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SHORT COMMUNICATION

Tracking single baculovirus retrograde 
transportation in host cell via quantum 
dot‑labeling of virus internal component
Li Wen1, Zhen‑Hua Zheng2, An‑An Liu1, Cheng Lv1, Li‑Juan Zhang1, Jian Ao1, Zhi‑Ling Zhang1, 
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Abstract 

Background:  Quantum dot (QD)-based single virus tracking has become a powerful tool for dissecting virus infec‑
tion mechanism. However, only virus behaviors at the early stage of retrograde trafficking have been dynamically 
tracked so far. Monitoring of comprehensive virus retrograde transportation remains a challenge.

Results:  Based on the superior fluorescence properties of QDs and their labeling of virus internal component, the 
dynamic interactions between baculoviruses and all key transportation-related cellular structures, including vesicles, 
acidic endosomes, actins, nuclear pores and nuclei, were visualized at the single-virus level. Detailed scenarios and 
dynamic information were provided for these critical interaction processes.

Conclusions:  A comprehensive model of baculovirus retrograde trafficking involving virus endocytosis, fusion with 
acidic endosome, translocation to nuclear periphery, internalization into nucleus, and arriving at the destination in 
nucleus was proposed. Thus the whole retrograde transportation of baculovirus in live host cells was elucidated at the 
single-virus level for the first time.
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Background
Dissection of virus-cell interactions is of great signifi-
cance for the prevention of virus-related diseases [1, 
2]. As the prerequisite for infection, the movements of 
viruses from cell surface to nucleus, the so-called retro-
grade transportation, has aroused extensive attention 
in past decades [3–5]. Recently, owing to the superior 
brightness and stability of quantum dots (QDs) [6], QD-
based single virus tracking (SVT) has become a power-
ful tool for investigating infection dynamics of viruses at 
the single-virus level by providing in  situ and real-time 
evidences [7–11]. To date, by employing SVT based on 

QD-labeling of virus external envelope, information on 
the early stages of virus retrograde transportation has 
been provided [6–9]. However, since virus envelope 
would dissociate during virus fusion with acidic endo-
some, only the behaviors of viruses before the fusion 
have been dynamically tracked so far. The visualization of 
comprehensive virus retrograde trafficking, consisting of 
infection events both before and after the fusion, remains 
a challenge.

SVT via QD-labeling of virus internal component can 
be one perfect option. We have proposed a mild approach 
for preparing recombinant baculovirus (RBV) with QDs 
labeled capsid (QDs-RBV) [11]. By infecting host Spo-
doptera frugiperda 9 (Sf9) cells with recombinant bac-
mids, RBV with biotinylated capsid was obtained and 
subsequently labeled with streptavidin conjugated QDs. 
Herein, based on the superior properties of QDs [6], 
baculovirus retrograde transportation in host Sf9 cells 
was monitored at the single-virus level. Moreover, via 
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QD-labeling of virus internal component, combined with 
drug inhibition assays, individual QDs-RBV interacting 
with all the suspectable retrograde transportation-related 
cellular structures [12] was dynamically tracked in real 
time. Thus detailed elucidation of the whole retrograde 
journey of single baculovirus infection was enabled.

Methods
Cell culture and QDs‑RBV preparation
Sf9 cells were cultured at 28  °C in Grace’s medium sup-
plemented with 10% (v/v) fetal bovine serum (Gibco). 
QDs-RBVs were prepared as in our previous report [11]. 
Briefly, RBVs with internal biotinylated capsids were pro-
duced by infecting Sf9 cells with recombinant bacmids. 
RBV stock was amplified by infecting Sf9 cells with RBVs 
at a multiplicity of infection (MOI) of 1. Then RBVs 
were incubated with 2  nM of streptavidin conjugated 
CdSexTe1−x QDs (SA-QDs, Wuhan Jiayuan Quantum 
Dots Co., Ltd.) for 0.5  h at 4  °C. QDs-RBVs were puri-
fied with sucrose density gradient ultracentrifugation. 
Afterwards, QDs-RBVs were diluted in PBS and filtered 
through a 0.45 μm film (Millipore). Wild type baculovi-
ruses (WBVs) operated in the same procedures served as 
control.

Transmission electron microscopy (TEM) imaging
Fifteen microliter virus solutions were laid on carbon-
coated copper grids for 10  min adsorption. The cop-
per grids were placed in a freeze-dryer to remove all the 
water. Hitachi H-7000 FA transmission electron micro-
scope was used for examining the viruses at 200 kV.

Colocalization assays
Sf9 cells cultured overnight were incubated with QDs-
RBVs at a MOI = 5 for 10 min at 4  °C, followed by the 
fixation with 4% paraformaldehyde for 25  min at room 
temperature. Anti-VP39 antibody (1:2000, Biosciences) 
or anti-GP64 antibody (1:2000, Biosciences) was added to 
the cells for 1 h incubation at 37 °C. The cells were then 
washed with PBS and incubated with dylight 649-conju-
gated secondary antibody (Thermo) for 45 min at 37 °C. 
After PBS washing as above, the cells were used for colo-
calization analysis. WBV operated in the same procedure 
served as the controls.

Fluorescence labeling of cellular structures
Sf9 cells cultured overnight were treated with 5  μg/
mL CellMask, 5  μg/mL LysoTracker Green or 5  μg/
mL Hoechst 33342 (Invitrogen) to label the cytomem-
branes, acidic endosomes or nuclei, respectively. For 
the labeling of actins or nuclear pore complexes (NPC), 
Sf9 cells were incubated with 4% paraformaldehyde and 
0.1% Triton X-100, followed by the addition of 5 μg/mL 

Phalloidin-FITC (Invitrogen) to label actins or anti-NPC 
antibody (Covance) and dylight 649-conjugated second-
ary antibody (Abbkine) to label NPC.

Cytotoxicity assays
Sf9 cells were inoculated into a 96-well for a stationary 
culture. Fresh medium containing 1, 2.5, 5, 10, 20  μg/
mL of Hoechst 33342 were added for 90 min incubation, 
respectively. For cytotoxicity assays of Hoechst 33342 
at the working concentration (5  μg/mL), fresh medium 
containing 5  μg/mL of Hoechst 33342 were added for 
10, 20, 40, 60, 90, 120 min incubation, respectively. Fresh 
medium containing no Hoechst 33342 served as con-
trol. Then MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolium bromide] solution (0.5 mg/mL) was added 
for 4 h incubation. The solutions were changed into 120 
μL of DMSO for 5 min incubation. OD value was meas-
ured at the wavelength of 570 nm. Cell viability was cal-
culated by this formula: (ODtreated/ODcontrol) × 100%.

Drug inhibition assays and microinjection
Hundred nanomolar Bafilomycin A1, 10 μg/mL Cytocha-
lasin D or 10 μM Nocodazole (Sigma) were used in drug 
inhibition assays. The supernatants extracted from the 
drug treated cells at 60 h postinfection were collected for 
the determination of virus titers with 50% tissue culture 
infective dose (TCID50) assays [13]. Thus the yields of 
the propagated baculovirus were measured. An Eppen-
dorf FemtoJet injection system (Eppendorf AG) was used 
for microinjecting 0.5 mg/mL FITC labeled wheat germ 
agglutinin (FITC-WGA) (AMSBIO LLC).

Fluorescence imaging and data analysis
Fluorescence signals were detected under the 100× 
objective of a spinning-disk confocal microscope (Andor 
Revolution XD) equipped with an EMCCD (Andor iXon 
DV885 K). Hoechst 33342, 605 nm SA-QDs and Dylight 
649 were excited with 405, 561 and 640  nm laser and 
detected using 447/60, 605/20 and 685/40  nm filter, 
respectively. CellMask/LysoTracker Green/FITC were 
excited with 488  nm and detected using 525/50  nm fil-
ter. For real-time tracking, the images were recorded with 
a frame interval of 2 s, an exposure time of 500 ms and 
a readout time of 17.8  ms. The interactions of viruses 
with vesicles, acidic endosomes, actins and nuclei were 
imaged at 0, 12, 25 and 45 min after virus adding and cell 
staining, respectively. A stage here means that viruses 
were interacting with one kind of cellular structures such 
as vesicles, acidic endosomes, actins and nuclei. For each 
stage, at least three parallel tracking experiments were 
conducted, each of which was carried out by preparing 
a confocal dish containing cells and viruses for imag-
ing with the same manipulation. Typically, 30 individual 
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trajectories (length  >  15  min) from these dishes were 
analyzed for each stage.

Line profiles [4] (indicating the dependence of dual-
channel signals distributed on the circle) were analyzed 
with Imaging-Pro-Plus (IPP). Image J was used for calcu-
lating Manders coefficients tMr and tMg, and intensity 
correlation quotient (ICQ) [4] values from at least 800 
viruses. ICQ value ranging from 0.1 to 0.5 indicates a 
strong covariance of the dual-channel signals.

For the calculation of fit parameters, the trajectories of 
QDs-RBVs were analyzed with IPP to obtain positions 
and velocities [14]. Time averaged mean square displace-
ment (MSD) curves that correspond to single trajecto-
ries [15] were calculated by the user-written program 
with Matlab based on virus positions [16]. The obtained 
MSD (y-axis) and the corresponding time (x-axis) were 
subsequently imported to Origin for fitting based on the 
equations MSD = 4Dτ + (V τ )2 + constant (indicating a 
directed movement) or MSD = 4Dτα + constant (indi-
cating an anomalous diffusion movement). D and V are 
the diffusion coefficient and the fitting velocity respec-
tively. τ represents time. α is an exponent (α < 1) [17]. For 
each fit parameter, values obtained from 30 individual 
trajectories were used for the calculation of mean ± S.D. 
with Origin.

Results and discussion
Characterization of QDs‑RBV
QDs-RBV (Fig.  1a) was prepared as in our previous 
report [11] (see also the “Methods”). QDs-RBV can be 
easily obtained by incubating RBV with SA-QDs, prob-
ably because the internal capsid would be partially 
exposed with the loss of some loose envelope during 
virus purification with ultracentrifugation [18, 19]. More-
over, the infectivity of viruses was maintained during the 
labeling and subsequent purification processes [11]. As 
shown in Fig. 1b, no obvious difference was observed in 
the emission spectra of QDs-RBVs and QDs, indicating 
that the labeling of RBVs did not affect the fluorescence 
properties of QDs. TEM images showed that for QDs-
RBVs, QDs appeared around RBVs (Fig. 1c). On the con-
trary, no QD was found with WBVs (Fig. 1d), suggesting 
that QDs were attached only to RBVs. To evaluate the 
labeling efficiency and virus integrity after the labeling, 
QDs-RBVs were added to Sf9 cells for attachment and 
subsequently immunolabeled on baculovirus capsid pro-
tein VP39 or envelope protein GP64. As shown in Fig. 1e, 
h, QD signals colocalized with the immunofluorescence 
of both VP39 and GP64. In contrast, QD signals were not 
observed in the control. The corresponding line profiles 
[4] showed that the dual-channel signals from QDs-RBVs 
closely related to each other (Fig.  1f, i), further prov-
ing the binding of QDs to RBVs. The colocalization also 

implied that QDs-RBV maintained both its envelope and 
capsid. According to the quantitative analysis [4] (see also 
the Methods), a high QD-labeling efficiency of ca. 93% 
was obtained (Fig. 1g, j).

Dynamic interaction between QDs‑RBVs and vesicles
SVT was employed to explore QDs-RBV retrograde 
transportation in host cells. Firstly, Sf9 cells were 
infected with QDs-RBVs and labeled with CellMask 
(a cytomembrane dye). As shown in Fig.  2a, signals of 
QDs-RBVs were circled by those of cytomembrane, 
indicating that QDs-RBVs could be effectively internal-
ized into Sf9 cells. Based on immunological [20] and 
inhibition assays [21], baculovirus would undergo cell 
uptake through endocytosis. By analyzing and segment-
ing 30 valid trajectories of virus internalization [22, 23], 
it was found that single QDs-RBV typically experienced 
three internalization steps (Fig.  2b): being trapped into 
a vesicle formed from cytomembrane for 60 ± 6 s (step 
1), moving towards cell interior for 40  ±  4  s (step 2) 
and fusing with another intracellular vesicle containing 
virus for 50 s ± 6 s (step 3). According to MSD vs time 
curves and velocity vs time curves of the trajectories, 
as well as the statistics of the fit parameters [14, 22] in 
each step (Fig. 2c, d; Additional file 1: Fig. S1), QDs-RBV 
experienced a slow and anomalous diffusion movement 
with D of 0.0030 ±  0.0008  μm2/s and α of 0.71 ±  0.09 
in step 1 (black), travelled fast and directly with D of 
0.011 ± 0.002 μm2/s and V of 0.072 ± 0.010 μm/s in step 
2 (red), then moved with a slow and anomalous diffusion 
motion mode again with D of 0.0021 ± 0.0004 μm2/s and 
α of 0.52 ± 0.08 in step 3 (blue). The directed motion seg-
ments (step 2) started at 60 ± 6 s and ended at 100 ± 4 s. 
Thus, the endocytosis mechanism of baculovirus was 
detailedly dissected and confirmed. Moreover, the vesi-
cle–vesicle fusion hypothesis based on conventional 
transmission electron microscopy (TEM) technique [8] 
was verified by the observed three steps of endocytosis.

Dynamic interaction between QDs‑RBVs and acidic 
endosomes
Live Sf9 cells labeled by LysoTracker Green (an acidic 
endosome dye) were infected with QDs-RBVs for SVT. 
Figure  3a showed that most signals of QDs-RBVs over-
lapped with those of acidic endosomes, indicating that 
baculovirus entered acidic endosomes. Typical time-
lapse images showed single QDs-RBV moving to and col-
liding with an acidic endosome (Fig. 3b; Additional file 1: 
Fig. S2a). By analyzing 30 valid trajectories, it was found 
that QDs-RBV travelled fast and directly to acidic endo-
some for 36 ± 4 s with D of 0.0083 ± 0.0008 μm2/s and V 
of 0.062 ± 0.009 μm/s (red), and then collided with acidic 
endosome in a slow and anomalous diffusion manner 
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for 36 ±  6  s with D of 0.0013 ±  0.0003 μm2/s and α of 
0.62 ± 0.07 (blue) (Fig. 3c, d; Additional file 1: Fig. S2b–
S2g). Thus direct evidence for baculovirus fusion with 
acidic endosome after the endocytosis [24] was provided.

Live Sf9 cells treated or untreated with Bafilomycin 
A1 (a drug prevents the formation of acidic endosomes) 
were infected by QDs-RBVs. As shown in Fig. 3e, f  and 
Additional file  1: Fig. S2h–S2m, compared with the 
fast and directed motion mode of QDs-RBV with D of 
0.014 ± 0.004 μm2/s and V of 0.11 ± 0.03 μm/s (n = 30) 

in the untreated cells (red), QDs-RBV in the treated cells 
experienced a slow and anomalous diffusion movement 
with D of 0.0024 ±  0.0003  μm2/s and α of 0.51 ±  0.08 
(n  =  30) (blue). Moreover, the yield of baculoviruses 
propagated in the treated cells significantly decreased 
compared to that in the control (Fig. 3g). Thus combining 
SVT and drug inhibition assays, it is proved that the for-
mation of acidic endosomes and their fusion with bacu-
lovirus were the prerequisites for baculovirus retrograde 
transportation.

Fig. 1  Characterization of QDs-RBV. a Scheme of QDs-RBV. b Fluorescence emission spectra of QDs and QDs-RBVs. TEM images of QDs-RBVs (c) and 
WBVs incubated with SA-QDs (d).  Fluorescence colocalization of QDs with immunolabeled VP39 (e) and immunolabeled GP64 (h) of QDs-RBVs 
attached to Sf9 cell. Control: WBVs incubated with SA-QDs. f, i Line profiles of the red and green signals distributed on the white circles shown in e 
and h, respectively. g, j Histograms for Manders coefficients tMr and tMg, and ICQ values corresponding to e and h, respectively



Page 5 of 10Wen et al. J Nanobiotechnol  (2017) 15:37 

Interaction between QDs‑RBVs and actins
Sf9 cells infected by QDs-RBVs were fixed and permea-
bilized before incubating with cell-impermeable actin 
dye Phalloidin-FITC owing to the lack of cell-permeable 
dyes for labeling actins in live cells. Remarkably, most sig-
nals of QDs-RBVs were closely adjacent to those of actins 
(Fig. 4a; Additional file 1: Fig. S3a), which illustrated bac-
uloviruses being trailed by actin tails during intracellular 
movement. According to previous virology studies [25, 
26], after the fusion with acidic endosomes, baculovi-
ruses could induce the disruption and rearrangement of 
the continuous filamentous actins to form tail-like actin 
structures, which subsequently drive baculovirus to the 

perinuclear region. Thus the postfusion infection event 
was verified at the single-virus level.

Live Sf9 cells treated or untreated with Cytochalasin 
D (an actin-polymerization inhibitor) were also infected 
with QDs-RBVs. As shown in Fig.  4b, c and Additional 
file 1: Fig. S3b–S3g, QDs-RBV moved rapidly and directly 
with D of 0.015 ± 0.004 μm2/s and V of 0.12 ± 0.03 μm/s 
(n = 30) in the untreated cells (red), whereas QDs-RBV 
experienced a slow and anomalous diffusion movement 
with D of 0.0023 ±  0.0005  μm2/s and α of 0.63 ±  0.08 
(n  =  30) in the treated cells (blue). Moreover, Fig.  4d 
showed that the yield of baculoviruses propagated in 
Nocodazole (a microtubule-depolymerization drug) 

Fig. 2  Dynamic interaction between QDs-RBVs and vesicles. a Fluorescence images of QDs-RBVs internalized into Sf9 cells with CellMask-
labeled cytomembrane. b Typical time-lapse images of the circled QDs-RBV (red) entering into a Sf9 cell together with CellMask-labeled 
vesicles (green). Velocity vs time plots (c) and MSD vs time plots (d) of the circled QDs-RBV shown in b. The red curve in d is the fit to 
MSD = 4Dτ + (Vτ)2 + constant. Both the black and the blue lines in d are the fits to MSD = 4Dτα + constant
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treated cells was as high as that in the control. In con-
trast, disturbing actin polymerization significantly 
influenced baculovirus propagation. All these results 

confirmed that, although most viruses take microtubules 
as their highways for transportation [9, 27], baculovirus 
trafficking towards perinuclear region depends on actin.

Fig. 3  Dynamic interaction between QDs-RBVs and acidic endosomes. a Fluorescence images of QDs-RBVs, LysoTracker Green labeled acidic 
endosomes, and their merge (arrows) in Sf9 cells. b Typical time-lapse images of a QDs-RBV (red) entering into an acidic endosome (green). Veloc‑
ity vs time plots (c) and MSD vs time plots (d) corresponding to b. The red curve and blue line in d is the fit to MSD = 4Dτ + (Vτ)2 + constant 
and MSD = 4Dτα + constant, respectively. Typical velocity vs time plots (e) and MSD vs time plots (f) of the QDs-RBVs in Sf9 cells with (blue) and 
without (red) Bafilomycin A1 treatment. The red curve and blue line in f is the fit to MSD = 4Dτ + (Vτ)2 + constant and MSD = 4Dτα + constant, 
respectively. g Histograms for the yields of baculoviruses propagated in Sf9 cells without or with Bafilomycin A1 treatment
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Interaction between QDs‑RBVs and nucleus
The nuclei of live Sf9 cells were labeled with Hoe-
chst 33342 for imaging. No obvious cytotoxicity was 
observed by the incubation of Hoechst 33342 with dif-
ferent incubation concentration (Additional file  1: Fig. 
S4a) or different incubation time (Additional file  1: 
Fig. S4b). Abundant immunofluorescence of NPC 
was observed around nucleus (Fig.  5a), implying that 
nuclear pores vastly distributed on nuclear membranes 
and might play an essential role in baculovirus nuclear 
import. Moreover, while some QDs-RBVs were in the 
nucleus (white arrows), other QDs-RBVs colocalized 
with NPC (green arrows), suggesting that baculoviruses 
entered into nucleus through their interactions with 
nuclear pores. This is in accordance with previous TEM 
images of baculoviruses docking on nuclear pores [28]. 
Subsequently, Sf9 cells were microinjected with FITC-
WGA. Results showed that the distribution of FITC-
WGA around nucleus (Fig.  5b) was similar to that of 

NPC (Fig.  5a), indicating that WGA bound to nuclear 
pores and thus blocked the access to nucleus [29]. Fig. 5b 
also showed that no QDs-RBV was internalized into the 
nucleus of WGA-microinjected cell. On the contrary, 
without WGA microinjection, QDs-RBVs entered into 
the nucleus (the control), further proving that baculo-
viruses take nuclear pores as the channels for nuclear 
import [30].

Previously, we have found that baculovirus moved 
directly and slowly in the nucleus after nuclear entry 
[11]. However, destination of the intranuclear baculovi-
ruses remains unclear. Notably, most intranuclear QDs-
RBVs were found in the non-nucleic acids area (Fig. 5c). 
It was found that QDs-RBVs in this area moved with 
an anomalous diffusion and slow motion mode with D 
of 0.0022 ± 0.0006 μm2/s and α of 0.81 ± 0.04 (n = 30) 
(Fig. 5d, e; Additional file 1: Fig. S4c–S4f), indicating that 
this region might be the terminal of baculovirus retro-
grade transportation.

Fig. 4  Interaction between QDs-RBVs and actins. a Fluorescence images of QDs-RBVs, phalloidin-FITC labeled actins and their merge (arrows) in Sf9 
cells. Typical velocity vs time plots (b) and MSD vs time plots (c) of the QDs-RBVs in Sf9 cells with (blue) and without (red) cytochalasin D treatment. 
The red curve and blue line in c is the fit to MSD = 4Dτ + (Vτ)2 + constant and MSD = 4Dτα + constant, respectively. d Histograms for the yields 
of baculoviruses propagated in untreated, nocodazole-treated and cytochalasin D-treated Sf9 cells
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Comprehensive retrograde transportation model 
of baculovirus
Thus the comprehensive retrograde trafficking of bacu-
lovirus is dissected at the single-virus level based on the 
QD-labeling of baculovirus internal component and the 
SVT (Fig.  6): virus being endocytosed into cell by vesi-
cle trapping and vesicle–vesicle fusion, moving towards 
and fusing with acidic endosome for the release in cyto-
plasm, being driven by actin tails towards nuclear periph-
ery, translocating into nucleus through nuclear pore, and 
arriving at the destination of retrograde transportation 
finally.

Conclusions
By employing SVT and QD-labeling of virus internal 
component, combined with drug inhibition assays, ret-
rograde transportation of individual baculovirus in host 
cells was dynamically tracked in real time. By analyzing 
the behaviors of individual baculovirus interacting with 
key related cellular structures including vesicles, acidic 
endosomes, actins, nuclear pores and nuclei, critical 
infection events both before and after the fusion were 
dissected. These results provide detailed scenarios and 
dynamic insights into baculovirus infection. More impor-
tantly, this is the first time that the whole retrograde 

Fig. 5  Interaction between QDs-RBVs and nucleus. a Fluorescence images of QDs-RBVs, immunolabeled NPC, Hoechst 33342-labeled nucleus and 
their merge in Sf9 cells. b Fluorescence images of QDs-RBVs in Sf9 cell microinjected with or without (the control) FITC-WGA. c Fluorescence images 
of QDs-RBVs confined in the non-nucleic acids area (white-line defined) of nucleus. Typical velocity vs time plots (d) and MSD vs time plots (e) of the 
arrowed QDs-RBVs shown in c. The curve in e is the fit to MSD = 4Dτα + constant
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transportation of baculovirus is visualized at the single-
virus level. Thus deeper understanding of baculovirus 
trafficking and virus-cell interaction was enabled.
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