypothesis was based on the
observation of the regulating effect of PTENP1 pseudogene on tumor suppressor gene
PTEN 3’UTR region, leading to growth inhibition in a DICER-dependent manner [27]. Since
the regulatory interaction between lncRNA and miRNA has been elucidated, evidences
showing different types of ncRNA regulation have been accumulated.

With the increasing evidence of ncRNAs’ regulatory interactions, miRNA, lncRNA
and circRNAs, along with mRNAs have now become the core elements of the ceRNA
network. The ceRNA network is now regarded as a critical component in understanding
the association between transcriptome and disease occurrence [28–30].

3. Databases

There are several databases that describe experimental evidence of ncDAs. Some
provide the differentially expressed ncRNA lists in certain diseases, and others also offer
ncDA expression profiles. We summarize those databases in Table 1, annotated with the
major types of ncRNAs and a short description of each database.

Table 1. Summary of various ncDA databases.

Database ncRNA Type Description URL

HMDD v3.2 [31] miRNA
This database contains experimentally supported,

manually curated evidence for the associations
between human miRNAs and diseases.

https:
//www.cuilab.cn/hmdd,

accessed on 26 August 2022

miR2Disease [32] miRNA
This database is a manually curated database

providing a comprehensive resource of miRNA
deregulation in human diseases.

http:
//www.mir2disease.org/,
accessed on 26 August 2022

dbDEMC [33] miRNA

This database is an integrated database designed to
retain and show differentially expressed miRNAs in

cancers detected by high-throughput and
low-throughput methods.

https://www.biosino.org/
dbDEMC/index, accessed

on 26 August 2022

miRCancer [34] miRNA
This database provides a comprehensive collection
of miRNA expression profiles from various human

cancers.

http://mircancer.ecu.edu/,
accessed on 26 August 2022

LncRNADisease v2.0 [35] lncRNA
circRNA

This database integrated comprehensive
experimentally supported and predicted lncRNA-

and circRNA-disease associations curated from
manual literatures and other resources.

http:
//www.rnanut.net/lncrnad

isease/index.php/home,
accessed on 26 August 2022

Lnc2Cancer 3.0 [36] lncRNA
circRNA

This database is a manually curated database that
provides comprehensive experimentally supported

associations between lncRNA or circRNA and
human cancer, with regulatory mechanisms,
biological function, and clinical application.

http://bio-bigdata.hrbmu.
edu.cn/lnc2cancer/,

accessed on 26 August 2022

MNDR v3.1 [37] miRNA
lncRNA
circRNA

This database integrated various kinds of
mammalian ncDA through manual curation and

prediction algorithms.

https://www.rna-society.or
g/mndr/home.html,

accessed on 26 August 2022

https://www.cuilab.cn/hmdd
https://www.cuilab.cn/hmdd
http://www.mir2disease.org/
http://www.mir2disease.org/
https://www.biosino.org/dbDEMC/index
https://www.biosino.org/dbDEMC/index
http://mircancer.ecu.edu/
http://www.rnanut.net/lncrnadisease/index.php/home
http://www.rnanut.net/lncrnadisease/index.php/home
http://www.rnanut.net/lncrnadisease/index.php/home
http://bio-bigdata.hrbmu.edu.cn/lnc2cancer/
http://bio-bigdata.hrbmu.edu.cn/lnc2cancer/
https://www.rna-society.org/mndr/home.html
https://www.rna-society.org/mndr/home.html
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Table 1. Cont.

Database ncRNA Type Description URL

CircRNADisease [38] circRNA
This database contains a manually curated

experimentally supported human circRNA-disease
association.

http://cgga.org.cn:
9091/circRNADisease/,

accessed on 26 August 2022

CircR2Disease v2.0 [39] circRNA This database provides experimentally validated
circRNA-disease association.

http://bioinfo.snnu.edu.cn/
CircR2Disease_v2.0/,

accessed on 26 August 2022

circAD [40] circRNA

This database is a manually curated resource for
dysregulated circRNAs in disease, with primer
details for respective circRNAs and information

about related genes.

https://clingen.igib.res.in/
circad/, accessed on 26

August 2022

LncR2metasta [41] lncRNA

This database is a manually curated database
providing experimentally supported lncRNAs that
are deregulated in cancer metastatic events, such
as cancer cell invasion, proliferation and so on.

http://lncr2metasta.wchod
a.com/, accessed on 26

August 2022

CircMine [42] circRNA

This database provides comprehensive interactions
between circRNAs and diseases with various
physiological and pathological phenotypes,

including drug resistance, disease stage, and so on.

http://www.biomedical-w
eb.com/circmine/home,

accessed on 26 August 2022

4. The Mode of Action Network for ncRNA-Disease Association

A majority of ncDA studies try to understand or infer their relationships directly,
without considering biological mechanisms of ncRNA. However, the effect of ncRNA has
to pass through multiple entities at intermediate levels before resulting in clinical outcome.
A desirable approach would be interpreting the effect of ncRNA at various levels, starting
with mRNA expression level then observing how its alteration leads to disease onset
through perturbation in biological pathway and cellular phenotype. This perspective is
consistent with the results of recent studies which reported performance improvement in
clinical outcome prediction by integrating multiple biological entities, compared to the
ones using only a single data type [43–47].

This approach is similar to the investigation on the effect of administered chemicals
as mode of action (MoA) of chemicals [48,49]. In order to investigate the relationship
between chemical and disease, changes in various levels of biological organization, e.g.,
gene expression, pathway and phenotypes, are examined. Going beyond from describing
known drug-disease treatment pairs, several computational tools have been proposed to
predict novel drug-disease associations by examining the pattern of known MoAs, forming
a research field now widely known as drug repositioning [50,51]. Reflecting the MoA
concept through integration of biological entities of different levels is now a new trend in
computational prediction of drug-disease association.

NcRNA-disease association can be studied with the MoA concept analogous to the
drug-disease associations. We refer to the underlying network between ncRNA and disease
as Mode of Action (MoA) network (Figure 1). Through this perspective, we can reflect
the biological roles and effects of ncRNAs. For example, regulation of gene expression by
ncRNAs, which leads to alteration of biological pathway activation and cellular or clinical
phenotypes, can be modeled in the MoA network.

To the best of our knowledge, there are few methods that integrate all of the entities
mentioned as nodes of the MoA network to predict ncDA. However, we were able to survey
several studies covering multiple entities, and they can be categorized in terms of the cov-
erage of the network. We summarize those methods and studies in the following sections.

http://cgga.org.cn:9091/circRNADisease/
http://cgga.org.cn:9091/circRNADisease/
http://bioinfo.snnu.edu.cn/CircR2Disease_v2.0/
http://bioinfo.snnu.edu.cn/CircR2Disease_v2.0/
https://clingen.igib.res.in/circad/
https://clingen.igib.res.in/circad/
http://lncr2metasta.wchoda.com/
http://lncr2metasta.wchoda.com/
http://www.biomedical-web.com/circmine/home
http://www.biomedical-web.com/circmine/home
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Figure 1. The MoA network of ncDA. NcRNA, regulating gene expression, alters the biological
pathway and induces change of cellular phenotype. Aggregation of cellular phenotypes results in
disruption of homeostasis and leads to a disease state.

5. Computational Methodologies for Modeling the MoA Network

To infer potential ncDAs with the MoA network framework, it is critical to take
advantage of valid associations between ncRNAs and other omics data. In this section, we
introduce computational methodologies used to analyze the MoA network (Figure 2).

Figure 2. Two methodologies for investigating the relationship between ncRNA and other biological
entities; network mining methods (statistical methods, network propagation, random walk-based
methods) and deep learning methods (matrix factorization, graph neural network).
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5.1. Methods for Mining on the MoA Network
5.1.1. Statistical Methods

To construct ncRNA-disease associations (ncDAs), disease-specific ncRNAs should
be identified. The most fundamental approach to identify those ncRNAs is differential
expression (DE) analysis based on statistical methods. Expression profiles are measured
from samples in different conditions, typically control and treated conditions. With these
expression profiles as input, DE analysis tools determine genes or ncRNAs that show
significantly different expression values between the conditions. DE ncRNAs can be directly
used to connect potential ncRNA-disease associations. There exist various DEG tools such
as limma-voom [52], DESeq2 [53], edgeR [54], ballgown [55], EBSeq [56], SAMSeq [57] and
NOISeq [58].

A major limitation of DE statistical approaches is that DE ncRNAs and DEGs can
hardly consider complex biological interactions. An interesting approach is to use DE
analysis in two steps. Xin et al. [59] reported miRNAs for breast cancer antiestrogen
resistance in a two step DE analysis where DE miRNAs were detected first and then only
DEGs that are targeted by those DE miRNAs were used for identifying miRNAs for breast
cancer antiestrogen resistance. In the predictive modeling or analysis, the major challenge
is to balance false positives and false negatives. The success of this approach is to focus
on reducing false positives in the two-step DE analysis. However, the weakness of this
approach is then low sensitivity induced by stringent application of DE analysis twice.

5.1.2. Network Propagation

Network propagation is a method used on biological networks for integrating and
amplifying genetic signals from individual genes to their neighbors [60,61]. Specifically,
given a biological network and a set of disease-associated genes, the genes are mapped
to the network, and their effects are propagated to neighboring genes iteratively. After
convergence, the algorithm returns a list of genes ranked in terms of disease relevance, and
candidate disease-associated genes are unveiled through higher ranks. Generally, known
disease-associated genes or DEGs are used as seed genes for initializing propagation and
represented as p0. Then, propagated information on genes at each iteration step t, pt, can
be calculated as follows:

pt+1 = W pt

where the normalized adjacency matrix of the network is W. Converged information on
genes, p∞, can be analytically solved without simulating all the propagations. If ncRNAs
are incorporated in the network, they are connected to their related genes in the network.
Genes and/or ncRNAs that are already known to be related with a certain disease are used
as seeds for network propagation. As a result of the network propagation, ncRNAs are
ranked and ncRNAs with high rankings are regarded to be associated with the disease.

A variation of network propagation, widely known as Randomwalk with Restart
(RWR) [62], added the idea of restart which leads to the calculation of proximity of entities
from the initial seed genes [63]. It applied a restart probability α, which forces the propaga-
tion to always restart at the seed gene set p0. RWR with the restart probability is computed
by following equation:

pt+1 = (1− α)W pt + αp0

5.1.3. Random Walk-Based Methods

Random walk-based methods are utilized for creating node embedding vectors
through random walk on the MoA network given as input. Random walks containing local
structure information can be generated and summarized into a single node embedding vec-
tor by the skip-gram model [64,65]. For each entity ei on the random walks, the skip-gram
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model predicts contiguous entities ej included in the window size w by maximizing the
objective function below.

L =
T

∏
i=1

i+w

∏
j 6=i, j=i−w

p(ej|ei)

As a result, all the entities are mapped into the Euclidean space preserving their
relative positions on the MoA network. Thus, ncRNAs and disease entities are represented
in vectors considering the topology of the MoA network, which can be fed into downstream
tasks such as link prediction to infer ncDAs.

5.2. Methods for Learning on the MoA Network
5.2.1. Matrix Factorization

Matrix factorization is a method for decomposing a matrix into latent matrices that
has been successful in user recommender systems [66]. Since ncRNA-disease associations
can be represented as a matrix, predicting potential ncDAs can be formulated as matrix
factorization. Given a matrix X ∈ Rn×m, which represents the known ncRNA-disease
associations between n ncRNAs and m diseases, the goal of matrix factorization is to
approximate X by a product of a series of latent matrices by minimizing the objective
function below.

L = ‖X−UV>‖

where U ∈ Rn×k, V ∈ Rm×k are the latent matrices and k is the number of latent fea-
tures. NcDAs are quantified in the matrix as one-hot or probability of positive association.
Depending on the number of entity types composing the MoA network, more than two
latent matrices are included in the decomposition formula representing associations with
other entities such as mRNAs. The original ncRNA-disease association matrix can be
reconstructed using the trained latent matrices, and the missing values are also completed
through this process. The reconstructed output matrix can be understood as a predicted
ncDA probability matrix.

5.2.2. Graph Neural Networks

Graph neural network (GNN) is a deep learning-based method that directly incorpo-
rates a graph structure into the neural network and generates node embedding vectors [67].
Compared with random walk-based methods, GNN generates node embedding vectors
through end-to-end learning that optimizes an objective function for the ultimate goal of
ncDAs prediction.

Message passing is the most fundamental representation update scheme of GNN. It
is divided into two steps: aggregation and update. The representation of a node v at t-th
iteration is denoted as Rt

v. At (t + 1)-th iteration, a message vector Mt+1
v is created by

aggregating messages of neighbor nodes’ representation at t-th iteration. Then, Rt+1
v is

updated with the message vector and the previous representation Rt
v. To summarize, it

goes as follows:

Mt+1
v = ∑

w∈N(v)
At(Rt

v, Rt
w)

Rt+1
v = Ut(Rt

v, Mt+1
v )

where message aggregation and update functions are At and Ut, and the list of neighbor
nodes of v is annotated as N(v). Through this process, embedding vectors of the entities in
the MoA network are computed so that local structure information of the network can be
encoded in the embedding vectors. The resulting embedding vectors of GNN models can
be directly used for ncDA prediction in an end-to-end manner.
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6. Computational ncRNA-Disease Association Studies

The concept of the MoA network is now becoming a new trend in computational
ncRNA-disease association prediction. Recently, several approaches have been proposed
for leveraging various levels of biology in understanding diseases and ncRNAs’ roles
in them. Some studies also report the improvement in prediction performance when
integration of multiple level data is performed. In this section, studies covering various
types of interaction in the MoA network are introduced. These integrative models can be
split into two categories based on their coverage of the MoA network; ncRNA–mRNA–
Disease integrative studies and ncRNA–mRNA–Pathway/Phenotype–Disease integrative
studies. The following sections are organized into two sub-categories based on their base
approaches: network mining and network learning methods. Network mining methods
leverage network propagation or walk-based methods while network learning methods
more aggressively utilize machine learning methods, from random forest to deep learning.

Before examining the MoA-network integrated studies, we briefly introduce ncDA
studies that infer novel associations from known ncDA data only, without the consideration
of other biological level entities.

In the year 2008, the analysis of Lu et al. [68] reported important network patterns of
miRNA-disease associations. This result led to the proposal of various pioneering com-
putational ncDA prediction algorithms based on a direct association network of diseases
and ncRNAs. RWRMDA [69] was among the first studies to apply RWR algorithm for
mining the global miRNA interaction network, and MIDP [70] used a random walk algo-
rithm in mining the similarity network of miRNA and disease for ncDA prediction, while
Yang et al. [71] performed a resource-allocation-based propagation algorithm on lncRNA-
disease bipartite network for predicting lncDAs. IMCMDA [72] used an inductive matrix
factorization method to infer the missing miRNA–disease association based on the known
associations, miRNA similarity and disease similarity. Leveraging the ceRNA hypothesis
Section 2.4, HGLDA [73] constructed a disease–miRNA–lncRNA network, which was
passed on to a hypergeometric distribution-based model for lncDA prediction. Other tools
for mining ncDAs from ncRNA-disease bipartite graph [74–79] are organized in Table 2.

With the rise of deep learning technology, numerous models have been proposed
for learning the ncRNA-disease associations through neural networks, especially with
GNN. Xuan et al. [80] leveraged graph convolutional network and convolutional neural
network for predicting ncDA. GCNCDA [81] also leveraged Graph Convolutional Network
(GCN) based on circRNA and disease similarity networks for circDA prediction. Recently,
Sheng et al. proposed a multi-channel graph attention autoencoder named MGATE [82] for
lncDA prediction. Additionally, a pioneering graph attention network model GTGenie [83]
integrated ncRNA-disease similarity network with text-based relation representation based
on BioBERT [84], a language model pretrained on large-scale biomedical corpora. The
inputs, outputs reported ncDA prediction performances, and other detailed information on
the representative tools of this section are provided in Table 3. Additional learning-based
ncDA prediction tools [85–88] are also organized in Table 2.

6.1. ncRNA-mRNA-Disease Network

Many studies aimed to identify disease-associated ncRNAs through ncRNA–mRNA
integrated analysis. For example, Xin et al. [59] applied a two-step analysis approach to
discover and investigate the role of miRNAs in resistance to the drug fulvestrant. They
predicted miRNAs and target mRNA transcripts that are relevant to fulvestrant resistance,
and further performed pathway analysis which showed that these miRNAs regulate cancer-
related signal cascades. We now summarize a list of studies that integrated not only ncRNA,
but also mRNA information in the MoA network to find possible possible biomarkers of
specific condition or disease-of-interest.
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Table 2. Summary of computational ncRNA-disease association studies.

Direct ncRNA-Disease Association ncRNA-mRNA-Disease ncRNA-mRNA-Pathway
/Phenotype-Disease

Year Mining Learning Mining Learning Mining Learning

∼ 2017

RWRMDA [69]
RLSMDA [74]
Yang et al. [71]
HGLDA [73]

MIDP [70]
HGIMDA [75]
IRWRLDA [76]

PBMDA [77]

Song et al. [89] Tian et al. [90]
LncNetP [91]

2018 ELLPMDA [78] TPGLDA [92] Wilk et al. [93]
Zhou et al. [94]
Xia et al. [95]

2019 Xuan et al. [80] Zhang et al. [96] DIABLO [45]
Qi et al. [97]

Uhr et al. [98]

2020 GCNCDA [81]
Li et al. [85]

Lu et al. [99]
MHRWR [100]

RWRMTN [101]

ImmLnc [102]
Gao et al. [103]

2021 Nguyen et al. [79] AEMDA [86]
iCDA-CMG [87]

SDNE-MDA [104] MOGONET [47]
LGDLDA [105]
Cr-NMF [106]

Wang et al. [107]
Zhang et al. [108]

Evangelista et al. [109]

2022
MGATE [82]
GTGenie [83]

KGANCDA [88]

MIMRDA [110]
MDPBMP [111]

Sabaie et al. [112]
LRWRHLDA [113]

miRModuleNet [114]
DRAMA [115]
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Table 3. Detailed information of representative direct ncDA predictive tools. D: Disease, DA: Disease
Association, Gi−j: association graph of i and j, Hieri: hierarchy of i, Sim f unc: functional similarity,
Simsem: semantic similarity, AUROC: Area Under Receiver Operating Characteristic curve, AUPR:
Area Under Precision Recall Curve, N/A: Not Available.

Tool Year Method Software
Language Input Output Performance

RWRMDA [69] 2012 RWR N/A
known miDA,
mi-mi Sim f unc

predicted miDA AUROC 0.8617

MIDP [70] 2015 RWR N/A known miDA,
D-D Simsem

predicted miDA AUROC 0.862

HGLDA [73] 2015 Statistical N/A
known lncDA,
GD−mi,
Glnc−mi

predicted lncDA AUROC 0.7621

IMCMDA [72] 2018 MF Matlab
known miDA,
HierD,
mi-mi Sim f unc

predicted miDA AUROC 0.8034

GCNCDA [81] 2020 GNN Matlab
known circDA,
D-D Simsem

predicted circDA
AUROC
Accuracy

0.9090
0.9278

Nguyen et al. [79] 2021 RWR N/A known miDA,
HierD

predicted miDA
AUROC
AUPR

0.9882
0.9066

MGATE [82] 2022 GNN Python

known lncDA,
HierD,
Glnc−mi,
GD−mi

predicted lncDA
AUROC
AUPR

0.964
0.413

GTGenie [83] 2022 GNN Python

known miDA,
Text decription of ncDA,
D-D Simsem,
nc-nc Simsem

predicted ncDA
miDA AUROC
lncDA AUROC

0.9755
0.9810

6.1.1. Mining Based Studies

Various graph mining techniques have been actively applied to discover novel rela-
tionships from ncRNA–mRNA–disease tripartite networks. Most tools mine relationships
from general template networks, while few approaches attempt to utilize target network
information above miRNA–mRNA expression signatures.

Going beyond DE miRNA–DE mRNA coexpression analysis based on WGCNA [116],
several tools have leveraged the ncRNA–mRNA target network for molecular interaction-
level network mining. MIMRDA [110] incorporated miRNA-target pair information with
DE miRNAs and DE mRNAs to predict miDAs (miRNA–disease associations). In order to
identify key miRNAs of a given disease, the global probability value for each DE miRNA
was computed from the significance level and result of over-representation analysis.

Several models have adopted different mining methodologies after building a tripartite
network of ncRNA–mRNA–disease. RWRMTN [101], a Cytoscape app for novel miDA
prediction, adopted RWR modified for heterogeneous network to prioritize miRNAs that
are associated with query disease. Similarly, for discovering novel lncDAs, TPGLDA [92]
used network propagation on bipartite/tripartite network and MHRWR [100] employed a
random walk with restart-based algorithm.

Apart from RWR-based algorithms, several path-based algorithms have been pro-
posed for mining the heterogeneous network of ncRNA–mRNA–disease. To consider
the heterogeneity of the network, MDPBMP [111] leveraged the meta-path concept
into a miRNA–disease–gene network. After the selection and application of seven
meta-paths, embedding vectors of miRNA and disease were generated and utilized for
miDA prediction.
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As more and more evidence of ceRNA interactions accumulated, a number of studies
leveraging this ncRNA interaction network for ncDA prediction have emerged. Along with
co-expression analysis of lncRNA–miRNA–mRNAs, the ceRNA network was integrated for
network-based analysis of ncRNAs related to gastric cancer [96], schizophrenia [112], and
coronary artery disease [117]. Another component of the ceRNA hypothesis, circRNA, has
been also investigated based on its regulatory network with other transcripts. Lu et al. [99]
constructed a circRNA–miRNA–mRNA regulatory network based on RNA-seq data for
discovering novel Hantaan virus infection associated circRNAs based on network analysis
approaches. SDNE-MDA [104] integrates not only the ceRNA interaction network, but
also the drug–target interaction network for prediction of miDAs. Attribute information of
miRNA and disease was extracted from similarity networks of sequence and disease hier-
archy each, and behavior information from a drug–protein–transcript interaction network.
MiDA prediction was performed by feeding the concatenated attribute and behavioral
information into the Convolutional Neural Network.

RWR algorithm has been also used for mining the ceRNA–mRNA integrated network
for discovering novel ncDAs, mainly through the construction of ncRNA and disease
similarity networks. A pioneering study by Song et al. [89] in 2016 constructed a lncRNA–
mRNA network through integrating miRNA target information and gene expression
profiles for blending in the ceRNA hypothesis. Then, the RWR algorithm was applied
for discovering potential cardiac hypertrophy-associated lncRNAs. To make more use
of the lncRNA–miRNA regulatory network, LRWRHLDA [113] constructed four novel
similarity networks of lncRNA, disease, miRNA and gene. A Laplacian normalized RWR
was then performed on the constructed heterogeneous network for prioritization of disease-
related lncRNAs.

6.1.2. Learning Based Studies

Leveraging the power of machine learning in extracting patterns from high-dimensional
data through supervised settings, several tools have been developed to integrate ncDAs
from ncRNA–mRNA expression profiles.

miRModuleNet [114] is a tool which integrates miRNAs and mRNAs expression
profile through application of novel G-S-M approach. The pipeline of three components,
Grouping component, Scoring component and Modeling component, is performed iter-
atively for prioritization of miRNAs. First, G-component maps multiple genes per one
miRNA as ‘targets’, and these groups are then passed on to M-component, a random
forest algorithm-based ranking function, along with S-component for scoring the feature
importance of given miRNA group.

LGDLDA [105] predicted lncDAs through a neural network neighborhood informa-
tion aggregation-based supervised learning framework on similarity matrix of lncRNA–
gene–disease network. First, similarity networks for each lncRNA, gene, disease were
constructed using interaction networks including lncRNA–miRNA and disease–miRNA
networks. After neural network neighborhood information aggregation, LGDLDA predicts
the lncRNA–disease association for accurately predicting the existing lncDAs and also
discovering novel associations.

Cr-NMF [106] is a co-regularized non-negative matrix factorization method that inte-
grates the lncRNA expression, gene interaction network, gene–lncRNA associations, and
disease–gene associations. The disease–lncRNA association is factorized by this method
and other information, such as gene interactions, gene–lncRNA associations and disease–
gene associations, are integrated as a regularization term.

DRAMA [115], a GCN-based model proposed by He et al. predicts circDA utilizing
ceRNA interaction information. After initializing similarity matrices of circRNA, miRNA,
mRNA and disease from various sources with Principal Component Analysis, GCN is
applied for aggregating local neighbor information of nodes. After training the neural
network, a triple entity correlation measure is applied for extracting mRNA–miRNA–
circRNA axis candidates related to a given disease.
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A pioneering model MOGONET [47] utilized artificial intelligence technology for inte-
grative miDA discovery through applying GCN and view correlation discovery network
(VCDN) on multi-omics data. First, from mRNA expression, DNA methylation and miRNA
expression profiles of multiple samples, sample similarity networks were constructed using
GCN. Then, a GCN-constructed cross-omics tensor of mRNA, methylation and miRNA
was passed on to the VCDN [118], originally developed for human action recognition tasks.
VCDN was applied to learn the latent sample space by a multi-view approach based on a
generative loop of a generator–discriminator neural network framework. It is worth noting
that MOGONET models trained with three types of omics achieved the best performance
in biomedical data classification and biomarker discovery tasks, compared to the models
trained with single type, demonstrating the effectiveness of multi-omics integration, which
is a core concept of the MoA network.

Detailed information on representative models of ncRNA–mRNA–disease integrated
studies, including their inputs, outputs and if available, ncDA prediction performances
reported, are organized in Table 4.

Table 4. Detailed information of representative ncDA predictive tools using ncRNA–mRNA–Disease
network. D: Disease, DA: Disease Association, DE: Differentially Expressed Gi−j: association graph
of i and j, Hieri: hierarchy of i, AUROC: Area Under Receiver Operating Characteristic curve.

Tool Year Method Software
Language Input Output Performance

MOGONET [47] 2021 GNN Python Multi-omics profile Predicted phenotype
Rank of biomarkers -

MHRWR [100] 2021 RWR Python
known lncDA,
HierD,
Glnc−gene

Predicted lncDA AUROC 0.9134

MIMRDA [110] 2022 Statistical R
DE miRNA,
DE mRNA,
Gmi−gene

Rank of miRNAs -

MDPBMP [111] 2022 GNN Python
known miDA,
Gmi−gene,
GD−gene

Predicted miDA AUROC 0.9214

miRModuleNet [114] 2022 Statistical Python

known miDA,
miRNA Exp,
mRNA Exp,
Gmi−gene

Predicted phenotype
Rank of miRNA modules -

LGDLDA [105] 2021 GNN Matlab

known lncDA,
lncRNA expression,
HierD,
Glnc−mi,
Glnc−gene,
GD−gene,
GD−mi

Predicted lncDA AUROC 0.9352

6.2. ncRNA-mRNA-Pathway/Phenotype-Disease Network

To incorporate biological knowledge a priori to find ncDAs, several recent stud-
ies integrated pathway or phenotype information along with mRNA expression data.
Those tools cover the MoA network much more, bridging the gap between molecular
and clinical information. There are a few mining-based approaches, but there are not
many studies yet that propose a learning framework that takes pathway or phenotype
information into account.
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Mining Based Studies

A few studies analyze the correlation of miRNA expression with the genes included
in a certain pathway. Wilk et al. [93] discovered miRNAs associated with disturbed
pathways in cancer through a pathway activation score (PAS), calculated by incorporat-
ing pathway information with mRNA expression data using dimensionality reduction
technique Isomap. Additionally, Tian et al. [90] identified MYC gene and its regulator
miRNA hsa-miR-423-5p as a hub nodes and potential biomarkers in nasopharyngeal
carcinoma (NPC), which was revealed by integrated analysis of miRNA-mRNA-pathway
network. Based on ceRNAs hypothesis, Wang et al. [107] constructed a Myasthenia
gravis-specific lncRNA–SNPs meditated by ceRNA regulatory networks based on risk
pathways, proposing the lncRNA–SNP–mRNA–pathway axis. Zhang et al. [108] incor-
porated pathway information while performing WGCNA to construct a mRNA–lncRNA–
pathway coexpression network and selected hub lncRNAs and mRNAs as diagnostic
markers of pediatric sepsis. A pipeline called ImmLnc [102], developed by Li et al., was
used to identify immune related lncRNA biomarkers in cancer, using a novel scoring
system called lncRES (lncRNA-immune related pathway relation score). Qi et al. [97]
suggested a method to extract significant lncRNA by dysfunctional pathway crosstalk in
lung adenocarcinoma (LUAD). They selected LUAD-related pathways through network
propagation-based analysis and used WGCNA to determine lncRNAs in co-expression
relation with crosstalk genes of the selected pathways.

Meanwhile, phenotype information, which includes cancer molecular subtypes [109],
pathological stage [94], or drug sensitivity [95,98], can help us analyze the ncDAs.
Singh et al. [45] proposed a framework named DIABLO, which is a canonical correlation
analysis-based tool. This tool can integrate miRNA–mRNA expression, methylation, pro-
tein and metabolite data considering disease phenotypes, e.g., cancer molecular subtypes,
for biomarker discovery. Mens et al. [119] revealed miRNAs related to cardiometabolic risk
factors and diseases by conducting an analysis of miRNA expression, single nucleotide
polymorphism (SNP), methylation, and phenotype information (lipid and obesity-related
traits, blood pressure, and so on). He et al. [120] discovered that lncRNA PVT1 is asso-
ciated with NPCs through integrating phenotypes such as proliferation, apoptosis, and
radio sensitivity with DE lncRNA. In addition, Xu et al. [91] designed a systematical
lncRNA prioritization approach called LncNetP, which is based on cerna hypothesis and
disease phenotype association assumptions. They predicted four candidate lncRNA genes
(RHPN1-AS1, AC007389.1, LINC01116 and BMS1P20) that could serve as risk factors
for diagnosis and prognosis. Gao et al. [103] constructed co-expression networks for
lncRNA–mRNA, circRNA–mRNA, and miRNA–mRNA for endocrine therapy resistant
breast cancer based on cellular phenotypes. Then, they established RNA crosstalk networks
(lncRNA–miRNA–mRNA and circRNA–miRNA–mRNA) and predicted the functional
roles of related ncRNAs.

The inputs, outputs and other detailed information on representative studies of this
section are provided in Table 5.

Additionally, the studies introduced in the Section 6 are summarized in Table 2, based
on their coverage of the MoA network and published year.
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Table 5. Detailed information of representative ncDA prediction tools using ncRNA–mRNA–
Pathway/Phenotype–Disease network. Exp: Expression profile, PW: Pathway, Gi−j: association
graph of i and j.

Tool Year Method Software
Language Input Output

Wilk et al. [93] 2018 Statistical R
mRNA Exp,
miRNA Exp,
Ggene−PW

Disease-related miRNA-pathway pair

Xia et al. [95] 2018 Deep learning Python

mRNA Exp,
miRNA Exp,
Protein abundance,
Drug descriptors

Predicted drug response
Gene, protein, miRNA biomarkers

DIABLO [45] 2019 Statistical R Multi-omics profiles Predicted phenotype
Rank of biomarkers

ImmLnc [102] 2020 Statistical Web page
mRNA Exp,
lncRNA Exp

Predicted phenotype
Rank of lncRNAs

7. Discussion

In this survey, we introduced well-known ncRNAs and pivotal studies that revealed
their association with diseases. The key to the process of linking ncRNA to disease is on
how to incorporate biological relevance by integrating associations of genes and pathways.
For this goal, our survey focuses on statistical and machine learning methods in the
context of the mode of action (MoA) network. First, we elaborated the definitions of
each type of ncRNAs, their biological roles, and evidence of their relationships with
diseases. Second, we described an integrative point-of-view called the mode of action
(MoA) network, which takes complex interactions of gene expression, biological pathways,
and phenotypes into account. Third, major computational methodologies used for inferring
ncDAs were introduced. Lastly, we summarized and categorized existing studies based on
their coverage of the MoA network and whether the method discovers novel associations
through mining or learning.

It is clear that ncRNAs are important entities serving critical regulatory roles in biologi-
cal systems, in which its disturbance may lead to disease onsets. Many experimental studies
aim to provide convincing evidence of the ncDAs, and computational studies leverage this
known information to uncover novel and potential associations for further experimental
studies. We summarized those studies in Table 2 in a temporal manner, and discovered two
major trends. First, the network learning frameworks have been actively proposed after the
year 2019, which correlates to the time when deep learning frameworks became actively
adopted to the biological domain, especially as their applicability to networks became more
reliable. Second, the MoA network integrative approaches, compared to direct association
prediction methods, became more actively studied from 2020. Although previous studies
have covered only a fraction of the MoA network, recent research considers not only direct
relationships, but also mRNA expression data and/or pathway/phenotype information to
bridge the gap between ncRNA and disease.

This trend is also showing promising results in other biological domains, including
drug response prediction and patient stratification, where approaches that incorporate
most of the entities in the MoA network already showed promising results. For example,
the DrugCell [121] model integrates cancer mutational signals with Gene Ontology (GO)
terms for interpretable drug response prediction and clinical outcome stratification. An
interpretable neural network is constructed based on the semantics of the GO terms, and
through training of 500,000 cell line-drug pairs, the model predicts drug response and
simultaneously visualizes mechanisms related to response. Another pharmacogenomic
framework named DRIM [122] integrates multi-omics data and pathway information for
understanding the effect of drug treatment. Based on potential mediator genes selected
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from multi-omics data through tensor decomposition and autoencoder methods, the model
analyzes time-series gene expression data upon drug treatment for identifying perturbed
sub-pathways and regulation mechanisms.

Thanks to the development of ncRNA sequencing and deep learning technologies,
we will have access to tons of high quality data and state-of-the-art analysis tools, which
will help us better understand the biological roles of ncRNAs. Despite the lack of studies
that formulate the ncDAs into a learning framework, integrating various types of infor-
mation of the MoA network is a promising approach and will be a future direction for
discovering ncDAs.

Author Contributions: Conceptualization, D.B., J.G. and S.K.; writing–original draft preparation,
D.B., J.G., J.P., D.J., B.K., J.Y. and J.S.; writing–review and editing, D.B., J.G. and J.P.; visualization,
D.B., D.J. and J.P.; supervision, I.J., S.K. and S.L.; funding acquisition, S.K. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by the Bio & Medical Technology Development Program of the
National Research Foundation (NRF) funded by the Ministry of Science & ICT(NRF-2019M3E5D3073375
and NRF-2022M3E5F3085677), and by Institute of Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government(MSIT) [NO.2021-0-01343, Artificial Intelligence
Graduate School Program (Seoul National University)].

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Not applicable.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

ncRNA non-coding RNA
miRNA micro RNA
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ncDA ncRNA-Disease association
miDA miRNA-Disease association
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MoA Mode of Action
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GNN Graph Neural Network
RWR Random Walk with Restart
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GO Gene Ontology
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