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Abstract: An accurate motion model and reliable measurements are required for autonomous
underwater vehicle localization and navigation in underwater environments. However, without
a propeller, underwater gliders have limited maneuverability and carrying capacity, which brings
difficulties for modeling and measuring. In this paper, an extended Kalman filter (EKF)-based
method, combining a modified kinematic model of underwater gliders with the travel-time differences
between signals received from a single beacon, is proposed for estimating the glider positions in
a predict-update cycle. First, to accurately establish a motion model for underwater gliders moving
in the ocean, we introduce two modification parameters, the attack and drift angles, into a kinematic
model of underwater gliders, along with depth-averaged current velocities. The attack and drift
angles are calculated based on the coefficients of hydrodynamic forces and the sensor-measured
angle variation over time. Then, instead of satisfying synchronization requirements, the travel-time
differences between signals received from a single beacon, multiplied by the sound speed, are
taken as the measurements. To further reduce the EKF estimation error, the Rauch-Tung-Striebel
(RTS) smoothing method is merged into the EKF system. The proposed method is tested in
a virtual spatiotemporal environment from an ocean model. The experimental results show that the
performance of the RTS-EKF estimate is improved when compared with the motion model estimate,
especially by 46% at the inflection point, at least in the particular study developed in this article.

Keywords: underwater gliders; modified kinematic model; travel-time difference; EKF estimation;
RTS smoothing

1. Introduction

Underwater gliders are a type of autonomous underwater vehicles (AUVs) but without
a propeller [1], which are great autonomous platforms fitted in a persistent underwater surveillance
system [2,3]. Due to the limited carrying capacity restricted by the design of underwater gliders,
unless specifically required, underwater gliders are not equipped with sensors such as an inertial
measurement unit (IMU) [4], a Doppler velocity log (DVL) or an acoustic Doppler current profiler
(ADCP) sonar, which are usually carried by AUVs [5]. This makes the navigation and positioning of
underwater gliders more challenging than for AUVs, but obtaining the glider’s position is very critical
for tasks such as target detection [6] and sound field construction [7].
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A collection of localization and navigation methods have been proposed for AUVs [8–12]. Any
navigation algorithm is based on state estimation [8], which is conducted in a predict-update cycle.
The prediction process of state estimation is established mainly based on motion models of AUVs.
Based on the installed sensors, AUVs usually adopt inertial navigation by using the IMU-detected
acceleration and the DVL-measured relative velocity of the AUV [13]. A carried ADCP provides the
relative speed of the local current for AUV navigation [14]. The navigation of an underwater glider
depends on the glider’s working mechanism and the installed sensors, including electronic compass
and conductivity-temperature-depth (CTD) sensors, but without any velocity sensor. Based on the
working mechanism, the dynamic motion of underwater gliders can be modeled [15–17]. For practical
applications, motion models are usually simplified, for example, applying Lanchester’s phugoid
assumptions [18,19] which assuming the angle of attack is fixed [20]. In [21], a localization scheme
is proposed for underwater gliders by neglecting the influence of ocean currents and by assuming
a zero drift angle. Seaglider and the Sea-Wing underwater glider have the ability to estimate the
depth-averaged current velocities for engineering applications [22,23], which could be utilized for
a glider localization and navigation scheme. Here, we combine a kinematic model of underwater
gliders with the estimated attack and drift angles and add the depth-averaged current velocities [24]
to model the prediction process of the glider positions in the ocean.

Measurements are needed for the updating process to correct the prediction errors. For AUVs,
in addition to relying on the installed angle and velocity sensors, the acquisition of measurements
depends mainly on acoustic beacons and geophysical features [9]. Geophysical techniques use external
environmental information as a reference, which can be observed by sonar [25–27], optical [28] or
magnetic [29] sensors fitted to AUVs. Acoustic techniques are focused on different types of acoustic
features, such as the travel time [30,31] and time difference of arrival [32,33], resulting from hydrophone
signals. Common measuring techniques include the ultrashort baseline (USBL), short baseline (SBL),
long baseline (LBL), single-beacon and acoustic modem techniques [8]. For USBL and SBL navigation,
a set of transceivers and transponders is required, one mounted on the AUV and the other mounted
on the support vehicle [34,35]. For LBL or single-beacon navigation, one-way travel-time ranging
can be conducted on the basis of synchronized clocks [36,37]. For acoustic communication-based
underwater navigation, an acoustic communication system is needed for both the transmitter and the
AUV receiver [38]. To reduce the requirements for sensors on underwater gliders, a single beacon is
selected as the measuring technique. Regarding the glider’s movement over time as a virtual array, we
adopt the travel-time difference between signals from the beacon received at two adjacent receiving
locations as the measuring acoustic feature, which conventionally refers to the time difference of
arrivals at a pair of hydrophones in an acoustic array [39,40]. Herein, it is assumed that the acoustic
beacon transmits signals at a regular interval of time instead of satisfying synchronization requirements
and that the beacon remains stationary.

Various methods have been used to solve the predict-update cycling state estimation, mainly
including the least squares [41], extended Kalman filter (EKF) [42,43], unscented Kalman filter [44],
extended information filter [45], and particle filter [46,47] methods. Considering that our
proposed algorithm can be performed online, we select an EKF method for the state estimation
of underwater gliders, which can approximate nonlinear systems by a linearized first-order Taylor
series expansion [48]. The EKF is employed to fuse acoustic measurements and predictions of the
process model [49]. Specifically, estimating the glider adjacent positions from the process model enables
the algorithm to properly model the range-difference measurements, and the glider position predicted
by the process model is corrected within the EKF framework by real range-difference measurements.

Smoothing, which can be viewed as the third part for sequential estimation of glider’s positions,
differs from filtering in that further measurements are assimilated [50,51]. Therefore a smoothing
process intuitively reduces the EKF estimation error. Many forms of smoothing algorithms have
been developed, in which the two-filter smoother and the forward-backward smoother are usually
used when numerical approximations are required [52]. Forward-backward smoothers process the
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measurements first by a forward filter to compute the filtered estimate, and then by a backward
smoothing pass to determine the smoothing estimate from the forward filtered estimate [53].
The two-filter smoothing is an alternative approach to the forward-backward smoothing, relying
on two independent filter procedures: one runs forward in time and another runs backward [54].
However, the backward filter for the two-filter smoother usually cannot be computed in a closed
form, which prohibits the use of numerical techniques to approximate the smoothing [55]. Hence
we adopt a forward-backward smoothing method, named the Rauch-Tung-Striebel (RTS) smoothing
method [56], for smoothing estimation. The RTS smoother has been widely employed in inertial
navigation systems [57] and target tracking problems [58,59].

Our main innovations are as follows. First, we establish a modified kinematic model of underwater
gliders by introducing the attack and drift angles estimated by hydrodynamic coefficients and angles
measured by electronic compass or derived from control system records. Second, the range variation
from underwater gliders to a static acoustic beacon, calculated from the travel-time difference of
two adjacent signals from the beacon, is set as the measurement for the EKF-based localization and
navigation system.

The rest of the paper is organized as follows. We describe the localization and navigation
issues of underwater gliders in Section 2. In Section 3, we theoretically derive the attack and drift
angles to modify a kinematic model of underwater gliders. In Section 4, an EKF-based localization and
navigation system is constructed by introducing the depth-averaged currents to the modified kinematic
model and calculating the discrete ranging differences as the measurements. The RTS smoothing
method is used to further improve the EKF estimate. A simulation experiment is conducted in Section 5.
The state data of underwater gliders are based on the records recorded during an experiment conducted
in the South China Sea, including angles measured by electronic compass, depth information measured
by CTD, and rudder angles derived from control system records. Spatiotemporal ocean currents are
generated from an ocean model. The travel times of acoustic signals are simulated via an acoustic
simulator based on a spatiotemporal environmental field from an ocean model. In Section 6, we present
discussion and conclusions.

2. Problem Statement

The Sea-Wing underwater glider, developed by the Shenyang Institute of Automation, Chinese
Academy of Sciences, is shown in Figure 1, and some of the specifications of the Sea-Wing underwater
glider are summarized in Table 1. The processes related to posture adjustment on the Sea-Wing
underwater glider include buoyancy, pitch and rudder regulations [60]. The gliders move vertically
by adjusting their buoyancy and generate a gliding motion through the ocean via a pair of wings.
The driving buoyancy is controlled by altering the volume of the underwater glider by feeding
hydraulic oil into or bleeding hydraulic oil out of an external oil bladder. The pitch, which determines
the vertical gliding angle, is controlled by moving an internal battery package along the longitudinal
axis to change the center of gravity of the glider. The rudder, installed on the tail of the glider, alters
the course angle by changing the rudder angle to resist the effects of ocean currents. Therefore,
to describe the movement of underwater gliders, we need to involve buoyancy, pitch and rudder
regulating processes.

The sensors mounted on the Sea-Wing underwater glider provide an effective tool for measuring
the status of the glider. The CTD sensor and electronic compass are the two most important sensors
for glider navigation in the ocean environment. Through the depth change of the glider over time as
measured by the CTD, the vertical speed of the glider in the inertial coordinate system can be estimated,
which reflects the buoyancy regulation. From the measurements of electronic compass, the pitch and
rudder regulating processes can be incorporated into the glider motion simulation. Furthermore, to
simulate the glider motion in the real ocean environment, the external forces and force variations for
the glider also need to be considered. The hydrodynamic model is an excellent tool to simulate and
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analyze the forces of underwater gliders. Based on the glider-mounted sensors and hydrodynamic
parameters, we can simulate the glider motion by an improved kinematic model.

Figure 1. The acoustic Sea-Wing underwater glider.

Table 1. Some Specifications of the Sea-Wing Underwater Glider.

Size (m) Hull diameter 0.22, vehicle length 2,
wing span 1.2

Weight (kg) 65

Inflection Depth (m) 1000

Cruising Speed (m/s) 0.25, maximum 0.5

Range (km) > 1100

Communications Iridium and radio communication

Navigation Global positioning system, altimeter
and electronic compass

Science Sensor CTD and hydrophone

A geodetic global positioning system (GPS) receiver is installed on the underwater glider for
implementing glider positioning at the sea surface. However, the gliders cannot rely on sensors
on board for positioning while underwater. Figure 2 shows an example of the glider’s trajectories.
On a vertical section, we can only acquire the glider’s depth over time, instead of over latitude and
longitude coordinates. On a horizontal section, we can localize the glider at the sea surface only.

Based on the proposed kinematic model, we can estimate the position of underwater gliders in
still water, whereas the flow influence in the ocean is inevitable. With the depth-averaged current
velocity estimation module on the glider, the positions of underwater gliders in the ocean can be
roughly estimated. Considering the estimate error of depth-averaged currents and the reality of
spatiotemporal ocean currents, additional information and strategies need to be adopted. We focus
here on using an acoustic beacon to periodically emit acoustic signals and receiving the emitted signal
by a hydrophone installed on the glider. With no need to synchronize the hydrophone time and beacon
time, the time difference between two adjacent received signals is utilized to calculate the distance
variation from the glider to the beacon, and then the calculated distance variation is set as an additional
measurement to estimate the glider location.
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(a) (b)

Figure 2. Examples of a glider’s trajectories in the South China Sea on 13 July 2019. (a) The glider depth
change in the vertical plane with the relative time in a gliding cycle. (b) Circles with the same color
represent global positioning system (GPS) positions of the glider at the sea surface at the beginning and
end of a gliding cycle, circles with different colors represent different cycles, and dashed lines represent
the linearly interpolated horizontal positions during a gliding cycle.

3. Modified Kinematic Model for the Sea-Wing Underwater Glider

The Sea-Wing underwater glider [61] is driven by an internal buoyancy regulating system and is
steered by a movable battery package and a vertical rudder. In this section, we establish a kinematic
model for the Sea-Wing underwater glider by considering hydrodynamic parameters to simulate the
movement of the glider accurately.

3.1. Kinematic Model

To describe the motion of the Sea-Wing underwater glider, two coordinate frames are established
based on a right-handed coordinate system, including the inertial frame and body frame (Figure 3).
The body frame O :(x, y, z) is established at the buoyancy center of the glider. The x-axis points
forward along the longitudinal axis of the glider. The y-axis lies in the wing plane, pointing to the
right when viewed along the x direction. The z-axis is set as x× y. The inertial frame E :(ξ, η, ζ) is
established at a point in space. A rotation matrix ROE that transforms the body coordinate system into
the inertial coordinate system can be defined as

ROE =

 cθcψ sφsθcψ− cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ− sφcψ

−sθ sφcθ cφcθ

 , (1)

in which θ is the pitch angle, ψ is the heading angle and φ is the roll angle. The simplified notations
c· = cos(·) and s· = sin(·) are used. By the electronic compass installed on the underwater glider, θ,
ψ and φ can be measured in real time. When the glider glides downward, θ is defined as negative.
In addition, ψ is the azimuth relative to the north. When viewed along the x direction, φ is negative to
the left.

Because there is no velocity sensor, the glider velocity, defined as V = [u, v, w]T in the body frame,
needs to be estimated from the dynamic model and available measurements. Based on the attack angle
α and the drift angle β, the relation among the velocity components can be expressed as

tan α =
w
u

, (2)

tan β =
v
u

. (3)
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The available measurement is the vertical speed of the glider ζ̇ in the inertial coordinate system,
which can be calculated through the depth change of the glider measured by the CTD. The relation
between the rate of change in position b = [ξ, η, ζ]T in the inertial frame and the velocity V in the body
frame can be written as

ḃ = ROEV. (4)

Substituting Equations (2) and (3) into Equation (4) gives

ḃ = ROERV |V| (5)

where

RV =

 cβcα

sβ

cβsα

 (6)

and |V| =
√

u2 + v2 + w2. From the vertical speed ζ̇, we can derive

|V| = (R(3)
OERV)

−1ζ̇. (7)

where R(i)
OE denotes the i-th row of ROE and the same denotation is used for the other matrices. Then,

the horizontal components of ḃ can be calculated from

ḃ(1,2) = R(1,2)
OE RV(R

(3)
OERV)

−1ζ̇. (8)

Therefore, α and β are the determining factors for this solution, which can be estimated from the
dynamic model of the Sea-Wing underwater glider.

Figure 3. Coordinate frames and motion parameters for the Sea-Wing underwater glider. E :(ξ, η, ζ)

represents the inertial frame, and O :(x, y, z) represents the body frame.

3.2. Solution of Attack Angle

The attack angle, α, affects the vertical velocity of the glider. Figure 4 shows the forces of the
glider when moving in the vertical plane. Here, γ is the gliding angle, U =

√
u2 + w2 is the gliding

speed, L is the lift force, D is the drag force, and ∆B is the residual buoyancy difference.
The steady-state dynamic model of the glider in the vertical plane can be expressed as

∆B cos γ = −L, (9)

∆B sin γ = −D, (10)

in which γ = θ + α. In addition, α is defined in the same direction as θ. The hydrodynamic lift and
drag forces are modeled in [62] as

L = −(KL0 + KLα)U2, (11)
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D = −(KD0 + KDα2)U2, (12)

where KL0 and KL are the lift coefficients and KD0 and KD are the drag coefficients. Then, we can
derive the relation between θ and α as

tan(θ + α) =
D
L

=
KD0 + KDα2

KL0 + KLα
. (13)

the lift and drag coefficients can be estimated using computational fluid dynamics (CFD) technology.
Specifically, for the Sea-Wing underwater glider, KL0 = 0.0105, KL = 496.8596, KD0 = 6.9650, and
KD = 439.7317.

Figure 4. Force analysis model of the Sea-Wing underwater glider in the vertical plane.

Because θ can be measured by the electronic compass in real time during the gliding process, α

can be calculated based on Equation (13). An example is shown in Figure 5. Since α is not zero, the
actual gliding angle is not equal to θ which is usually used for dead reckoning. The sharp change of
the angle corresponds to the unsteady state of the glider at the beginning of the gliding cycle and near
the inflection point due to state transition. In this case, the measured θ and calculated α are not reliable,
so we actually set the angles during the period of unsteady state to interpolation results of adjacent
steady-state points.

Figure 5. An example of the measured θ and calculated α over the relative time in one gliding cycle
during the South China Sea experiment conducted on 13 July 2019.

3.3. Solution of Drift Angle

The drift angle, β, affects the horizontal velocity of the glider. Figure 6 shows the variables for
motion analysis in the horizontal plane. Here, ϑ = ψ + β is the course angle, C =

√
u2 + v2 is the

horizontal speed, and δr is the rudder angle. Rudder rotation changes the direction of the horizontal
force, which in turn changes the course of the glider. Based on the analysis for a maneuvering
submarine [63], the glider motion with respect to the body coordinate system in the horizontal plane
can be represented by
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m(u̇− vr) =
1
2

ρl4X
′
rrr2 +

1
2

ρl3(X
′
u̇u̇ + X

′
vrvr)

+
1
2

ρl2(X
′
uuu2 + X

′
vvv2 + X

′
δrδr

u2δ2
r ),

(14)

m(v̇ + ur) =
1
2

ρl4(Y
′
ṙ ṙ

+ Y
′
r|r|r|r|) +

1
2

ρl3(Y
′
v̇v̇ + Y

′
r ur + Y

′
v|r|v|r|)

+
1
2

ρl2(Y
′
0u2 + Y

′
vuv + Y

′
v|v|v|v|+ Y

′
δr

u2δr),

(15)

Izz ṙ =
1
2

ρl5(N
′
ṙ ṙ + N

′
r|r|r|r|)

+
1
2

ρl4(N
′
v̇v̇ + N

′
rur + N

′
v|r|v|r|)

+
1
2

ρl3(N
′
0u2 + N

′
vuv + N

′
v|v|v|v|+ N

′
δr

u2δr),

(16)

where m is the glider mass; ρ is the seawater density; l is the glider length; r is the angular velocity
about the z-axis; ṙ is the angular acceleration about the z-axis; Izz is the moment about the z-axis; u̇ and
v̇ are the accelerations in the x and y directions, respectively; and X

′
rr, Y

′
r , N

′
v, · · · are nondimensional

coefficients of hydrodynamic forces. When the glider is in the steady rotation phase, u̇ = v̇ = ṙ = 0,
and Equations (14)–(16) can be expressed as

0 =
1
2

ρl4Y
′
r|r|r|r|+

1
2

ρl3(Y
′
r ur + Y

′
v|r|v|r|)

+
1
2

ρl2(Y
′
vuv + Y

′
v|v|v|v|+ Y

′
δr

u2δr)−mur
(17)

0 =
1
2

ρl5N
′
r|r|r|r|+

1
2

ρl4(N
′
rur + N

′
v|r|v|r|)

+
1
2

ρl3(N
′
vuv + N

′
v|v|v|v|+ N

′
δr

u2δr)

(18)

According to the assumptions of the linear motion equation, Equations (17) and (18) can be
simplified as {

1
2 ρl2Y

′
vuv− (mu− 1

2 ρl3Y
′
r u)r = − 1

2 ρl2Y
′
δr

u2δr
1
2 ρl3N

′
vuv + 1

2 ρl4N
′
rur = − 1

2 ρl3N
′
δr

u2δr
(19)

Assuming that β is small, Equation (3) can be approximated as

β = v/u. (20)

Then, the solution of Equation (19) can be derived as

β = −
N
′
δr
(m
′ −Y

′
r) + N

′
rY
′
δr

N′v(m
′ −Y′r) + N′rY

′
v
· δr, (21)

where m
′
= m/(0.5ρl3) is the nondimensional weight. For the Sea-Wing underwater glider,

δr ∈ [−30◦ 30◦]. Here, δr = 0◦ represents the x direction, and when viewed along the x direction, δr is
positive to the left. δr is continuously changed during the gliding process to resist the ocean current,
to adjust the course angle of the glider, and to keep the preset trajectory as far as possible.

Using CFD software Fluent [64], we can simulate the solutions of β under different δr.
The specific numerical values of the hydrodynamic coefficients used in the simulation are shown
in Table 2. Figure 7a shows both the nonlinear results from Equations (17) and (18) and the linear
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results from Equation (21). As the absolute value of δr decreases, the difference between the nonlinear
and linear results gradually decreases. Based on real-time adjustment of the glider, δr can be acquired
to estimate the corresponding value of β, and an example is shown in Figure 7b.

Figure 6. Motion variables of the Sea-Wing underwater glider in the horizontal plane.

Table 2. Nondimensional coefficients of hydrodynamic forces used for simulations.

Coefficients Y
′

r|r| Y
′
r Y

′

v|r| Y
′
v Y

′

v|v| Y
′

δr

Values 0.00611 0.01065 −0.03931 −0.03545 0.01558 −0.00968

Coefficients N
′

r|r| N
′
r N

′

v|r| N
′
v N

′

v|v| N
′

δr

Values −0.00303 −0.00523 0.01312 −0.00149 −0.01983 0.00368

(a) (b)

Figure 7. δr and β. (a) is the relationship and (b) is an example of recorded δr and calculated β over the
relative time in one gliding cycle during the South China Sea experiment conducted on 13 July 2019.

3.4. Comparison with Dead Reckoning

For comparison purpose, we compute the dead-reckoning navigation results. The dead reckoning
method takes no consideration of α and β, that is α = 0 and β = 0. Then from Equation (8), the velocity
of the underwater glider, ḃDR, could be calculated by

ḃDR =

 −ζ̇ cot θcψ

−ζ̇ cot θsψ

ζ̇

 . (22)

Figure 8 shows an example of dead reckoning result compared with the result of modified
kinematic model. The deviation between the preset trajectory and the actual trajectory, represented
by the connection between the actual start and end positions, is mainly caused by ocean currents.
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The estimated trajectory of modified kinematic model is closer to the preset trajectory than the dead
reckoning trajectory, indicating that the proposed kinematic model reflects the resistance of the glider
to the ocean current through angle adjustment. Then the navigation result of the kinematic model
superimposed ocean current can be closer to the real situation.

Figure 8. Comparison of navigation results by the proposed kinematic model and dead reckoning
based on the data shown in Figure 5 and Figure 7b. The preset trajectory and connection between the
actual start and end positions are shown for comparison.

4. EKF-Based Localization and Navigation System Modeling

Based on the established kinematic model in Section 3, we can estimate the moving trajectories of
a Sea-Wing underwater glider in still water. With the estimation module of depth-averaged current
velocities on the glider, the position of an underwater glider in the ocean can be approximately
estimated. The basic approach for estimating the depth-averaged current velocity is to use the
difference between the dead-reckoning and GPS positions of resurfacing when a gliding cycle ends,
divided by the gliding time [24]. The calculated depth-averaged current velocity is not accurate due to
the dead-reckoning navigation error. Even if we adopt a more accurate model, such as the proposed
kinematic model, the estimated positions of underwater gliders using depth-averaged current velocities
may still be unreliable because of the reality of spatiotemporal ocean currents. Additional acoustic
measurements are required to calibrate the estimated positions.

In this section, an EKF method is imported to recursively estimate the positions of the glider during
a gliding cycle. The prediction process is based on the modified kinematic model and depth-averaged
current velocities, and the update process is based on the distance variation from the glider to the
beacon. The RTS smoothing algorithm is adopted to improve the EFK estimation by introducing
subsequent measurements.

4.1. System State Prediction

Because the glider depth, ζ, can be measured by the installed CTD, the components of glider
positions that need to be estimated are (ξ, η)T , that is, the east and south components in the horizontal
plane. We set the system state vector, s, as below,

s = (ξ, η)T .

Based on Equation (8) and the depth-averaged current velocity, the process model for the system
satisfies the following motion equation:[

ξ̇

η̇

]
=

[
R(1)

OERV(R
(3)
OERV)

−1ζ̇ + vx

R(2)
OERV(R

(3)
OERV)

−1ζ̇ + vy

]
+

[
g1

g2

]
ws (23)
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that is,
ṡ(t) = f(s(t), u(t), v(t), t) + Gpwp(t) (24)

where

Gp =

[
g1 0
0 g2

]
, wp(t) =

[
ws(t) 0

0 ws(t)

]
,

v(t) = (vx, vy)T and u(t) = (α, β, θ, ψ, φ, δr, ζ̇)T . u(t) is the control input for the modified kinematic
model. vx and vy are the depth-averaged current components along the ξ and η directions, respectively.
wp(t) is the zero-mean Gaussian process noise, representing accelerations that allow the ocean current
to deviate from the depth-averaged current. Gp can be considered as a weight matrix, which determines
the difference of process noise in different directions.

Then, the propagation of the system state estimate ŝ(t) and error covariance P(t) using the
EKF [48] can be written as

˙̂s(t) = f(ŝ(t), u(t), v(t), t) (25)

Ṗ(t) = F(t)P(t) + P(t)FT(t) + GpQGT
p , (26)

where F(t) is a system dynamic matrix,

F(t) ≡ ∂f
∂s

∣∣∣∣
ŝ(t)

=

[
0 0
0 0

]
, (27)

and the process-noise matrix Q can be written as

Q =

[
Φs 0
0 Φs

]
(28)

under the consideration that each direction of the ocean current accelerations is uncorrelated. Φs is the
spectral density of the white noise ws.

4.2. Measurement Model

A fixed beacon with a known position is needed to transmit signals at regular intervals.
The Sea-Wing underwater glider equipped with hydrophones can receive the acoustic signal emitted
from the preset acoustic beacon. Assuming that the emitted acoustic signal propagates along a straight
line, the distance between the receiver and the beacon can be calculated by the product of the travel-time
measurement and the sound speed in water. Time synchronization between the receiver and the
beacon is necessary in order to obtain an accurate travel time. To overcome this constraint, we propose
here to utilize the time difference between two adjacent receiving locations. Specifically, as long as
the beacon transmits a signal according to a preset time interval ∆t, the receiver can calculate the
travel-time difference according to the receiving time of two adjacent signals, thereby calculating the
distance difference.

The range from the beacon to the receiver is a nonlinear function of the receiver location and
the beacon location. At a time point, tk (k = 1, 2, . . .), the location of the receiver, that is, the glider,
is sk = (ξk, ηk)

T , and the beacon location is sbk = (ξbk, ηbk)
T . The perfect range measurement can be

written as
Rk =

√
(sk − sbk)T(sk − sbk). (29)

The distance difference corresponding to two adjacent receiving times, tk and tk−j (k ≥ K + 1,
j = 1, . . . , K), can be modeled as

∆R(j)
k = Rk − Rk−j. (30)
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Then considering the actual noisy range difference measurement, ỹk, we can set the measurement
model as

ỹk = h(sk) + nk (31)

where
ỹ(j)

k = ∆R(j)
k + n(j)

k = c(tk − tk−j − j∆t), (32)

c = 1500 m/s, and K is the virtual array size set by experience. nk ∼ N (0, Nr) is the measurement noise,
which is in units of distance and represents the imprecision in timing multiplied by c. The variance Nr

is assumed to be independent of time. The Jacobian of the range difference measurement, Equation (31),

at tk with respect to s is Hk ≡ ∂h
∂s

∣∣∣
ŝk

with

H(j)
k =

 ξk−ξbk
Rk
− ξk−j−ξb(k−j)

Rk−j
ηk−ηbk

Rk
− ηk−j−ηb(k−j)

Rk−j

T

. (33)

4.3. Recursive Estimation of the System State

EKF methods can operate recursively on noisy input data to produce a statistically suboptimal
estimate of the system state [65]. When the range difference measurements are available, the system
states are updated. If no measurement is acquired, the system states are predicted by the propagation
model, Equation (25), which performs over the sampling step Ts.

Given the state vector at time point ti−1 = (i− 1)Ts, (i = 2, 3, . . .), a priori state estimation ŝ−i by
integrating Equation (25) is performed. If at ti, the k-th (k = K + 1, K + 2, . . .) beacon emitted signal is
received, then the range-difference measurements ỹk are available. From the a priori state estimation
ŝ−i and the estimated state at previous time point tk−j, we model the range-difference measurements
by Equations (29)–(31). By weighting the deviation between the model-calculated range differences
h(ŝ−i ) and the true range-difference measurements ỹk, we can correct the a priori state estimate ŝ−i to
acquire an a posteriori state estimate ŝ+i using

ŝ+i = ŝ−i + Kk[ỹk − h(ŝ−i )], (34)

where
Kk = P−i HT

k (ŝ
−
i )[Hk(ŝ

−
i )P

−
i HT

k (ŝ
−
i ) + Nr]

−1 (35)

is the Kalman gain corresponding to the k-th measurement and P−i is a priori estimate of the error
covariance matrix calculated from Equation (26). The Kalman gain Kk is regarded as a weighting
function to make the EKF algorithm recursive. Predicted system states with smaller uncertainty, that
is, ŝ−i with smaller P−i , are given more weight. The weighted result ŝ+i and its covariance, which is
calculated by inform the prediction used in the following time step.

P+
i = [I−KkHk(ŝ

−
i )]P

−
i , (36)

This online recursive estimation process for a diving cycle of underwater gliders starts from the
initial position at the sea surface and continues until the glider rises to the surface again. The purpose of
this process is to make the glider know its position and then to better detect the target [6]. The limitation
of this EKF system is that the state estimation error introduced by the inaccurate depth-averaged
current velocity, which is estimated from the previous gliding cycle, cannot be fully corrected and the
cumulative error will increase over time.

4.4. Estimation Improvement by RTS Smoothing

To reduce the EKF estimation error, we introduce the RTS smoothing method to the EKF system.
Measurements acquired at all available future and past time points are used to estimate the system
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state. Because additional measurements are utilized in the estimation algorithm, the RTS smoothing
intuitively gives better estimates [49,66] to support the spatiotemporal field construction of target
radiation signal [7]. Smoothing is the postprocessing process. We can calculate the depth-averaged
current velocity for the current gliding cycle from the GPS-localized resurfacing position of the glider,
which further reduces the state estimation error.

Let ŝs denote the smoothed estimation. Based on the EKF estimated results ŝ+i , the RTS smoothed
result ŝ+si can be estimated by the dynamic model, Fi, with a correction term, Ksi, as below,

ŝ+si = ŝ−si − (Fi + Ksi)(ŝ−si − ŝ+i ), (37)

where
ŝ−si = ŝ+s(i+1) − f(ŝs(t), u(t), v(t), t)|ti+1(ti+1 − ti), (38)

and
Ksi ≡ GpQGT

p (Pi)
−1 (39)

is the smoothed gain. When ỹk is available, Pi = P+
i ; otherwise, Pi = P−i .

Although for the RTS smoothing process, we use the depth-averaged current velocity in the
current gliding cycle, there is still a gap with the spatiotemporal flow field that actually affects the
position of the glider. To alleviate the problems caused by accumulation errors, we divide a gliding
cycle into two parts by taking the inflection point as the boundary. For the second half of the gliding
cycle, that is, after the inflection point, the RTS smoothing method is used to perform the estimation
on the EKF results from the GPS-localized resurfacing position. For the first half, we still use the EKF
results from the initial GPS-localized position with the depth-averaged current velocity in the current
gliding cycle. Therefore, it is inevitable that a larger error within the gliding cycle appears near the
inflection point. We call this combined estimate the RTS-EKF Estimate.

5. Simulation Based on Experimental and Model Data

Simulations show the experimental scene of a Sea-Wing underwater glider in a sea region with
a submersible mooring beacon. The simulation site is shown in Figure 9. The number of gliding cycles
for the entire operation is 16. The real trajectories of the underwater glider were generated by our
proposed kinematic model and simulated ocean currents. The angle and depth data for the kinematic
model in the first gliding cycle were based on records recorded during an experiment conducted in the
South China Sea because we had no measurement model for the electronic compass and CTD sensor
installed on the underwater glider, while the data used in subsequent gliding cycles were based on the
conversion of the adopted data in the first cycle. Ocean currents in the South China Sea experimental
site had no influence on the accuracy of these adopted angle and depth data. The acoustic data for the
EKF-based localization and navigation algorithm were generated by an acoustic simulator.

Figure 9. Simulation site. The beacon position (marked by the white dot) and glider trajectory
(represented by the white line) are superimposed on the bathymetry data within the yellow box.
The white pentagram and square are the starting and ending points for glider operations, respectively.
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5.1. Simulated Ocean Currents

To simulate the motion of an underwater glider in a flow field, we generated a 3D spatiotemporal
flow field based on the hydrological basic data acquired from an ocean model, named POM [67].
The generated flow field was combined with the modified kinematic model of the glider for real
position setting. Figure 10 shows the flow along the glider trajectory, which reflects that the simulated
spatiotemporal flow field varies drastically during the glider operation.

Figure 10. Flow along the glider trajectory. Colored arrows represent real flows for different gliding
cycles. Each black arrow is the calculated depth-averaged current for each gliding cycle.

5.2. Acoustic Travel-Time Simulation

A virtual acoustic beacon was deployed within the operation region. To simulate the transmission
of acoustic signals emitted by the acoustic beacon, we set the environmental parameters. The bathymetry
data in the region are obtained from geospatial data at the NOAA website [68]. The sound speed
distribution in this region is calculated from the basic hydrological data acquired from a POM South
China Sea 1/15◦ analysis provided by the South China Sea Institute of Oceanology, Guangzhou, P.R.
China [67]. The acoustic travel time of the emitted signals is generated using the toolbox Bellhop 3D,
which is published by the Ocean Acoustics Library [69].

The transmission time interval of the acoustic beacon, ∆t, is set to 10 s. However, considering
the simulation situation, we need to obtain the acoustic travel time based on the glider position.
Therefore, we set the receiving interval for the underwater glider to 10 s instead of the beacon emitting
interval. The travel time of the direct-path wave can be acquired for each receiving location. Then,
the travel-time differences between adjacent receiving locations can be calculated, which are taken
as the system measurements by multiplying the sound velocity. So instead of calculating the noisy
range-difference measurement ỹk by Equation (32), in simulations, ỹk is acquired by

ỹ(j)
k = c(τk − τk−j), (40)

where τk (k ≥ K + 1, j = 1, . . . , K) is the simulated one-way travel time corresponding to the receiving
time tk.

5.3. EKF Estimation

The EKF needs to be initialized on startup. The initial value of the system state ŝ0 is set
to the real GPS location. The depth-averaged current velocity for the first gliding cycle is set to
vx|0 = vy|0 = 0. For the m-th (m = 2, 3, . . .) gliding cycle, the adopted depth-averaged current velocity
is calculated from the (m − 1)-th gliding cycle, that is, (vx|m−1, vy|m−1)

T . Considering the actual
situation, we introduce zero-mean Gaussian noise µ ∼ N (0, Nv) into the real depth-averaged current
velocity. Here, Nv = (0.05 m/s)2.
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The combined effect of Gp and Q explains the error induced by the depth-averaged current
velocity. We set Q to be a constant matrix with Φs = 2× (0.2 m/s)2 for all gliding cycles. Gp, regarded
as a weighting matrix, is assigned varying values for different gliding cycles based on the acceleration
of the depth-averaged current velocity. For the first cycle, without any prior knowledge of the current,
we set g1 = g2 = 0.5. For the m-th (m = 2, 3, . . .) gliding cycle, the weights g1 and g2 are set to

g1 =
ax|m−1

a|m−1
, and g2 =

ay|m−1

a|m−1
, (41)

where

ax|m−1 =

∣∣vx|m−1 − vx|m−2
∣∣

Tm−1
, (42)

ay|m−1 =

∣∣vy|m−1 − vy|m−2
∣∣

Tm−1
, (43)

a|m−1 = ax|m−1 + ay|m−1, (44)

and Tm−1 is the gliding period for the (m− 1)-th gliding cycle.
The measurement noise variance Nr also needs to be given. We set Nr = (50 m)2 to account for

the uncertainty during ranging based on the time difference multiplied by c.
Because the calculation of depth-averaged current velocity does not rely on the EKF process,

we use the modified kinematic model with the superimposed depth-averaged current velocity for
comparison, labeled as "Motion Model Estimate" in Figure 11. The trajectory estimated by the EKF
method is closer to the real trajectory than the motion model estimate. At the resurfacing position,
the estimated error is reduced from 800 m to 630 m. However the estimated trajectory is still far from
the actual trajectory.

Figure 11. Horizontal positions of the underwater glider in the 14-th gliding cycle. Red dots are the
locations estimated by the extended Kalman filter (EKF) method, while blue dots are the results of the
motion model. The black dots are real positions of the glider, in which the black pentagram represents
the starting point, the black square represents the ending point and the black triangle represents the
inflection point.

5.4. RTS-EKF Estimation

The RTS backward smoothing algorithm is applied to improve the EKF estimate. For
postprocessing, the resurfacing position of the glider is known. Then, the depth-averaged current
velocity for the current gliding cycle can be calculated. Therefore, for the m-th (m = 1, 2, . . .) gliding
cycle, the adopted depth-averaged current velocity is (vx|m, vy|m)T . The weights g1 and g2 are
assigned to
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g1 =
ax|m
a|m

, and g2 =
ay|m
a|m

, (45)

where

ax|m =

∣∣vx|m − vx|m−1
∣∣

Tm
, (46)

ay|m =

∣∣vy|m − vy|m−1
∣∣

Tm
, (47)

a|m = ax|m + ay|m, (48)

and Tm is the gliding period for the m-th gliding cycle.
Considering the accumulation of errors, we use the RTS smoothing from Equations (37)–(39)

for the second half of the gliding cycle, that is, after the inflection point, and for the first half of the
gliding cycle, we keep the EKF estimate with (vx|m, vy|m)T . The performance of the estimate state ŝ is
evaluated by the root-mean-square error (RMSE) as follows:

RMSE =

√
1
N
(ŝ− s)T(ŝ− s), (49)

where N is the number of trials. Figure 12 shows the estimate results with N = 1. For comparison, the
motion model estimate and the EKF estimate for the second half of the gliding cycle is calculated by
integrating the dynamic model in reverse time from the resurfacing position.

Because we divide the gliding cycle into two parts, a larger error within the gliding cycle appears
near the inflection point. At the inflection point, the RMSE of the RTS-EKF estimate is reduced from
211.4 m to 114.1 m compared with the EKF result, and when compared with the motion model estimate,
the performance of the RTS-EKF estimate is improved by 46%. The reason for RTS performance
improvement is that the cumulative estimation error of the EKF from the starting point is corrected,
and new measurements up to the resurfacing position are introduced.

(a) (b)

Figure 12. Estimate Results. (a) Estimate state and (b) Root-mean-square error (RMSE) results.
Upper panel: EKF estimate compared with the motion model estimate and the actual condition.
Lower panel: Rauch-Tung-Striebel (RTS)-EKF estimate compared with motion model estimate and the
actual condition.

5.5. Discussion

The main error induced to the model-aided estimation process is due to the depth-averaged
current velocity. Therefore, except the spatiotemporal characteristics of the ocean current, the error µ

of the estimated depth-averaged current velocity impacts the estimate performance. We discussed
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one trial for the case of Nv = (0.05 m/s)2 in Section 5.4. Here, multiple trials are conducted for the
case of Nv = (0.05 m/s)2 and for other cases as Nv = (0, 0.1, 0.15, 0.2) (m/s)2 to explore the statistical
performance of the RTS-EKF estimate.

Figure 13 shows the RMSE results over different Nv. The specific percentages are given in Table 3.
For each Nv, we calculate the percentages of the RMSE values within different error ranges for all
gliding cycles. The motion model estimate is shown for comparison. As Nv increases, the percentage
for RMSE ≤ 100 m gradually decreases, while the percentage for RMSE ≥ 500 m gradually increases.
Under the same case of Nv, the percentage for RMSE ≤ 100 m corresponding to the RTS-EKF estimate
is always larger than that of the motion model estimate, while the percentage for RMSE ≥ 500 m
corresponding to the RTS-EKF estimate is always not greater than that of the motion model estimate.

Figure 13. Estimated RMSE over different error values µ of the depth-averaged current velocity. From
left to right, the variance Nv = (0, 0.05, 0.1, 0.15, 0.2) (m/s)2. The first row shows the RTS-EKF estimate,
and the second row shows the motion model estimate for comparison.

Table 3. RMSE comparison over different errors of the depth-averaged current velocity.

√
Nv RTS-EKF Estimate Motion Model Estimate

m/s ≤100 m 100 m< · <500 m ≥ 500 m ≤100 m 100 m< · <500 m ≥500 m

0 100% 0 0 100% 0 0
0.05 62% 38% <1% 51% 49% <1%
0.1 39% 52% 9% 27% 64% 9%
0.15 30% 50% 20% 21% 55% 24%
0.2 22% 49% 30% 15% 47% 38%

6. Conclusions

This paper has formulated a dynamic localization and navigation method for underwater gliders
based on a modified kinematic model combined with acoustic measurements from a single beacon.
The adopted acoustic measurement is based on the travel-time differences between adjacent signals
from the beacon, multiplied by the sound speed in water. Therefore, there is no need to synchronize
the hydrophone time and beacon time. The depth-averaged current velocity is introduced into the
modified kinematic model to generate a state estimate of underwater gliders in a flow field. An EKF
method is preformed based on the estimated state and the calculated range differences. To improve
the EKF estimate, the RTS smoothing algorithm is adopted for each gliding cycle after the inflection
point by introducing subsequent measurements.

From simulation results, the EKF method can estimate the glider positions better than the motion
model. However, the estimated glider resurfacing point is still 630 m from the actual resurfacing
position. The proposed RTS-EKF method can further reduce the gap between the estimated trajectory
and the true trajectory from 211.4 m to 114.1 m at the inflection point compared with the EKF result.
When compared with the motion model estimate, the performance of the RTS-EKF estimate is improved
by 46% at the inflection point. The influence of the error of the adopted depth-averaged current velocity
is discussed, which further illustrates the superior performance of the proposed RTS-EKF method.
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