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Abstract

Mesenchymal stem cells (MSCs) are multipotent cells with high self-renewal and multilineage differentiation abilities, playing an important
role in tissue healing. Recent advancements in stem cell-based technologies have offered new and promising therapeutic options in regenera-
tive medicine. Upon tissue damage, MSCs are immediately mobilized from the bone marrow and move to the injury site via blood circulation.
Notably, allogenically transplanted MSCs can also home to the damaged tissue site. Therefore, MSCs hold great therapeutic potential for curing
various diseases. However, one major obstacle to this approach is attracting MSCs specifically to the injury site following systemic administra-
tion. In this review, we describe the molecular pathways governing the homing mechanism of MSCs and various strategies for improving this
process, including targeted stem cell administration, target tissue modification, in vitro priming, cell surface engineering, genetic modifications,
and magnetic guidance. These strategies are crucial for directing MSCs precisely to the injury site and, consequently, enhancing their migration
and local tissue repair properties. Specifically, our review provides a guide to improving the therapeutic efficacy of clinical applications of MSCs
through optimized in vivo administration and homing capacities.
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Significance Statement

regenerative medicine.

Mesenchymal stem cells (MSCs) hold tremendous potential for regenerative medicine and the treatment of currently incurable diseases.
These adult multipotent progenitor cells are essential for tissue regeneration and wound repair due to their high capacity to differentiate
into various tissues. Through paracrine effects, MSCs can regulate immune responses, enhance neovascularization, and improve cell
survival. Moreover, MSCs have the ability to preferentially home to damaged tissues and serve as a reservoir of growth and proregenerative
factors. Therefore, understanding and enhancing MSC homing efficiency at injury sites is crucial to maximizing their therapeutic effects.
In this review, we analyze a variety of strategies to optimize MSC homing and foster the potential of MSC-based cell therapies in

Introduction

Adult stem cells such as mesenchymal stem cells (MSCs), in-
duced pluripotent stem cells (iPSCs), and embryonic stem
cells (ESCs) are 3 main types of stem cells. MSCs are adult
multipotent progenitor cells that can differentiate into var-
ious tissues, including adipose, bone, and cartilage.! MSCs
are characterized morphologically by a small cell body with
a few cell processes that are long and thin. Importantly, those
fibroblast-like cells were identified first by Friedenstein et al' in
the 1960s. The observations of Friedenstein have laid a mile-
stone for the later discovery of what is now known as MSCs.
In 1974, Friedenstein et al? isolated MSCs from bone marrow
for the first time. Since then, MSCs have been isolated from
various other tissues, which include fetal tissue,® perivascular
tissue,* muscle,® dermis,’ adipose tissues,® and dental pulp.”

Based on the criteria of the International Society for
Cellular Therapy MSCs show the following characteris-
tics®: (1) plastic adherence; (2) positive expression of CD90,
CD105, and CD73 surface markers; (3) negative expression
of stem cell lineage markers including CD34, present on he-
matopoietic and endothelial cells, CD79a or CD19 present
on B cells, and CD435 present on pan-leukocyte; (4) negative
expression of myeloid markers including CD14 or CD11b;
and (5) tri-lineage differentiation potential into chondrocytes,
osteocytes, and adipocytes.® These minimal criteria must be
met by MSCs isolated from any tissue. Furthermore, cer-
tain nonclassical differentiation potential of MSCs including
neural,” hepatocytic,'° and myoblastic* lineages has been
demonstrated, although the neural differentiation remains
controversial.
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In contrast, ESCs are pluripotent stem cells that may dif-
ferentiate into any mature cell of the 3 germlines after being
isolated from the inner cell mass of a mouse early preim-
plantation blastocyst.! In general, stem cell-based research
aims to improve therapies for currently untreatable diseases.
Presently, tissues derived from stem cells, stem cell-based
products, and biomaterials combined with stem cells offer a
promising alternative in regenerative medicine.!> MSCs have
demonstrated superior therapeutic effects because of their
ability to regulate many types of immune cells of the adaptive
and innate immune systems. In particular, MSCs promote
neovascularization, enhance angiogenesis, inhibit cell death,
increase cell proliferation and viability, and regulate immune
responses by exosomes, cell-to-cell contacts, and paracrine
effects.!>14

Although MSC treatments have made significant advances
in recent decades, several challenges remain. High levels of
heterogeneity, issues regarding immune compatibility, dif-
ferentiation capacity, phenotype stability, and migratory
capabilities are the key points.’”> Upon tissue damage, MSCs
are rapidly mobilized into the bloodstream,'® moving to the
injury site, where they create a proregenerative microenviron-
ment for proper wound healing.!”'$ Importantly, allogenically
transplanted MSCs can also home to the damaged tissue site
and support the recovery process or act as activators for the
regeneration of tissues. This concept underpins the thera-
peutic potential of the administration of MSCs for clinical
purposes. Table 1 represents a summary of preclinical and
clinical trials involving MSCs.!”

Once localized at the target site, MSCs release various
factors, which have angiogenic, immunomodulatory, and
antiapoptotic effects.*2¢ Based on these characteristics, MSCs
have been applied in clinical settings including regulation of
immune response in autoimmune and inflammatory diseases,
protection of tissue after injury, and regenerative medicine.?’
Therefore, the improvement of MSCs” homing efficiency is
necessary since delivering MSCs to the injury site represents
the key feature of their therapeutic efficacy. Hence, this review
elaborates on different strategies for improving MSC homing
efficiency at the molecular level.

MSCs homing mechanism

The ability of MSCs to home to damaged tissues is a key
benefit and a requirement for a successful stem cell-based
therapy. Therefore, it is important to first define the homing
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mechanism, including both systemic and nonsystemic
homing.?® In nonsystemic homing, MSCs are implanted lo-
cally at the target site, and a chemokine gradient guides
them to the injury.?” In contrast, in systemic homing,
MSCs are administered into the bloodstream and migrate
through a multistep process to the injury site after leaving
circulation.’

The systemic homing can be divided into 5 distinct steps
(Figure 1):

. tethering and rolling,

. activation,

. arrest,

. diapedesis or transmigration, and
. migration.3?

L AW =

Importantly, endothelial cells express selectins which facili-
tate initial tethering.’* On the other hand, CD44 is expressed
by MSCs, which bind to endothelial selectins, and upon this,
MSCs begin to roll on the vasculature. Table 2 depicts all im-
portant cell surface markers and integrins expressed on dis-
tinct types of MSCs.

It is known that P-selectin glycoprotein ligand-1 (PSGL-1)
and the hematopoietic cell E-/L-selectin ligand (HCELL) bind
to specific selectins expressed by endothelial cells, triggering
initial tethering. However, in the case of MSCs, it is still not
completely understood which selectins bind to MSCs, as they
express neither PSGL-1 nor HCELL.3* Some in vitro models
mimicking the homing of MSCs have been reported previ-
ously. Interestingly, Riister et al* reconstructed a model
demonstrating a coordinated sequence of adhesion steps of
human MSCs with human endothelium, initiated by tethering
events in a parallel plate flow chamber. The authors con-
firmed that the binding of human MSCs to human endothelial
cells could be suppressed by anti-P-selectin antibodies, while
the rolling of MSCs increased when exposed to a P-selectin-
containing plate in the chamber. Since MSCs do not express
PSGL-1, a different ligand is used for binding with P-selectin.
In one study, galectin-1 was identified as a possible ligand for
P-selectin.’® Moreover, Bailey et al* identified CD24 as an-
other potential P-selectin ligand in stromal cells derived from
human adipose tissue.

G protein-coupled chemokine receptors facilitate the second
step, “activation,” typically in response to inflammatory sig-
nals. Animal experiments, where either the entire body or a
local area was irradiated, showed higher numbers of MSCs

Table 1. Summary of preclinical trials and clinical trials involving mesenchymal stem cells (MSCs).

Disease/condition Clinical application Status References
Graft-versus-host disease (GVHD) Immunomodulation Clinical Dominici et al®, Chinnadurai et al"
Multiple sclerosis (MS) Neuroregeneration Clinical Chinnadurai et al"
Crohn’s disease (CD) Tissue homeostasis Clinical Lotfy et al?®

Amyotrophic lateral sclerosis (ALS) Regeneration Clinical Lotfy et al*, Rendra et al*!
Myocardial infarction (MI) Cardiac repair Clinical Kabhrizi et al*

Acute respiratory distress syndrome Anti-inflammatory effects Clinical Lotfy et al*®

(ARDS)

Heart failure Cardiac repair Preclinical Kabhrizi et al??

Lung injury Anti-inflammatory effects Preclinical Galipeau®

Liver disease Tissue regeneration Preclinical Chinnadurai et al?
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Figure 1. Overview of MSC homing mechanism. The systemic homing of MSCs comprises 5 distinct steps, including tethering and rolling, activation,
arrest, diapedesis or transmigration, and migration. Tethering and rolling, which are the first steps of this mechanism, are facilitated by interactions

of selectins and ligands. The second step activation is facilitated by G protein-coupled chemokine receptors, and the third step of cell arrest involves
integrins. In the fourth step of diapedesis or transmigration, MSCs cross the endothelial cell layer and basement membrane by secreting matrix
metalloproteinases (MMPs). In the final step, MSCs migrate to the injury site through the interstitium due to chemotactic signals released upon tissue
damage. Modified from Ullah et al.?'

Table 2. Summary of surface markers and integrins relevant to homing mechanisms and expressed on various types of MSCs.

Surface marker Expression in MSCs Function MSC types References
CD90 (Thy-1) High expression Associated with MSC identity ~ Bone marrow-derived MSCs ~ Dominici et al®
and immunomodulation (BM-MSCs), adipose
tissue-derived MSCs
(AT-MSCs)
CD73 High expression Involved in adenosine produc- ~ BM-MSCs, AT-MSCs Dominici et al®
tion and immunosuppression
CD105 (endoglin) High expression Regulates angiogenesis and BM-MSCs, AT-MSCs Dominici et al®
tissue repair
CD44 High expression Cell adhesion and migration BM-MSCs, AT-MSCs Sackstein et al**
CD273 (PD-L2) Variable expression Immunomodulatory role BM-MSCs, AT-MSCs Wu et al?’
CD146 Variable expression Associated with angiogenesis BM-MSCs, AT-MSCs Caplan et al,”® Fan et al'*
and tissue regeneration
CD248 (endosialin) Variable expression Implicated in tissue remodeling  BM-MSCs, AT-MSCs Caplan et al,”® Fan et al'*
and angiogenesis
VLA-4 (04p1 integrin) Expressed by MSCs Mediates binding to endothelial BM-MSCs, AT-MSCs Riister et al,> Segers
cells via its ligand VCAM-1 et al,*® Steingen et al®’
VCAM-1 (vascular cell Expressed by Facilitates MSC binding to Rister et al,’* Segers
adhesion molecule-1) endothelial cells endothelial surfaces during et al,*® Steingen et al®’
inflammation

in response to inflammation.* The critical factor for this step  type 4 (CXCR4) expressed by MSCs.?* Homing to the
is stromal cell-derived factor-1 (SDF-1) expression on en-  bone marrow was reported to increase with overexpression
dothelial cells,*! interacting with CXC chemokine receptors ~ of CXCR4 on MSCs.* However, other receptors may be
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involved in this process, as some studies reported that MSCs
do not express CXCR4.%

In this regard, another receptor, CXC chemokine receptor
type 7 (CXCR7), was identified to be expressed on MSCs. Like
CXCR4, CXCR7 also binds to SDF-1.47* Other receptors
and chemokines also play crucial roles in the homing process.
For example, monocyte chemoattractant protein-1 (MCP-1),
an anti-inflammatory marker expressed in the myocardium of
mice, enhances MSC homing by binding to its corresponding
receptor, CC chemokine receptor type 2 (CCR2).** Mice
expressing MCP-1 recruited MSCs expressing the CCR2
receptor through this interaction.’® In another study, MSC
homing was significantly increased by MCP-3 expression in
the myocardium.’' MSCs also express several other receptors,
including CCR1, CCR4, CCR5, CCR6, CCR7, CXCRY, and
CXCR10.%4 However, the roles of these receptors are not yet
fully understood.

Furthermore, integrin affinity increases through conforma-
tional changes in their extracellular domains, a process also
involved in the MSC activation step. Integrins are vital for
cell adhesion to target tissues.’>’3 For example, Talin and
Kindlin signaling molecules interact with the cytoplasmic
domain of very late antigen-4 (VLA-4) upon SDF-1 stimu-
lation, changing VLA-4 from an inactive to an active form,
promoting MSC migration and binding to receptors.*

Integrins facilitate the third step, cell adherence. High
integrin expression significantly enhances MSC adherence.
Chemokines like SDF-1 activate VLA-4, an integrin expressed
in MSCs. Upon activation, vascular cell adhesion molecule 1
(VCAM-1), expressed by endothelial cells, binds to activated
VLA-4 integrin.’” The homing of MSCs to bone marrow
increases when VLA-4 integrin is overexpressed. VCAM-1
and other integrin ligands are also expressed by MSCs.*%%¢

In the final step, MSCs migrate to the injury site through
the interstitium.’” Chemotactic signals which are released
upon tissue damage guide this step. MSCs move toward
those specific signals which include insulin-like growth factor
(IGF)-1 and platelet-derived growth factor-AB (PDGF-AB).
Further, MSCs can be also attracted by chemokines like SDF-
1, macrophage-derived chemokine, as well as RANTES.”
MSCs migration toward chemokines can be increased by
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Figure 2. Targeted administration of MSCs at or near the damaged tissue. This process is called nonsystemic homing. It is the chemokines which guide
the MSCs toward damaged tissue when administered near the damaged tissue. Modified from Ullah et al.®
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preincubating MSCs with tumor necrosis factor (TNF)-alpha,
which upregulates their CCR2, CCR3, and CCR4 receptors.’”
MSCs migration toward sites of injury may also be promoted
by inflammatory chemokines such as interleukin (IL)-8.%%
This chemokine also stimulates in MSCs the secretion of re-
generative factors like vascular endothelial growth factor
(VEGF).®® Thus, comprehensive knowledge of molecular
events that are involved in MSC homing provides different
strategies for the optimization of the MSC homing process for
therapeutic purposes.

Currently, MSC homing efficiency remains one of the key
challenges in MSC therapies. Multiple reports suggest that
only a small percentage of MSCs reach the target tissue when
administered intravenously.®** Several factors contribute to
low MSC homing efficiency. One reason is that MSCs become
trapped in the lung capillaries after intravenous administra-
tion. Anticoagulants like heparin and vasodilators have been
shown to increase MSC homing to the liver and bone marrow
by reducing lung trapping.®**> Another reason for low homing
efficiency may be the reduced expression of specific homing
molecules like CXCR4 on MSCs,*#* as homing molecule ex-
pression decreases with in vitro MSC expansion.*¢¢

Enhancing of MSCs homing efficiency

MSCs homing efficiency can be improved by a variety of
approaches:

. targeted administration,

. target tissue modification,

. In vitro priming,

. cell surface engineering,

. genetic modification,

. magnetic guidance, and

. radiotherapeutic techniques.

NN LW -

Targeted administration

Targeted administration represents a method, which can sig-
nificantly improve MSCs’ homing. In this method, cells are
at a target site or near to it (Figure 2) instead of introducing
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them by intravenous routes. Retention of MSCs may increase
by targeted administration, for example, by intracerebral ap-
plication for neurological diseases, intratracheal application
for lung disease, or intramyocardial injection for heart dis-
ease. A lot of research has been performed in the development
of new medical technologies required for targeted adminis-
tration. In particular, transcatheter injections into the my-
ocardium have been used in several clinical trials of MSCs
therapies for ischemic cardiomyopathy.®”$

In a porcine model, Dick et al®’. identified infarct borders
by utilizing magnetic resonance fluoroscopy. The authors
delivered MSCs to the infarcted region by safely navigating
the catheter to the target site. The applied MSCs were visible
and detectable even after administration near the damaged
tissue using MRI. This study confirmed the successful migra-
tion of MSCs into the infarct area; however, no quantification
of MSC:s retained in the target tissue was reported.

Targeted administration of MSCs has been described in
many studies, but very few compared standard intravenous
injection with targeted administration. The optimal route of
MSC administration can be determined by meta-analysis. In
ischemic stroke, MSCs administered intracerebrally showed
the highest efficacy, with intra-arterial administration ranking
second and intravenous third in improving the neurological
severity score.”’ In myocardial infarction, infarct size was
significantly reduced by transendocardial administration of
MSCs, while no significant results were obtained with intra-
venous, intracoronary, or intramyocardial administration in
swine models.”! However, results differed in human trials. The
intracoronary route of MSC administration performed best,
whereas the intravenous route showed some improvement,
and the intramyocardial route demonstrated almost no pos-
itive effect.”

Therefore, it cannot be assumed that administering MSCs
directly to the target tissue or organ would always yield
the most promising results in vivo. For example, in a por-
cine model of emphysema, both intrathecal and intrave-
nous routes reduced cell damage and lung inflammation.”
However, cardiovascular function improved only with intra-
venous administration, which also shifted lung macrophage
phenotypes from M1 to M2 due to MSCs being trapped in
the lung capillaries when administered intravenously.

Some studies explored transplanting MSC sheets instead of
using MSC suspensions. MSC sheets consist of single layers
of cells grown on cell culture plastic that detach spontane-
ously when the temperature decreases. Ishikane et al™ treated
scarred myocardium in a rat model of chronic-stage myocar-
dial infarction by direct transplantation of MSC sheets. Rats
treated with such sheets demonstrated increased capillary
density, reduced myocardial fibrosis, and improved cardiac
function in the infarcted region compared to untreated con-
trol rats.

Another study examined the effectiveness of intramyocardial
injection versus epicardial placement of MSC sheets in is-
chemic cardiomyopathy rat models.” The authors observed
increased myocardial repair with MSC sheet transplantation
compared to intramyocardial injection of MSC suspensions.
Kaibuchi et al”® evaluated MSC sheet transplantation for
treating osteonecrosis of the jaw. They compared the results
of MSC sheet transplantation with intravenous injection,
finding that the MSC sheet group exhibited improved wound
healing and enhanced vascularization compared to the intra-
venous injection group.

Stem Cells Translational Medicine, 2024, Vol. 13, No. 12

In general, there are 3 reasons favoring MSC sheet trans-
plantation over MSC suspension injection: (a) improved
survival of transplanted MSCs, (b) enhanced secretion of re-
generative factors, and (c) no embolism risk. Although these
studies highlight the significance of targeted administration,
the results are highly dependent on the tissue and disease
model.

Target tissue modification

Target tissue modifications can improve the homing efficiency
of MSCs as shown in Figure 3. In particular, the target tissue
modification aims to increase the concentration of homing
factors at the target site that enhance the infiltration of
MSCs.”” The target tissue modification includes direct injec-
tion of the homing factor, target tissue genetic modification,
and implantation of a scaffold containing homing factor.””-8

Direct injection of homing factors

Direct injection of SDF-1 into ischemic tissue has been re-
ported to enhance neovascularization in both the myocar-
dium”7 and skeletal muscle.’® Although MSCs were not
used in these studies, Sasaki et al”® observed an increase in
the homing of bone marrow MSCs after injecting SDF-1 di-
rectly into the ischemic myocardium. Similarly, Yamaguchi et
al®® observed a 1.8-fold increase in the endogenous homing
of intravenously injected endothelial progenitor cells (EPCs)
following SDF-1 injection into the ischemic hind limb muscle
of mice. However, SDF-1 degrades quickly due to proteolytic
enzymes. To address this, Segers et al bioengineered a protease-
resistant version of SDF-1 that showed prolonged binding
with CXCR4. The injection of this bioengineered SDF-1
improved blood flow in cases of peripheral artery disease and
enhanced cardiac function in myocardial infarction.!$?

Target tissue genetic modification

Some studies performed genetic modification by applying
targeted tissue transfection with chemokines encoding
constructs.”” Fujii et al®® delivered SCF-containing plasmid
into the myocardium by using the UMMD (ultrasound-
mediated microbubble destruction) method. In this method,
the plasmids with microbubbles are injected directly into the
damaged tissue. The microbubbles, which are injected along
with plasmids, cavitate and generate shear stress in response
to the ultrasound. This shear stress also exerts many biolog-
ical effects like alteration of vascular permeability of endothe-
lial lining that improves uptake of plasmids. This technique
enhanced the expression of SDF-1 in the myocardium, as well
as the homing efficiency of endogenous CXCR4-expressing
progenitor cells.®* Similarly, improved cardiac function and
angiogenesis were achieved by Sundararaman et al** by
injecting SDF-1 plasmid into the heart tissue of mice without
using the UMMD method. Phase I clinical trials of this
therapy without a control group were carried out with SDF-1
plasmid being delivered directly into the infarcted region of
17 ischemic cardiomyopathy patients.®’ The patients showed
quality of life and walk distance improvements after 12
months in a dose-dependent manner following the treatment.
In phase II (placebo-controlled study) clinical trials of this
therapy, no significant difference between treatment groups
and placebo groups was observed after 6-minute walk dis-
tance.’® However, significant improvements were observed
when the analysis was limited to one-third of the most severe
patients. However, there are some concerns regarding target
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Figure 3. Target tissue modification for increasing MSCs homing efficiency. (A) Direct injection of homing factor, (B) target tissue genetic modification
by direct injection of homing factor containing plasmid or by intravenous injection of homing factor containing microbubble injection followed by
ultrasound-mediated microbubble destruction method, and (C) homing factor containing scaffold implantation. Modified from Ullah et al.®!

tissue transfection due to high costs, intentional mutagenesis,
and immunogenicity.

MSC engraftment rate is higher in the irradiated target
tissues.'®¥ This increase is due to upregulated SDF-1 ex-
pression hence enhancing the activation stage of the homing
process.®® However, radiation therapy in human patients
raises safety concerns and thus, it cannot be used clinically.
Therefore, alternatives of radiation therapy showing similar
improvements in the homing process of MSCs can be used as
shown in Figure 4.

Ultrasound has various therapeutic applications along
with its usage as a diagnostic tool.*” Therapeutic ultrasound
mainly focuses on the modifications of a target tissue. In par-
ticular, sound waves exert mechanical pressure at the target
site, which induces many biological effects leveraging tissue
regeneration. For example, ultrasound-mediated microbubble
destruction techniques improve MSC homing as shown in
Figure 3. Many studies applied this technique for increasing
cardiac recovery in case of myocardial infarction.”®*? For
example, Li et al”® observed that the ultrasound-mediated
microbubble destruction (UMMMD) technique increases
the proportion of CXCR4-expressing cells and enhances
SDF-1 secretion in the target site. Further, the same technique
promoted the homing of MSCs in the kidney by upregulating
the expression of selectins, integrins, cytokines, and other
trophic factors.”* In addition, the UMMD technique was
shown to induce an inflammatory response in the brain
that, in turn, upregulated several trophic and inflammatory

factors.” However, improper application of UTMD may pro-
duce undesired complications since previous studies reported
the presence of erythrocyte extravasations, inflammation, and
intracerebral hemorrhage within sonicated areas as the most
common side effects.”®® Therefore, some studies started the
investigation of focused ultrasound without microbubbles.
In this modified method, focused pulses of highly intense
sound waves are administered by pulsed focused ultrasound
(pFUS) that prevents tissue damage and high temperatures.”
Burks e al.'® demonstrated that pFUS generated a chem-
ical gradient in the muscle leading to upregulated expres-
sion of proinflammatory cytokines and chemokines, which
play a crucial role in tissue remodeling and repair processes.
For example, cell adhesion molecules such as VCAM-1 and
ICAM-1, growth factors, and cytokines show increased ex-
pression upon treatment. pFUS establishes a local chemical
gradient by activating TNF-alpha, which further triggers
the signaling cascade of cyclooxygenase-2 (Cox2) leading to
upregulation of many homing factors and cytokines.!** pFUS
enhanced homing of MSCs by 4-fold in limb ischemia mouse
models compared to MSCs alone, hence improving clinical
outcomes.'” Similar results were obtained in the kidney
by using pFUS,'® which activated IL-1a and TNF-alpha in
the kidney upregulating Cox2 and the NF-xB pathways.'*™
Moreover, Jang et al'® observed that pFUS initially increases
TNF-alpha, which causes upregulation of growth factors and
cytokines in the heart. However, further studies are required
to determine the long-term effects of pFUS, but the research
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Figure 4. Overview of cell surface engineering, genetic modifications, magnetic guidance, and radiotherapeutic (ultrasound) techniques for improving

MSCs homing at the target tissue. Modified from Ullah et al.®

performed until now demonstrated a promising avenue for
increasing the homing efficiency of MSCs by using pFUS.

Implantation of a scaffold containing chemokines increasing
homing

Another method of increasing homing is to deliver chemokines
in a scaffold releasing chemoattractants such as SDF-1 to
the injured target site. For example, Kimura and Tabata'®
generated a hydrogel showing a slow release of SDF-1.
Similarly, a subcutaneous implantation of gelatin hydrogel
containing SDF-1 showed improved results than SDF-1 injec-
tion alone.'% Similarly, He et al'®” engineered SDF-1-loaded
hydrogel, which increased the migration of bone marrow
stromal cells upon implantation. Further, Goncalves et al'*
engineered SDF-1 containing a chitosan/poly(g-glutamic
acid) complex, which enhanced the in vitro MSCs migra-
tion. Moreover, Shen et al'” developed a silk-collagen sponge
scaffold releasing SDF-1. This scaffold increased the endoge-
nous progenitor cell migration and tendon regeneration in rat
Achilles tendon injury models after implantation. Using a com-
plex system, Thevenot et al''? engineered an SDF-1-releasing
scaffold by applying a mini osmotic pump. Subcutaneous im-
plantation of these scaffolds in mice increased the homing ef-
fect of MSCs by 3-fold.!"

In vitro priming

Priming methods affect gene expression by altering the cul-
ture conditions and thus, various steps of systematic homing
(tethering, activation, and transmigration) in various studies

as shown in Figure 5. For example, it was shown that CD44 is
upregulated at the tethering stage when MSCs are coated with
hyaluronic acid.""" Further, many different soluble factors can
increase the expression of CXCR4, CXCR7, CCR2, CCR3,
and CCR4 during the activation step.’”!'*123 The cell cul-
ture confluence also affects the migration ability of MSCs.!**
Several treatments increased matrix metalloproteinase
(MMP) expression, which improved the transmigration of
MSCs."'¢ These methods aim to promote MSC’s ability to mi-
grate toward the site of tissue damage or inflammation, which
is essential for the potential therapeutic use of these cells.

In conclusion, in vitro priming methods include CD44
upregulation at the tethering stage, increased expression of
CXCR4, CXCR7, CCR2, CCR3, and CCR#4 at the activation
step, and increased matrix metalloproteinases (MMPs) ex-
pression at transmigration stage.

Supplementation of culture media

Some specific treatments like supplementation of culture
media with HIF-1a (hypoxia-inducible factor) or coating
MSCs with some specific factors can increase the expression
of certain markers or genes, which increases MSC homing.
For example, the selectin ligand CD44 is upregulated at
the tethering stage when MSCs are coated with hyaluronic
acid.!"* Indeed, the CD44 upregulation increased the in-
vasion and homing of MSCs by 2-fold, which resulted in
a reduced in inflammation at the target site.'"! It has been
found that different soluble factors can increase the expres-
sion of CXCR4, which is linked with the activation step of the



Stem Cells Translational Medicine, 2024, Vol. 13, No. 12

1169

transfection Ultrasound ¥

Selectin mRNA

transfectlon

Tethering and Rolling E Activation E Arrest i Diapg;:lesis i Migration
; . . . ; ; Transmigration :
: Bispecific antibody i Cell surface engineering 9 !
MSC : binds with specific ' (direct conjugation) ‘ H
HCELL ' tissue : ; ‘
. ! ! Over- H !
Enzymatic ' 4 ) ' expression : ,
(FUT6 or ' ' ' '
FUT7) ' Over- Aanti-VCAM-1 ! '
CONVErsion CD44  pggL.q expression . anti- ! TIMP3 '
) ; : ICAM 11 :
1 7 ! antlbody' !
i CD44 XCR4 /' : !
mMRNA : Tgxcm : : :

: $S:D.F-.1 +/

activates
IL-Taand TNF-a €+—

K’ activates

COX2and NEkB —

signaling pathways

Ultrasound /

MMP2
MMP9
MT1-MMP
MSCs labeled l
Growth factors with magnetic MSC
cytokines particles

Magnetic field

Figure 5. Overview of in vitro priming methods to enhance homing of MSCs modified from Ullah et al.® These methods include CD44 upregulation at
tethering stage, an increase in the expression of CXCR4, CXCR7, CCR2, CCR3, and CCR4 at activation step, an increase in matrix metalloproteinases

(MMPs) expression at transmigration stage.

homing process. The specific combinations of soluble factors
include (1) HGE, IL-6, IL-3, FLT3LG, and stem cell factor
(SCF)"%; (2) iron chelator deferoxamine!'?; (3) valproic acid
(the mood stabilizer drug)!'*!%; (4) glycogen synthase kinase
(GSK)-3b inhibitors!'¢; (5) IL-1b'"; (6) interferon (IFN)-g''s;
and (7) IGF-1.'*

Furthermore, HIF-1a induced under hypoxic cell culture
conditions, increased expression of CX3CR1,'? as well as
CXCR7,126122 and CXCR4.'>® It seems that deferoxamine
stabilizes HIF-1a even at the normal level of oxygen,'? that
finally increases the expression of many homing genes.''
MSCs exposure to Clq (complement 1q) results in an
increase in the expression of CXCR4, which enhances the
migration of MSCs toward SDF-1."2¢ Furthermore, cul-
ture conditions can upregulate other homing receptors as
well. For example, migration of MSCs toward chemokines
increases when MSCs are treated with TNF-alpha because
this treatment upregulates the expression of CCR2, CCR3,
and CCR4.”” Other treatments can increase MMP expres-
sion, which have a role in the transmigration of MSCs. The
inhibition of GSK-3 is known to induce increased expression
of MMP2, a membrane-type MMP1.%¢ Interestingly, comple-
ment 1q treatment also enhances MMP2 secretion.!?¢ Further,
valproic acid and lithium, both drugs used to treat bipolar
disease were demonstrated to enhance MMP9 activity, while
valproic acid further increases the activity of MMP2."* The
combination of erythropoietin and GCSF also enhances
the expression of MMP2, which improves the migration of
MSCs."?” Further, sphingosine-1-phosphate-treated MSCs

migration demonstrated significantly improved migration in
in vitro trans well assays.!?® This treatment upregulates spe-
cifically MMP9 expression, which was shown to increase the
homing capacity of MSCs to the infarcted myocardium.'?

The impact of culture confluence on MSC migration

The cell culture confluence can affect the migration ability of
MSCs. Indeed, a study reported that highly confluent MSCs se-
crete a higher amount of tissue inhibitor of metalloproteinase
3 (TIMP3), an MMP inhibitor decreasing the migration
of MSCs as compared to the low confluence of cultured
MSCs.!2* In another work, complete gene expression profiling
of low and high-confluent MSCs was compared. The study
demonstrated that proliferation-related genes were expressed
higher levels in low-confluence MSCs, whereas genes involved
in migration and regeneration (GDF15, A2M, MDK, PDFGD,
VEGFA, FGF9, and WISP2), immune modulation (IL-6 and
IL-1B), and activation (CXCLS5, CXCL2, CXCL1, CXCLS,
CXCL6, and CXCL16) related genes showed higher expres-
sion in high-confluence MSCs. '3

The effect of cocultures on MSC migration

Culturing of MSCs with other cells (coculture) also affects
the migration of MSCs. For example, coculturing Sertoli
cells (from the testes) with MSCs upregulates homing-related
factors such as CXCR4 and proliferation genes'! as well as
MMP2 expression in MSCs.!3? Furthermore, amniotic epithe-
lial cells and amniotic MSCs coculturing upregulate the ex-
pression of CXCR4 and thus, increase MSCs proliferation.!'??
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Further, the coculture of MSCs with melanoma cells dra-
matically improved the migratory and invasion potential
of SK-Mel-5, G-361, MeWo, and A2058 melanoma cells.
Furthermore, in an angiogenesis experiment in vitro, con-
ditioned medium from all MSCs-melanoma cell cocultures
stimulated tube formation.'** In addition, treatment of MSCs
with endothelial cell conditioned medium promotes their mi-
gration in vitro, presumably due to the presence of cytokines
such as IL-6 and IL-8.'3 Interestingly, cocultures of nucleus
pulposus cells and MSCs contributed to increased ECM syn-
thesis and cell migration.!3

Cell surface engineering

Many studies have performed chemical cell surface en-
gineering of MSCs as shown in Figure 5 to enhance MSC
homing. These specific modifications are temporary, but they
are sufficient to improve the MSC homing because transmi-
gration takes place within a few hours after MSC adminis-
tration.'>” Importantly, CD44 is the selectin ligand naturally
expressed on MSCs, whereas HCELL acts as a ligand for
L- and E-selectin, and the hematopoietic stem cells uti-
lize the HCELL ligand for bone marrow homing. Sackstein
et al’¥” converted CD44 to HCELL enzymatically by sugar
modifications allowing MSCs to use L- and E-selectin for
homing toward bone marrow. In the case of a diabetic mouse
model, this modification increased the homing of MSCs to
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pancreatic islets by 3-fold after their intravenous adminis-
tration and reversed the hyperglycemia condition.!*® These
specific modifications of sugar molecules can also occur by
genetic engineering. For example, CD44 to HCELL conver-
sion in MSCs can be triggered by a (1,3)-fucosyltransferase
(FUT6 or FUT7) expression.!3%14!

Another method of cell surface engineering is a direct con-
jugation of the desired ligand on the MSCs surface instead of
modifying surface glycoproteins already present on MSCs. A
platform developed by Sarkar et al'** allows for any ligand
attachment to the surface of MSCs. For coating MSCs in bi-
otin, the group used biotinylated lipid vehicles. In particular,
then streptavidin adaptor was attached, followed by the at-
tachment of biotinylated SleX, which is an active site present
in PSGL-1'* Moreover, Cheng et al'* used an NHS-PEG2-
maleimide linker molecule for E-selectin-binding peptide con-
jugation with MSCs.

Moreover, the attachment of compounds the cell surface of
MSC:s is another popular strategy. For example, the palmityl
group of palmitate protein can act as a cell membrane anchor,
whereas the protein G is the site where antibody attachment
occurs. Lo et al'* used this method for attaching PSGL-1 frag-
ment bound to the tail of IgG, which helped MSCs for rolling
and tethering during shear stress. Further, Ko et al'* attached
anti-intercellular adhesion molecule (ICAM)-1 antibodies
with MSCs by using the same system. This attachment
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Figure 6. Explaining MSCs homing mechanism along with various strategies used for enhancing homing efficiency of MSCs at the target site. This
includes both systemic homing and nonsystemic homing mechanism improvement strategies.
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increased MSCs’ arrest in a flow chamber. The group also at-
tached another antibody VCAM-1 (antivascular cell adhesion
molecule) on the surface of MSCs. This attachment showed a
1.3-fold improved homing efficiency of MSCs in the swollen
lymph node and 1.8-fold higher MSC homing in the colon.'*

Lee et al'*” created bispecific antibodies, where one side
bound to CD44 present on MSCs surface, while the second
side recognized the light chain of myosin (MLC), expressed by
infracted myocardium. The bispecific antibodies bound MSCs
localized specifically to the area of the heart.'”” Similarly,
Gundlach et al'® also created bispecific antibodies with
one part recognizing CD90 present on the surface of MSCs,
while the second end recognized MLC, expressed by ischemic
myocardium. Those bispecific antibodies bound MSCs be-
came attached to the immobilized MLC in vitro. Both these
studies improved the MSCs’ migration to the target tissue by
targeting injury markers.

Previous studies focused mostly on the step of initial
tethering; however, Won et al'*® aimed to optimize the activa-
tion step by cell surface engineering. In almost all the above-
cited studies, cell differentiation, adhesion, proliferation, and
viability of MSCs were unaffected; however, the methods of
engineering cell surfaces are very complex in clinical setting.

Genetic modification of MSC surface receptors

Homing factors can be permanently overexpressed using
viral transduction, mRNA transfection, and MSCs genetic
modification techniques as shown in Figure 4. For example,
the expression of the SDF-1 ligand is enhanced in the is-
chemic myocardium can bind to CXCR4 receptors and hence
enhances the homing of MSCs.!3%5! Therefore, the elevated
expression of CXCR4 in MSCs leads to increased MSC en-
graftment to ischemic myocardium due to enhanced MSC
homing efficiency.**">! Another study reported that the
homing of MSCs to bone marrow in mice was improved with
increased expression of CXCR4 on MSCs."5? Similarly, in the
mouse model of colitis, the homing of MSCs to damaged in-
testinal mucosa also increased with the enhanced expression
of CXCR4 on MSCs.'s? Furthermore, the increase in expres-
sion of CXCR7 on MSCs promoted the homing of MSCs to
injured lung tissue.*® However, in the mouse models of acute
kidney injury, the homing efficiency of MSCs to the kidney
did not change with the increased expression of CXCR4 or
CXCR?7 or both."* The increase in expression of a4-integrin
(VLA-4 integrin component) at the cell arrest stage increased
the homing efficiency of MSCs to the bone marrow.'>
However, in the rat model of stroke, the homing efficiency
of MSCs to the heart was not increased with enhanced ex-
pression of a4-integrin, but harmful cell aggregates formation
decreased.!*®* However, such gene raises safety concerns. For
example, oncogenesis can occur during genetic modifications
in case viral DNA integrates into the tumor suppressor gene.

In contrast, mRNA transfection will result in a transient
protein expression while eliminating the risk of insertional
mutagenesis. Therefore, several studies opted for mRNA
transfection methods instead of the viral transduction. For
example, Levy et al’” used the mRNA transfection method
to improve MSCs tethering. They transfected MSCs with
PSGL-1 and SLeX mRNA, both being ligands for P-selectin
and for E-/L-selectin, respectively. Transfected MSCs showed
increased homing efficiency to inflamed ear and bone marrow
in the mouse experimental model. Similarly, Liao et al'*® also
used the same method for MSC modification. They showed

1n”n

that modified MSCs exhibited increased rolling, adherence,
and homing to the inflamed spinal cord. Ryser et al'*’ used
the mRNA transfection method to transiently overexpress
CXCR4 mRNA in MSCs that resulted in increased migration
of MSCs toward an SDF-1 gradient in vitro. However, Wiche
et al'® applying the same method, have not confirmed these
results. They successfully increased the CXCR4 expression by
mRNA nucleofection, but no improvement in MSCs migra-
tion was observed in vitro. Thus, the authors concluded that
the possible expression of other factors may be crucial for the
activation of MSCs.

Magnetic guidance for MSC targeting

Magnetic guidance is a physical approach used for MSC
targeting as shown in Figure 5. In this approach, the MSCs
are labeled with magnetic particles and then directed to a
target tissue or organ with the help of a magnetic field pro-
vided externally. Arbab et al'®' used particles of iron oxide
for MSCs labeling and then injected them intravenously into
the rats with and without placing the external magnet on
the liver. In those rats that carried external magnets over the
liver, MSCs moved deeper into the parenchyma of the liver.
In contrast, in rats that did not wear magnets during MSCs
targeting, MSCs were present around the portal triad. Thus,
external magnet-wearing rats demonstrated 2-fold increase
in the number of iron oxide-labeled MSCs in their liver. As
a limitation, this study has not investigated which steps of
MSCs’ homing mechanism were involved.

Further, Kobayashi et al'® treated osteochondral defects
in knee joints with magnetically labeled MSCs in an ex vivo
system by using an external magnetic field. In 2012, Yanai
et al'®® placed the external magnet within the rat orbit and
targeted magnetically labeled MSCs to the retina of rats
by both intravenous or intravitreal administration. A high
level of growth factors and anti-inflammatory molecules
was present in the retina of rats with external magnets as
compared to the animal group without external magnets.
Thus, the authors concluded that magnetic guidance showed
a very beneficial therapeutic effect. Since then, a lot of re-
search has been performed to explore various types of mag-
netic particles, which may affect MSC differentiation, gene
expression, proliferation, and viability.'** Importantly, so far,
no harmful effects of magnetic labeling on the functions of
MSCs were observed.!¢%166

Conclusion and perspectives

In conclusion, MSCs hold significant promise in regenerative
medicine due to their multipotent nature and ability to pro-
mote tissue healing. The natural homing mechanism of MSCs,
as well as their capacity to home to injured tissues following
allogenic transplantation, forms the basis for their thera-
peutic potential. However, attracting MSCs to the specific site
of injury remains a major challenge. To optimize the homing
mechanism of MSCs, various strategies have been developed.
These include targeted stem cell administration, target tissue
modification, in vitro priming, cell surface engineering, ge-
netic modifications, magnetic guidance, and radiotherapeutic
techniques. The majority of techniques as shown in Figure 6
are focused on systemic homing. These approaches improve
the migration and localization of MSCs to the injury site,
thereby enhancing their regenerative properties. By under-
standing the molecular pathways involved in MSC homing
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and utilizing these strategies, researchers can enhance the
therapeutic efficacy of MSC-based therapies. Precisely guiding
MSCs to the injury site will facilitate their interaction with
the damaged tissue, promoting tissue repair and regeneration.

The homing mechanisms of MSCs are poorly understood
over several stages, including tethering, transmigration, and
migration. It is also not clearly demonstrated which of these
stages has a key role in MSC homing and thus, it is the most
crucial for future research. Each strategy has its own set of
disadvantages. Depending upon the tissue, targeted admin-
istration could not be possible or could be extremely inva-
sive. The majority of MSC modifications do not inhibit them
from spreading to nontargeted tissues. Modification of target
tissue through genetic or chemical means increases the safety
concerns. Such constraints pose a serious challenge to their
use in clinics. Although it is still a work in progress, ultra-
sound usage to enhance the homing of MSCs appears to be a
promising opportunity, with easy targeting for both the deep
and the superficial tissues and, as far as we know, no consid-
erable safety concerns.

Although several surface markers and integrins as well as
their role in the process of homing are well described, there
are still additional limitations for MSCs-based therapies. For
example, senescence may occur as a negative effect of inten-
sive cell culture expansion of MSCs, which is required for
clinical applications, and it reduces the therapeutic impact.'®’
Further, MSCs were thought to be immune privileged; how-
ever, several studies have revealed that MScs may experience
immune rejection as a result of HLA mismatches.!*%!%° Finally,
MSCs used in clinical trials are nearly always freshly thawed;
however, cryopreservation tends to reduce MSCs’ immuno-
suppressive characteristics and limit their in vivo survival."”
These differences may yield conflicting outcomes in both
basic research and clinical trials. Therefore, understanding
the fundamental processes that underlie MSC biology is cru-
cial for further improvements. Such studies will continue to
advance the area of cell-based treatments, enhancing the ther-
apeutic efficacy of MSC transplantation across a wide range
of applications, from immune regulation to regeneration.

A major obstacle is to currently attract MSCs to the injury site
where they are required in regenerative medicine. This MSCs’
homing to injury site can be enhanced by various strategies
to bring advancement in the field of regenerative medicine as
summarized in Table 2. We described the molecular pathways
involved in the homing of MSCs and different strategies for
optimizing homing, which include targeted stem cell adminis-
tration, target tissue modification, in vitro priming, cell surface
engineering, genetic modifications, and magnetic guidance. We
believe that all these strategies enhance MSC homing to target
sites; however, every strategy has its limitations that need to
be considered while using that strategy for improving MSC
homing. The currently available technological advances allow
to attract MSCs precisely to the injury site and hence improve
their migration and local tissue repair properties.
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