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Background: Bilateral cerebral palsy (BCP) is the most common type of CP in children
and is often accompanied by different degrees of communication impairment. Several
studies have attempted to identify children at high risk for communication impairment.
However, most prediction factors are qualitative and subjective and may be influenced
by rater bias. Individualized objective diagnostic and/or prediction methods are still
lacking, and an effective method is urgently needed to guide clinical diagnosis and
treatment. The aim of this study is to develop and validate an objective, individual-based
model for the prediction of communication impairment in children with BCP by the time
they enter school.

Methods: A multicenter prospective cohort study will be conducted in four Chinese
hospitals. A total of 178 children with BCP will undergo advanced brain magnetic
resonance imaging (MRI) at baseline (corrected age, before the age of 2 years).
At school entry, communication performance will be assessed by a communication
function classification system (CFCS). Three-quarters of children with BCP will be
allocated as a training cohort, whereas the remaining children will be allocated as a
test cohort. Multivariate lesion- and connectome-based approaches, which have shown
good predictive ability of language performance in stroke patients, will be applied to
extract features from MR images for each child with BCP. Multiple machine learning
models using extracted features to predict communication impairment for each child
with BCP will be constructed using data from the training cohort and externally validated
using data from the test cohort. Prediction accuracy across models in the test cohort
will be statistically compared.
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Discussion: The findings of the study may lead to the development of several
translational tools that can individually predict communication impairment in children
newly diagnosed with BCP to ensure that these children receive early, targeted
therapeutic intervention before they begin school.

Trial registration: The study has been registered with the Chinese Clinical Trial Registry
(ChiCTR2100049497).

Keywords: cerebral palsy, children, magnetic resonance imaging, prediction, communication

INTRODUCTION

Cerebral palsy (CP) is the most common physical disability in
childhood and occurs in 2–3 per 1,000 live births (Patel et al.,
2020). Recently, the majority of individuals with CP achieve a life
expectancy close to that of the general population. Clinical and
research interests now focus on improving the ability of children
with CP to perform activities of daily living and socially interact.
Communication plays an integral role in people’s daily activities
and social participation, yet only a few studies have examined
the prevalence and features of communication impairment
in children with CP (Mei et al., 2016; Kristoffersson et al.,
2020). Communication (receptive and/or expressive language)
impairments are common comorbidities in patients with CP, with
a prevalence ranging from 46 to 78% (Coleman et al., 2015, 2016;
Mei et al., 2016; Kristoffersson et al., 2020). Communication
problems result in poor prospects of engagement and social
participation in children with CP across a range of activities,
including self-development, social functioning, and learning
(Pennington et al., 2019; Vaillant et al., 2020). Particularly by the
time these children enter school, communication skills greatly
impact school readiness, which affects later social and academic
success as well as economic and health outcomes (High, 2008).

Language development from birth to 2 years, when brain
plasticity is at its greatest, presents multiple opportunities
for intervention (Chorna et al., 2017). During this period,
language perception (receptive) and production (expressive) are
accompanied by the development of cortical areas responsible
for improvements in working memory and pattern recognition
in the first year and the multiplication of associations between
different cortical processing areas in the second year (McMahon
et al., 2012). Social interactions and interventions leveraging
cortical development and cortical associations between language
and motor systems at this critical time represent a promising role
in improving long-term language outcomes and social functions
(Goldstein et al., 2003; McMahon et al., 2012; Lipscombe et al.,
2016; Chorna et al., 2017). Therefore, the key to interventions in
these individuals lies in the importance of the early identification
of children with CP at high risk for communication impairments
(Coleman et al., 2015).

Several studies (Coleman et al., 2015; Hustad et al., 2018;
Pennington et al., 2020; Tan et al., 2020) have attempted to
explore demographic variables, early clinical characteristics, and
environmental factors in predicting communication ability in
children with CP at school entry. Studies have demonstrated that
communication, cognition, and motor performance at an early

age are critical for predicting future functional communication
in children with CP (Coleman et al., 2015; Hustad et al.,
2018; Pennington et al., 2020; Tan et al., 2020). However,
most standardized tests require behavioral repertoires that
exceed the capabilities of young children with CP, which makes
these measures too difficult to use to assess these children
reliably (Geytenbeek et al., 2010; Nordberg, 2018). Other non-
standardized tests, such as parent-completed measures and
grade-level classification systems, are unlikely to easily and
adequately capture the scope of information necessary to track
impairment-related changes (Geytenbeek et al., 2010; Potter,
2016). All these limitations make these methods less accurate
in identifying or predicting children with CP at high risk for
communication impairment.

In recent decades, progress in magnetic resonance imaging
(MRI) techniques has increased the number of opportunities
to search for more precise and objective biomarkers in
various pediatric neurological diseases; additionally, MRI
has been recommended and widely used for diagnosis,
prognosis, treatment monitoring and research in CP (Graham
et al., 2016; Novak et al., 2017). Three studies (Geytenbeek
et al., 2015; Coleman et al., 2016; Choi et al., 2017) used
qualitative categorical descriptions from MRI to investigate
the characteristics of brain abnormalities associated with
communication performance in children with CP. All these
studies found that communication is related to the type of
brain lesion on MRI (qualitative measurement); specifically,
more severe periventricular white matter lesions (PWMLs)
are associated with worse communication performance for
the patient. Moreover, some researchers (Coleman et al., 2016;
Laporta-Hoyos et al., 2018) used a semiquantitative MRI scale
that provides scores by evaluating the extent of brain injury—
assigning higher scores for increased lesion involvement—to
assess the severity of brain damage in children with CP. The
results demonstrated that children with CP with more severe
lesions in the presumed language pathway regions (the left
frontal, left temporal, left thalamus, left posterior internal
capsule, left caudate and lenticular nuclei) had poorer overall
communication skills and lower Communication and Symbolic
Behavior Scales Developmental Profile (CSBS-DP) total scores
(Coleman et al., 2016). All these results indicate that MRI has
potential value in predicting communication impairment in
children with CP. However, the above studies had a cross-
sectional design, and variables reported as risk factors were
qualitative or semiquantitative. Thus, an early quantitative
and individualized prediction model for communication
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outcomes based on patient characteristics and MRI parameters
is still lacking.

Multivariate lesion- and connectome-based approaches
(Gleichgerrcht et al., 2017) are emerging techniques that provide
an objective and quantifiable way to statistically evaluate the
relationship between whole-brain structure connections and
behavioral function. Notably, a prediction model constructed
from this approach had high efficacy in the prediction of
language deficits in post-stroke patients (Yourganov et al., 2016)
and motor outcomes in neonates with arterial ischemic stroke
(Al Harrach et al., 2021). Therefore, this study aims to develop
individual prediction models based on multivariate lesion-
and connectome-based approaches at an early age to predict
communication ability in children with CP by the time they enter
school. Among all types of CP, bilateral cerebral palsy (BCP) is
the most common subtype, comprising 64.7% of all cases (Colver
et al., 2014). Furthermore, different neuroimaging findings
have revealed different patterns of insult to the brain in CP;
recent research has noted that white matter lesions are the most
common findings in imaging, accounting for 49.1% of all cases,
and the severity of PWMLs has been verified to be linked with
communication performance in children with CP (Geytenbeek
et al., 2015; Coleman et al., 2016; Choi et al., 2017). Thus, we will
also limit study participants to those with BCP and PWMLs (the
most common subtype and neuroimaging finding in children
with CP) to reduce the heterogeneity within the study population
to improve the accuracy of prediction models. The results of
this study may lead to the development of several translational
tools that can be used to make individualized predictions of
communication impairments in children newly diagnosed with
BCP and PWMLs to ensure that these children receive early,
targeted therapeutic intervention before they begin school.

AIMS

Primary Aim
The aim of this study is to develop and validate an individual-
based model that can be used to predict the communication
impairment of children with BCP and PWMLs at school entry
based on advanced brain MRI at an early age (before 2 years).

Secondary Aims
(1) To establish a practical method for multivariate

lesion- and connectome-based approaches of children
with BCP and PWMLs.

(2) To identify injuries to cortical regions and connectomes
associated with communication impairment in children
with BCP with PWMLs.

MATERIALS AND METHODS

Study Design
This study will be implemented as a multicenter prospective
cohort study at four centers. This study has been registered with
the Chinese Clinical Trial Registry (ChiCTR2100049497)

and will be reported in accordance with the Standard
Protocol Items: Recommendations for clinical Trials (SPIRIT)
(Chan et al., 2013).

Study Setting
The study will take place at the Affiliated Hospital of Zunyi
Medical University (No. 149, Dalian Road, Huichuan District,
Zunyi City, Guizhou Province, China), the First Affiliated
Hospital of Xi’an Jiaotong University (No. 277 Yanta West
Road, Xi’an, Shaanxi, China), the First Affiliated Hospital of
Henan University of Chinese Medicine (No. 19 Renmin Road,
Zhengzhou, Henan, China), and Chongqing University Central
Hospital (No. 1 Jiankang Road, Yuzhong District, Chongqing,
China). The study will begin in December 2021 and is expected
to be completed in June 2025.

Ethics and Dissemination
All participating centers approved this study protocol. Full
ethics committee approval was obtained from the Institutional
Review Board of The Affiliated Hospital of Zunyi Medical
University (KLL-2021-108). A signed, informed consent form
will be obtained from the legal parents/guardians of each
participant. Participating subjects will receive a summary of
the results, including clinical phenotype descriptions, imaging
reports, and results of the behavioral assessments they have
completed. The results of the present study will be submitted to
peer-reviewed journals and/or reported at relevant conferences.
Subjects will be able to withdraw from the study at any time
without explanation. They will not suffer any penalty from the
staff, nor will any repercussions be evident in their care due
to this decision.

Participants
Some investigators have noted that predictors of communication
difficulties may differ for the subgroup of children with CP
in early life (Pennington et al., 2020). Therefore, we will limit
our study participants to those with BCP (associated with
more serious complications and a more common prevalence
of communication problems) (Geytenbeek et al., 2015) to find
reliable prognostic markers for this population. Brain MRI-
based classification systems have been widely recommended and
used for classifying different types of brain lesions in children
with CP, and different neuroimaging methods may reveal the
different pathogenic patterns responsible for CP (Ditchfield,
2017; Himmelmann et al., 2017). Among all the types of lesions,
PWMLs are the most common neuroimaging finding in this
population (Himmelmann and Uvebrant, 2011; Coleman et al.,
2016; Himmelmann et al., 2017), and the severity of PWMLs has
been shown to be associated with the severity of communication
impairment (Geytenbeek et al., 2015; Coleman et al., 2016;
Choi et al., 2017). Thus, we will also constrain neuroimaging
to children with BCP and PWMLs to reduce the heterogeneity
within our study population.

Inclusion Criteria
Children meeting the following criteria will be considered for
enrollment in this study: (I) confirmed diagnosis of BCP by
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pediatric neurologists (Novak et al., 2017), (II) age 6 months to
2 years at the time of recruitment, (III) PWMLs as described on
the MRI imaging report, and (IV) willingness by participants and
parents to participate in the study.

Exclusion Criteria
Children will be excluded if they have any one of the
following criteria: (I) blindness, severe visual impairment or
hearing impairment (given the requirements of some language
assessment modules); (II) other diseases (i.e., hereditary disease,
cancer, severe infectious disease, severe heart disease, or
progressive central nervous system diseases); (III) MRI artifacts
affecting any further image processing analysis; (IV) insufficient
cooperation to participate in the communication assessment;
and (VI) a primary language other than Chinese among
the family members.

Withdrawal Criteria
Subjects will be withdrawn from this study at the discretion of
the researchers if there are safety concerns or if the children are
unable to complete follow-up examinations.

Sample Size
There are no directly available data to assess the relationship
between connectome-based features and clinical assessments of
children with BCP to predict their communication ability at
school entry. The sample size was calculated according to a
previous study (Coleman et al., 2016). In that study of children
with CP with a total sample size of n = 131, the number of
children with communication abnormalities was 62 (47.0%).
Multiple linear regression showed that lesion type and five
semiquantitative indices that reflected the severity of brain
lesions were related to the communication assessment score.
However, the efficient size f2 cannot be directly calculated
because the R2 and residual variance in the multiple regression
model were not reported in the study (Coleman et al., 2016).
Geytenbeek et al. (2015) used multiple linear regression based
on MRI measures to evaluate language comprehension in non-
speaking children with severe CP and PWMLs; that study
revealed that the R2 of the model was 0.36. Choi et al.
(2017) also found significant negative relationships between
the severity of PWMLs and expressive language and between
the severity of PWMLs and receiving language performance.
Although the above results indicate that the MRI measures
could be used to adequately predict communication performance
in children with CP, we still assumed a lower efficient size
for the MRI measures (f2 as 0.10) to ensure a sufficient
sample size for an accurate prediction of communication
performance in children with CP. Based on previous studies
(Geytenbeek et al., 2015; Coleman et al., 2016; Choi et al.,
2017), the number of predictors was set as 6. If α = 0.05,
1-β = 0.80, then the study requires enrollment of 143
participants according to the power calculation by G∗Power,
version 3.1.9 (Faul et al., 2009). According to previous follow-
up experience and given a maximum anticipated dropout rate
of 20%, a total sample size of 178 children with BCP and
PWMLs will be needed.

Study Procedures
The study procedures are shown in Figure 1. Following the
inclusion and exclusion criteria, eligible participants (children
with BCP and PWMLs) will be entered from corrected ages of 6
to 24 months. Participants will be assessed for diagnostic criteria,
differential diagnosis and comorbidities by a pediatrician or child
neurologist. The participants will undergo at least 1 advance brain
MRI examination according to a standardized protocol. A variety
of clinical data and data pertaining to socioeconomic status will
be collected. Neurobehavioral development will be assessed by
experienced physiotherapists blinded to the MRI findings and
related medical information (such as other examination results
relevant to the content of the current assessment) at each center.

At the age of 48–60 months, the participants will be
invited back to the hospital for a follow-up assessment.
Experienced speech and language therapists (SLTs) blinded
to the medical history will assess each child’s communication
ability using multiple classification systems and scales. The
primary outcome measure for this study is the communication
function classification system (CFCS) rating. Secondary outcome
measures include ratings from the Functional Communication
Classification System (FCCS), Viking Speech Scale (VSS),
Peabody Picture Vocabulary Test-Revised (PPTV-R), verb
comprehension subtest of the Wechsler Preschool and Primary
Scale of Intelligence (WPPSI-IV), and CSBS-DP Infant-
Toddler Checklist. The questionnaire data (CSBS-DP) will be
collected by trained researchers during a telephone survey for
participants who are reluctant to return to the hospital for
follow-up. Other measures, such as Gross Motor Function
Classification (GMFCS), Manual Ability Classification System
(MACS), WPPSI-IV, and advanced brain imaging, will also be
used to evaluate the development of participants during the
follow-up assessment.

Blinding
The neuroradiologists involved in lesion delineation and MRI
analysis will be blinded to other clinical information and
assessment findings. The child neurologists and physiotherapists
conducting the neurobehavioral assessment at baseline will be
blinded to the MRI findings. Follow-up assessments will be
implemented once the children are old enough for preschool by
SLTs blinded to the children’s clinical history, baseline assessment
and MRI findings.

Clinical Data Collection
Demographic Data
Basic demographic and clinical information will be collected
from families and health records. The following general
information will be collected: age at MRI examination, sex, body
weight, height, medical history, comorbidities, epilepsy, family
makeup, seizure history, and medication. In addition to the above
information, prenatal factors have also been shown to be related
to brain injury and affect language development outcomes. Thus,
birth history variables, including delivery mode, gestational age,
birth weight, head circumference, body length, and Apgar score,
will also be documented.

Frontiers in Human Neuroscience | www.frontiersin.org 4 January 2022 | Volume 16 | Article 788037

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-16-788037 January 25, 2022 Time: 15:24 # 5

Hu et al. Prediction of Communication Impairment in BCP

FIGURE 1 | Flow chart of the study protocol. BCP, Bilateral Cerebral Palsy; PWML, Periventricular White Matter Lesion; MRI, Magnetic Resonance Imaging; GMFM,
Gross Motor Function Measure; GMFCS, Gross Motor Function Classification System; MACS, Manual Ability Classification System; VSS, Viking Speech Scale;
CBBS-DP, Communication and Symbolic Behavior Scales Developmental Profile; FCCS, Function Communication Classification System; PPTV-R, Peabody Picture
Vocabulary Test-Revised; WPPSI-IV, Wechsler Preschool and Primary Scale of Intelligence.

Furthermore, a systematic review (Vaillant et al., 2020)
indicated that the factors in some domains of the International
Classification of Functioning, Disability and Health – Children
and Youth framework are relevant for language comprehension
in children with CP. According to this concept, children’s
motor type, motor distribution, hand function (MACS), gross
motor function (GMFCS), hearing function, visual function,
speech function, socioeconomic status, parental educational
level, parental occupation, and birth order will be recorded.

Primary Outcome Measures
The aim of the present study is to predict communication
performance in children with CP at school entry. This will be
assessed using the CFCS, which contains 5 levels (I-V), with
level I being the best functional and level V being the least
functional level. Children will be classified into one of the 5 levels
based on their performance in sending and receiving information
with familiar and unfamiliar communication partners. The

CFCS is the most widely used system designed to classify
communication function in children with CP in daily life. To
increase the accuracy of the assessment, this study will establish a
standardized assessment process according to a previous study
(Wang and Wei, 2017). In this process, (I) SLTs will question
parents regarding different aspects of the child’s daily function
and simultaneously observe children’s movements during the
initial contact (understanding and discovering the ways in which
the child usually communicates), (II) the child’s communication
with the family will be observed and recorded, and (III) SLTs will
further communicate with the child through play to allow the
child to fully demonstrate his or her communication skills.

While the SLTs are conducting the on-site CFCS rating, a
caregiver will be asked to read the CFCS-Chinese version and
conduct a retrospective assessment of the child’s communication
performance in daily life. Then, the caregiver will be asked to
determine his or her child’s CFCS level by taking into account
the communication performance status on site. If there are 2
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caregivers in the field, the ratings will be made simultaneously
without discussion, and the one who spends more time with the
child will be marked as the first caregiver and the other one
will be marked as the second caregiver. The SLT will explain
the CFCS language but will not discuss the CFCS outcome
with the parents. The final CFCS levels will be determined
by professionals (SLTs) in close collaboration with parents.
The CFCS has good reliability with high intraclass correlation
coefficients across different language versions (Hidecker et al.,
2011; Vander Zwart et al., 2016; Wang and Wei, 2017; Choi
et al., 2018; Mutlu et al., 2018) and has been widely used in
multiple CP registries (Coleman et al., 2015; Hustad et al.,
2016; Mei et al., 2016; Vander Zwart et al., 2016; Wang and
Wei, 2017; Mutlu et al., 2018) as a recommended, suitable tool
for evaluating everyday communication in children with CP.
The CFCS-Chinese version has also shown good reliability with
intraclass correlation coefficients of 0.88 between an SLT and a
caregiver and of 0.86 between the first and second caregivers for
children with CP (Wang and Wei, 2017).

Secondary Outcome Measures
The secondary outcome measures include the levels/scores of the
FCCS, VSS, PPTV-R, CSBS-DP, and the vocabulary subtest of
WPPSI-IV for implementing a comprehensive communication
assessment of children with CP. Table 1 describes the
classification systems of the CFCS, FCCS, and VSS.

(1) FCCS: The FCCS is a 5-level system, with the highest
level (level V) indicating the worst performance. The
FCCS classifies children’s performance in sending
communicative messages and considers their observable
communication performance using speech, gestures,
and/or augmentative and alternative communication.
The reliability and validity of the FCCS for classifying the
functional communication of children with CP aged 4 to
5 years have been previously tested (Barty et al., 2016).

(2) VSS: The VSS (Pennington et al., 2013) was developed
to classify the speech production of children with CP.
The VSS is a four-level rating scale used to classify
speech intelligibility in children with CP aged 4 years and
above when they are speaking to unfamiliar partners and
strangers. It has substantial to almost perfect test-retest
reliability (κ > 0.68) and moderate to substantial interrater

reliability between pairings of professionals and/or parents
(κ = 0.58–0.81) (Pennington et al., 2013).

(3) PPTV-R: The PPTV-R is often used to assess the receptive
vocabulary abilities of people ranging in age from 2.5
to 40 years old, and the reliability and validity of the
Chinese version have been previously tested (Sang and
Miao, 1990). The test is composed of 175 items, and its
test-retest reliability and split-half reliability are 0.94 and
0.99, respectively. One point is recorded each time a picture
is correctly matched to the given word. The raw score is
obtained by summing all the correct item scores.

(4) CSBS-DP: The CSBS-DP (Wetherby and Prizant, 2002)
is a parent questionnaire containing 24 questions and
investigates children’s expressive and receptive language
skills; verb/non-verbal communication skills; and symbolic
skills, such as participation in pretend play and appropriate
use of objects. The total raw scores are converted to
a standardized score, with mean = 100 and standard
deviation (SD) = 15 among typically developing children
(Wetherby and Prizant, 2002). Scores below 80 imply
developmental delay of communication and referral for
further language and speech assessment. The test–retest
reliability of the CSBS-DP for the composite and total
scores ranged from 0.79 to 0.88 (Wetherby and Prizant,
2002), and the reliability and validity of the Chinese version
were previously tested (Lin et al., 2015).

(5) WPPSI-IV: The Chinese version of the WPPSI (Zhang,
2009) is divided into two groups of tests: group 1 for
children aged 2.5 years to 3 years and 11 months and
group 2 for children aged 4 years and 0 months to 6 years
and 11 months. The WPPSI-IV comprises 3 subtests
(verbal comprehension, working memory and visuospatial
ability) for group 1 but 5 subtests (verbal comprehension,
working memory, visuospatial ability, fluid intelligence and
processing speed) for group 2. The verbal comprehension
test includes three subtests: similarity, comprehension,
vocabulary, and a supplemental subtest—common sense.
Verbal comprehension index scores have a mean = 100
and standard deviation = 15. If children with CP are
unable to complete the verb comprehension subtest due to
fine motor impairment, language impairment or reduced
intellectual ability, a composite score will be calculated.

TABLE 1 | Descriptors for levels of the CFCS, FCCS, and VSS.

Level CFCS FCCS VSS

I Effective sender/receiver with familiar/unfamiliar
partners

Effective communicator in most situations No speech motor disorder indicated

II Effective, but slower-paced sender and/or receiver
with familiar and/or unfamiliar partners

Effective communicator in most situations but
may need help

Speech motor disorder indicated but is usually
understandable to unfamiliar listeners

III Effective sender and receiver with familiar partners;
not effective with unfamiliar partners

An effective communicator in some situations Speech motor disorder indicated and is not
typically understandable to unfamiliar listeners
out of context

IV Inconsistent sender and/or receiver with familiar
partners; not effective with unfamiliar partners

Assistance required in most situations,
especially with unfamiliar partners

No understandable speech

V Seldom effective sender/receiver with familiar
partners; not effective with unfamiliar partners

Communicates unintentionally using
movements and behavior

–

CFCS, Communication Function Classification System; FCCS, Functional Communication Classification System; VSS, Viking Speech Scale.
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Clinical Data Collection
Acquisition of MR Images
Brain MR images will be acquired using 3.0-T GE scanners with
8-channel head coils at baseline. All participants will be scanned
during natural sleep, as their sleep times will be adjusted based
on the experimental schedule, and earplugs will be used to reduce
the scanning noise from the MRI chamber. In cases where the
child cannot fall asleep to comply with the MRI examination,
sedation will be administered after obtaining parental or guardian
consent. The potential risks of sedation will be fully explained
to the parents or guardians. Each subject’s vital signs will be
monitored closely, and head motion will be limited by the
placement of foam padding around the child’s head during
the MRI examination. Three sequences will be acquired: 3-
dimensional fast spoiled gradient-recalled echo (3D-FSPGR) T1-
weighted imaging (T1WI), T2-fluid attenuated inversion recovery
(T2-FLAIR) imaging and diffusion tensor imaging (DTI). Image
acquisition parameters of 3D-FSPGR, T1WI, T2-FLAIR, and DTI
will be held consistent across sites to reduce the variability of
imaging data. The detail scan parameters of the MRI sequences
are shown in Table 2.

Lesion Masks
Periventricular white matter lesions will be characterized as
areas of T2 hyperintensity with or without cystic degeneration.
The lesion masks will be manually delineated on T2-FLAIR
images using ITK-snap software (Yushkevich et al., 2006) by two
neuroradiologists. Intrarater and interrater reliability in lesion
segmentation will be evaluated using the Dice κ consistency test
(Guo et al., 2017). If there is an evident discrepancy, a third
neuroradiologist will be invited to make the final decision. Then,
the T2-FLAIR image will be coregistered to the T1 image, and
these parameters will be used to reslice the lesion mask into
the native T1 space. The resliced lesion masks will be binarized
using a 50% probability threshold. The alignment between the
resliced lesion masks and the lesions in native T2 space will
be visually inspected by two experienced neuroradiologists by
comparing the overlay of the resliced lesion mask to the patient’s
native T1 image to the overlay of the original lesion mask on the
patient’s native T2-FLAIR image. Cases of misalignment will be

TABLE 2 | Scan parameters of the MRI sequences.

Variable T2-FLAIR 3D-FSPGR T1WI DTI

Repetition time (ms) 7500 7.8 12500

Echo time (ms) 145 3.0 86.8

Number of diffusion
gradient directions

NA NA 64

b values (s/mm2) NA NA 0,1000

Slice thickness (mm) 3 1.0 2.5

Gap (mm) 1.5 0 0

Field of view (mm2) 240 × 240 256 × 256 240 × 240

Matrix size 256 × 256 256 × 256 256 × 256

T2-FLAIR, T2-fluid attenuated inversion recovery; 3D-FSPGR T1WI, 3-dimensional
fast spoiled gradient-recalled echo T1 weighted imaging; DTI, diffusion tensor
imaging; NA, not available.

manually corrected directly in the normalized lesion mask using
ITK-snap software.

Lesion (Voxel)-Based Analysis
Two complimentary approaches (lesion- and connectome-based)
will be used to characterize brain damage. Both of them will use a
brain atlas developed by Oishi et al. (2011) to divide the brain
into 122 regions to reduce the feature dimensions. For lesion-
based and connectome-based analysis, the brain atlas containing
the parcelation information will be aligned to each individual’s
native T1 images. First, the T1 target image of patients will be
created by using a groupwise template creation method (Li et al.,
2016). Then the patients T1 target image will be registered to
the infant T1WI template provided by Oishi et al. (2011) in the
standard space. Subsequently, these deformation parameters will
be inverted and applied on the brain atlas in the standard space
to obtain the brain atlas in the local patient target space and
individual’s native T1 space. The unified segmentation function
of SPM12 (Ashburner and Friston, 2005) will be used to obtain
the probabilistic gray and white matter maps from T1 images.
These probabilistic gray maps (in native T1 space) will be further
divided into regions of interest (ROIs) corresponding to the
brain atlas. Then, lesion-based analysis will be computed as
the proportion of lesioned voxels per ROI (each cortical and
subcortical gray matter region corresponding to the brain atlas).

Connectome-Based Analysis
The structural brain connectome will be computed as the number
of white matter streamlines that connect each pair of cortical and
subcortical gray matter regions, and probabilistic tractography
will be performed in individual’s diffusion space to construct
the connectome. Thus, the tissue maps (including the ROI-
segmented gray matte map) will be registered into an individual’s
diffusion-weighted imaging (DWI) space. First, since tissue
contrast is comparable between B0 and T2 images, the registered
T2-FLAIR image (coregistered into the native T1 image) will be
linearly normalized into the mean B0 image from the diffusion
MRI sequence using the FMRIB Software Library (FSL) Linear
Image Registration Tool (Greve and Fischl, 2009) (correlation
ratio cost function, affine registration with 12 parameters and
nearest neighbor interpolation). The transformation matrices
will then be used to register the probabilistic maps of white
and gray matter, and segmented cortical ROIs in native T1
space into DWI space.

Probabilistic tractography will be applied to evaluate the
structural connectivity of pairwise cortical regions, which will
be separately defined according to the brain atlas. Structural
connectivity will be obtained by the probabilistic method
of the FMRIB Diffusion Toolbox (FDT) (Behrens et al.,
2007) for fiber tracking. FDT BEDPOST will be used to
build the default distributions of diffusion parameters at each
voxel. Probabilistic tractography will be obtained using FDT’s
probtrackx (Behrens et al., 2007) (parameters: 5,000 individual
streamlines drawn through the probability distributions on
principle fiber direction, step length of 0.5 mm, 200 maximum
steps, curvature threshold set at 0.2, and distance correction)
since probabilistic tractography is theoretically capable of
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accommodating intravoxel fiber crossings. The probabilistic
white matter map will be used as the waypoint mask (Yourganov
et al., 2016; Gleichgerrcht et al., 2017). The cortical ROIs
(corresponding to the brain atlas) in diffusion space will be
used as seed regions for tractography. For each subject, the
connectivity between cortical ROIs i and j will be calculated,
defined as the number of streamlines arriving at j when i is
seeded, averaged with the number of streamlines arriving at
i when j is seeded. The calculation of the streamlines will be
corrected based on the distance traveled (“distance correction”
built into probtrackx). In addition, the number of streamlines
between ROIs i and j will be divided by the sum of the volume
of the two regions to eliminate the effects of the unequal sizes
of the different cortical regions. These steps will be repeated
iteratively to ensure that all cortical ROIs are used as seed regions.
Once all iterations are completed, a connectivity matrix A will
be constructed, where each entry Aij represents the connection
weight between cortical ROIs i and j.

Harmonization
Multisite imaging studies are prone to technical variability
across scans, including differences between the manufacturers,
heterogeneity in the protocol and variations in the scanning
parameters. Such unwanted variation can hinder the detection
of important features and/or cause spurious findings. There is a
need to remove the bias and non-biological variance caused by
unwanted site effects. In this study, we will use ComBat (Fortin
et al., 2017, 2018), a method that adjusts the mean value and
variance between different groups by combining an empirical
Bayes framework and the location/scale model, to harmonize the
data. Studies have shown that the ComBat method performs well
in preserving biological variability and removing the unwanted
variation introduced by site for harmonizing the 3DT1 imaging
(Fortin et al., 2018) and DTI (Fortin et al., 2017).

Models for Predicting Communication
Impairment
Preselection of Predictive Features
Since the number of streamlines between two cortical regions is
averaged, the connectivity matrix is symmetrical with respect to
the diagonal, and only the lower triangular matrix will be used for
further analyses. For both lesion-based and connectome-based
analyses, the feature set will include hundreds to thousands of
feature vectors, and such high-dimensional data can cause the
“curse of dimensionality.” To reduce the number of potential
features introduced into the predictive model, a preselection
procedure will be performed to exclude noisy or uninformative
predictors from being fed into the prediction model, which can
reduce the chance of model overfitting. First, for lesion-based
analyses, only gray matter regions that are lesioned in more than
10% of the patients will be entered into the analysis. Second, for
the links in the connectome matrix-based analyses, only those
that are present in more than 75% of the patients will be entered
into the analysis. After the above steps, each subject will have
three feature sets: the lesion feature set, connectome feature set,
and combination feature set.

Development and Validation of Prediction Models
According to previously reported literature, for children with
CP, the distribution of their CFCS grades is unbalanced and
skewed. None or mild communication impairment (CFCS level
I, II, III) in children with CP and PWMLs is more common
than in those with severe communication impairment (CFCS
level IV, V) (Kristoffersson et al., 2020). Such an imbalance
distribution will cause misprediction during the process of
predictive model generation (Saethang et al., 2016). Thus, we
defined individuals who communicate at CFCS level I (defined
as “effective sender and receiver communication with unfamiliar
and familiar partners”) as having an absence of communication
impairment. Patients with CFCS level I will be classified into
the absence of communication impairment group, and those
with CFCS levels II, III, IV, and V will be classified into
the communication impairment group. In this way, the CFCS
grade will be converted to a binary indicator, and our study
will focus on identifying whether children with BCP have
any communication impairment and improving the efficacy of
the predictive model. All the variables will be centered and
standardized before being entered into each model, which will be
created with machine learning algorithms. In machine learning,
the no-free-lunch theorem states that there is no one model (or,
more generically, machine learning tool) that will work best for
every problem (Wolpert and Macready, 1997). Therefore, several
classification algorithms with varying hyperparameters will be
evaluated using support vector machine, random forest, logistic
regression, and other methods to investigate which algorithm
will outperform competing approaches across all settings. The
workflow of data processing and communication prediction is
outlined in Figure 2. The detailed model building and validation
steps are as follows.

Images from four sites (four hospitals) will be randomly
partitioned into four equal portions. Approximately three-
quarters of these images will be used as a “training cohort,” and
the remaining one-quarter of these images will be used as a
“test cohort.” In the “training cohort,” the proportion of lesioned
voxels in the ROI and the links of the connectome matrix that
are not shown difference between absence of communication
impairment group and communication impairment group will
be excluded, where the significance level is defined as P < 0.05
without multiple comparison correction in the two-sample test.
The selected features will be used to define models predicting
presence or absence of communication impairment in children
with BCP. For each prediction model, 10-fold cross-validation
(CV) will be used to evaluate the performance. This means
that the “training cohort” will be divided into a training
(nine folds) and a validation dataset (one fold), leaving 9
of 10 participants in the training dataset and the remaining
participants in the testing dataset. For the training cohort, the
various hyperparameters within each algorithm will be used
to determine the prediction model. Then, the model will be
applied to the validation dataset to predict children with the
presence or absence of communication impairment (predicted
label). The same procedure will be repeated with each of the
one-fold participants or the left-out participants in the leave-
one-out procedure, serving as the validation dataset for 10
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FIGURE 2 | Data processing and analysis workflow. (A) First, the lesion will be manually defined on T2-FLAIR images. (B) Two complementary methods, one based
on lesions and the other on the connectome, will be used to characterize brain damage. To compute lesion-based damage (top row), the brain atlas and each
individual’s lesion mask will be aligned with each individual’s native T1 space. The gray matter regions will be divided into regions of interest (ROIs) according to the
atlas. Then, lesion-based damage will be computed as the proportion of lesioned voxels per ROI based on the lesion mask. Connectome-based damage (bottom
row) will be computed as the number of diffusion tensor imaging (DTI) tracts that connect each pair of ROIs (tractography for reconstructing tracts will be performed
guided by the white matter probabilistic map). (C) For each individual, three feature sets (lesion features, connectome features, and combination features) will be
generated from the corresponding features after feature selection. (D) For each feature set, a “training cohort” will be used to build an optimal model based on a
10-fold cross-validation, and the prediction performance of the optimal model will be tested with the “test cohort” using ROC curve. (E) Then, three optimal models
will be generated based on different feature sets (the lesion feature set for voxel model, the connectome feature set for connectome model, and the combination
feature set for combination model). The prediction performance of each model will be compared, and the best-performing model will be selected.

iterations. Thus, each subject will receive a predicted label, and
the accuracy of predictive model will be evaluate by comparing
predicted labels to true labels of BCP children. The CV step
will be repeated 100 times with random cohort designation to
select the model with the best prediction accuracy. The whole
“training cohort” will be reused in its entirety to retrain the
model based on the classification algorithm and hyperparameters
of the prior selected model. Then, the retrained model will
be used to evaluate the “test cohort,” and the communication
performance of every subject of the “test cohort” will be
predicted by the model. The final accuracy of the prediction
model will be defined by comparing predicted labels to true
labels of BCP children in the “test cohort,” The Receiver
Operating Characteristic (ROC) curve and the area under curve
(AUC) will be calculated to evaluate the predictive ability
of built models. A two-sided Hotelling-Williams test (Steiger,
1980) will be used to determine whether the multimodality
prediction model is more accurate than any of the single-
modality prediction models. P values < 0.05 will be considered
indicative of statistically significant differences across models.
Given the possible effects of age on imaging measures, the “test
cohort” will be divided into three groups: younger (6–12 months),

middle-aged (12–18 months), and elderly (18–24 months years),
according to their age at MRI scan. The optimal model will be
applied to all subgroups to exam whether the prediction accuracy
changes with age at MRI scan.

Confidentiality and Data Management
The original data will be kept confidential throughout the study
and preserved by The Affiliated Hospital of Zunyi Medical
University, China. The electronic data will be gathered at each
site and supervised by the two specially trained investigators. The
data will be stored in a secure computer, and only research staff
will have access to the data. Unless required by law, none of the
above information will be divulged. Anonymized study data will
be published for scientific purposes.

Trial Status
This trial is currently recruiting participants.

DISCUSSION

This study protocol reports the procedures for a prospective,
multicenter, longitudinal cohort study that will establish an
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individual-based model for the prediction of communication
impairment in children with BCP and PWMLs at school entry.

This study will have some potential strengths. Previous studies
(Geytenbeek et al., 2015; Coleman et al., 2016; Choi et al., 2017;
Laporta-Hoyos et al., 2018) have demonstrated that the type
and severity of brain injury shown on MRI scans is associated
with communication impairment. However, all these studies
were retrospective in design and were performed to identify risk
factors for communication impairment, and an individualized
prediction model for communication is still lacking. Moreover,
wide ranges of communication performance in the specified
type or degree of injuries suggest the limited value of
predicting communication outcomes based on quantitative and
semiqualitative parameters (Geytenbeek et al., 2015; Coleman
et al., 2016; Laporta-Hoyos et al., 2018). In this study, a
large representative sample of children with BCP will be
recruited, and the data will be collected prospectively using
standardized neuroimaging protocols and outcome measures.
An individual-based prediction model for communication ability
will be developed based on quantitative MRI parameters.
This model can provide information that can contribute to
the determination of the appropriate time for intervention
and guide decision-making. In addition, only a few articles
(Geytenbeek et al., 2015; Coleman et al., 2016; Choi et al., 2017)
have reported brain-communication relationships in children
with CP, and neuroimaging characteristics identified as risk
factors in these studies are quantitative and/or semiqualitative
parameters. Hence, the neuroanatomic basis for communication
impairment remains unclear (Vaillant et al., 2020). We will use
voxel-based analyses to examine which regions are typically
associated with communication impairment. Connectome-based
analyses, a novel approach for identifying key connections for
neurological function, will also be used to provide unique insights
into communication deficits. In this light, it can be foreseen
that the abovementioned methods would greatly help in the
understanding of the neural basis of communication impairment
in these children.

With the growing number of multisite neuroimaging
studies, there is a great challenge in handling non-biological
variance due to site-level factors, such as differences in
MRI scanners and/or acquisition protocols. Such unwanted
sources of variability and bias may mask true associations of
interest and/or generate spurious findings. In this multisite
neuroimaging study, we will use ComBat (Fortin et al.,
2017, 2018), a well-established methodology for controlling
unwanted variation induced by scanner and/or acquisition
protocol differences, to remove site effects. Moreover, due to
difficulties in obtaining neuroimaging data in children with
CP (accompanied by multiple complications), our hospital will
develop an individualized examination procedure for these
children and extend it to other participating sites to ensure
the feasibility of the process. During this period, translation of
specialist knowledge and dissemination of research results into
clinical practice will begin immediately via site investigators. The
university affiliations across this study will provide opportunities
to integrate research fronts and introduce this collaborative effort
into undergraduate education. Knowledge translation will also

target parents and/or guardians of children with CP to improve
their quality of life.

This study will have several limitations. Given the
multidimensional nature of communication, attempting to
reduce communication skills to a single linear scale will be
fraught with the problems of overlooking impairment-related
data and important, informative developments (Potter, 2016;
Nordberg, 2018). Therefore, the CFCS may not be able to
capture the full scope of information necessary to evaluate cross-
sectional performance and track the longitudinal development of
communication ability. However, quantitative communication
tests in the Chinese version for children with CP are scarce. The
CFCS has been translated into different languages (Hidecker
et al., 2011; Vander Zwart et al., 2016; Wang and Wei, 2017;
Choi et al., 2018; Mutlu et al., 2018) and has often been used
in multiple CP registries (Coleman et al., 2015; Hustad et al.,
2016; Mei et al., 2016; Vander Zwart et al., 2016; Wang and Wei,
2017; Mutlu et al., 2018) worldwide. It shows good reliability
and validity across different cultures and languages (including
the Chinese version) and is quick and user friendly, making it
ideally suited for multicenter trials. Thus, we will still consider
CFCS as the primary outcome measure, and a search for precise
scales in the Chinese version that enable quantitative evaluation
of communication ability for these children will be continued.
Functional MRI has great potential for characterizing typical
development and detecting abnormalities early; however, it
will not be included in our present study because of the poor
ability of infants to tolerate MRI scanning (furthermore, after
conventional and diffusion sequences, the evaluation time would
be too long to include MRI examination). Finally, it should
be noted that our study population is limited to children with
BCP and PWMLs to reduce the heterogeneity in constructing
more accurate predictive models. Thus, the prediction models
constructed by this protocol will likely not be generalizable to
other CP subtypes or BCP with other neuroimaging findings.
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