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Dravet syndrome—A paradigmatic developmental and epileptic

encephalopathy moving toward precision medicine

In 1978, the causes of most severe childhood epilepsies were entirely unknown, and any ability

to systematically apply massive parallel sequencing to understand the underlying etiologies

was still in the far future, while targeted therapy for a genetically defined epilepsy was at best a

fantasy. During this period, Charlotte Dravet and collaborators first described a distinct epi-

lepsy syndrome characterized by fever-induced seizures, generalized features on electroen-

cephalography, and developmental plateauing starting in the second year of life, a condition

initially called Severe Myoclonic Epilepsy of Infancy [1]. Fast forward 40 years and the condi-

tion now referred to as Dravet syndrome represents one of the most common developmental

and epileptic encephalopathies with an estimated frequency of 1:15,000 [2]. Disease-causing

variants in SCN1A are identified in up to 80% of individuals with clinical Dravet syndrome,

and hundreds of individuals are diagnosed every year. SCN1A encodes a voltage-gated sodium

channel subunit that is critical for neuronal function, specifically the function of GABAergic

interneurons. While Dravet syndrome represent the main clinical phenotype for SCN1A-

related disorders, milder clinical presentations are known that are typically seen in families

[3]. This group of fever-associated epilepsies is usually referred to as Genetic Epilepsy with

Febrile Seizures Plus (GEFS+). Developing novel therapeutic strategies for Dravet syndrome

represents an active field of research, and novel anti-seizure medications including cannabidiol

and fenfluramine were specifically introduced through systematic studies in Dravet syndrome

[4,5].

Poison exons are common in epilepsy genes and represent novel

therapeutic targets

Haploinsufficiency is the generally accepted disease mechanism in Dravet syndrome, and until

2 years ago, no strategies were available to affect this primary disease mechanism. Two findings

have revolutionized the current understanding of SCN1A-related disorders. First, noncoding

de novo variants in highly conserved intronic regions of SCN1A were found in individuals

with Dravet syndrome [6]. This conserved intronic region was found to contain a poison

exon, and the de novo variants were shown to result in increased poison exon inclusion. In

addition, the systematic analysis of SCN1A gene expression identified physiological
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nonproductive splicing events that could subsequently be reduced through specifically

designed antisense oligonucleotides (ASO) [7]. This mechanism can be exploited therapeuti-

cally, and this strategy is currently implemented through a novel therapeutic method that tar-

gets these nonproductive splicing events. This method, referred to as Targeted Augmentation

of Nuclear Gene Output (TANGO), resulted in restoration of SCN1A expression in a Dravet

mouse model with a reduction of seizures and Sudden Unexpected Death in Epilepsy

(SUDEP) [7]. This novel technology is currently moving to clinical trials. Nonproductive alter-

native splicing has also been identified in a total of more than 1,200 disease-associated human

genes, including known genes for developmental and epileptic encephalopathies (DEE) such

as SYNGAP1, SCN2A, or SCN8A [8]. Therefore, these strategies might result in a broad range

of novel therapeutic strategies. The underlying mechanism of these poison exons is intriguing.

Alternative exons containing a premature termination codon are extremely common, and

with up to 30% of all human genes with poison exons, they appear to be the norm rather than

the exception [9]. This raises the question with regards to their physiological function and

their role during normal development.

A mouse model due to an SCN1A poison exon mutation replicates

features of Dravet syndrome

In the study by Voskobiynyk and colleagues [10], the authors provide a deep dive into regula-

tion of SCN1A through poison exons. The SCN1A gene contains the naturally occurring poi-

son exon 20N, and inclusion of this exon results in nonproductive splicing and nonsense-

mediated RNA decay, effectively reducing the amount of Nav1.1-containing sodium channels

made available to neurons. The authors characterize a Dravet syndrome mouse model with a

poison exon mutation resulting in aberrant Scn1a regulation. The specific disease-causing poi-

son exon variant was previously identified in a patient with Dravet syndrome reported by Car-

vill and colleagues [6]. Voskobiynyk and colleagues observe premature mortality, seizures, and

behavioral findings, suggesting that the mouse model replicated some of the clinical features of

Dravet syndrome. This mouse model provides support for the inference that the inclusion of a

poison exon is a mechanism of Dravet syndrome and could represent a valuable tool for future

attempts to develop methods to manipulate poison exon inclusion/exclusion to modulate Dra-

vet syndrome pathology in a preclinical system. The most fascinating aspect of their publica-

tion is the analysis of gene expression in this model system, comparing expression of wild-type

exon 20N and exon 20N carrying the disease-causing noncoding variant. While only approxi-

mately 1% of Scn1a transcripts carry poison exon 20N in wild type, this ratio is increased

5-fold in animals with the poison-exon mutation. This increase in poison exon inclusion alone

resulted in a decrease of Scn1a mRNA to 50%, resulting in a reduced gene expression known

to occur in Dravet syndrome. The presence of poison exons hints at complex underlying regu-

latory mechanisms that remain unknown to date and that may represent a promising avenue

of future research.

Persistent poison exon inclusion results in aberrant fetal

expression patterns

Voskobiynyk and colleagues [10] then proceed to assess poison exon inclusion and found that

up to 70% of SCN1A transcripts included exon 20N during embryonal development, which

decreased over time to 10% postnatally. This suggests that poison exon inclusion is not just an

epiphenomenon, but an active regulatory process to suppress SCN1A expression during early

development. Poison exon inclusion during normal development then decreases successively

postnatally (Fig 1). This allows SCN1A expression to be released from the poison exon-
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mediated shutdown. Therefore, mutations resulting in increased poison exon inclusion do not

create an entirely novel transcriptional scenario. Poison exon mutations maintain the embryo-

nal pattern of SCN1A regulation, a disease mechanism that could best be referred to as “persis-

tent poison exon inclusion.” In fact, the authors also find a similar pattern of poison exon

inclusion for SCN8A, a gene also strongly associated with DEE. This indicated that poison

exon regulation may be a common feature regulating genes for neurodevelopmental disorders

where the precise timing of gene expression is important.

A paradigm change in genetic epilepsies from genes to transcripts

Where does the study by Voskobiynyk and colleagues leave us? In the past, understanding the

basis of genetic causes for epilepsies and neurodevelopmental disorder was considered a ques-

tion of genomics. Massive parallel sequencing approaches allow up to 30% of DEE to be

explained through genetic causes, and the number of known disease genes is increasing

steadily. However, as in cancer genomics, it is reasonable to expect a paradigm shift from

genes to transcripts. A large number of genes are recognized to contain appreciable amounts

of nonproductive alternative splicing through poison exons. Therefore, conceptualizing dis-

ease-causing variation as “transcript issues” rather than “gene issues” will enable us to explore

the utility of gene regulation approaches in more detail. Many disease-associated genes possess

Fig 1. Reduced Scn1a expression postnatally due to an exon 20N mutation in a novel mouse model of Dravet syndrome. Introduction of a

noncoding de novo variant identified in a human patient into a mouse model replicated the phenotype of SCN1A-related Dravet syndrome. The

reduction of SCN1A expression is due to persistent expression of SCN1A exon 20N, a “poison exon” resulting in nonproductive splicing. Exon 20N

expression is high during embryonal development and leads to suppression of SCN1A expression. The noncoding mutation maintains the

embryonic pattern of exon 20N expression, resulting in reduction of SCN1A transcript.

https://doi.org/10.1371/journal.pgen.1009214.g001
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inherent regulatory mechanisms that may provide new targets to restore physiological levels of

gene expression. Understanding how these mechanisms change in age-dependent patterns will

help identify novel interventional strategies—and the required timing for such interventions—

for conditions that are currently still largely treated symptomatically.
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