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POLAR MAPPER is a computational application for exposing the architecture of protein
interaction networks. It facilitates the system-level analysis of mRNA expression data in the
context of the underlying protein interaction network. Preliminary analysis of a human
protein interaction network and comparison of the yeast oxidative stress and heat shock gene
expression responses are addressed as case studies.
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1. OVERVIEW

Progress in the reliability and throughput of protein
physical interaction detection techniques (both experi-
mental- (Rual et al. 2005; Stelzl et al. 2005; Gingras
et al. 2007) and computational-wise (Valencia & Pazos
2002)) is gradually leading to the availability of more
comprehensive, higher confidence protein interaction
data (Bader et al. 2003; Xenarios et al. 2004; Mishra
et al. 2006; Stark et al. 2006; Wu, X. et al. 2006). There
is hope that such ‘interactome’ maps can serve as
invaluable tools for biological research, in particular for
more integrated system-level studies of biological
processes and mechanisms (Uetz & Finley 2005).
Notably, in this regard, a protein interaction network
provides the natural context for interpreting large-scale
gene expression data, as the latter can be viewed as the
dynamical expression of different parts of the protein
interaction network (Jansen et al. 2002; de Lichtenberg
et al. 2005). Now, interactomes can be very large, with
rough estimates placing the number of interactions in a
human cell of the order of 200 000 (Hart et al. 2006).
Therefore, for the potential benefits of interactome
mapping projects to be realized, proper visualization of
interaction data is essential (Hu et al. 2007). As an
pplementary material is available at http://dx.doi.org/
008.0407 or via http://journals.royalsociety.org.
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addition to currently available alternatives (Batagelj &
Mrvar 1998; Enright & Ouzounis 2001; Breitkreutz
et al. 2003; Shannon et al. 2003; Batada 2004; Hu et al.
2004; Lu et al. 2004; Hooper & Bork 2005; Iragne et al.
2005; Li & Kurata 2005; Meil et al. 2005; Baitaluk
et al. 2006), we present a software application, POLAR

MAPPER, designed for displaying protein interaction
networks in a particularly informative fashion, termed
a polar map (Valente & Cusick 2006). The software
also allows gene expression data to be overlayed on the
generated polar map for a visually integrated analysis
of expression and interaction data. To exemplify the
usefulness of POLAR MAPPER, we applied it to two case
studies: (i) a preliminary analysis of the collection of
human protein–protein interaction data obtained via
high-throughput yeast two-hybrid (Y2H) assays by
Rual et al. (2005), and (ii) a preliminary search for the
relevant differences in the, a priori very similar (Gasch
et al. 2000), expression responses of Saccharomyces
cerevisiae to the distinct hydrogen peroxide and heat
shock stresses.
2. RELATED TOOLS

Several software applications are available for
protein interaction network visualization and analysis
(Batagelj & Mrvar 1998; Enright & Ouzounis 2001;
Breitkreutz et al. 2003; Shannon et al. 2003; Batada 2004;
Hu et al. 2004; Lu et al. 2004; Hooper&Bork 2005; Iragne
et al. 2005; Li & Kurata 2005; Meil et al. 2005; Baitaluk
et al. 2006). While typically representing proteins as
nodes and interactions as edges, tools such as PAJEK
doi:10.1098/rsif.2008.0407
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(Batagelj & Mrvar 1998), BIOLAYOUT (Enright &
Ouzounis 2001), CNPLOT (Batada 2004), PINC (Lu
et al. 2004) or MEDUSA (Hooper & Bork 2005) rely on
distinct layout algorithms to produce alternative graphi-
cal representations of an interaction network. Spring-
embedded, hierarchical, orthogonal, tree and circular are
among the most widely used kinds of structures (Tollis
et al. 1998). Layouts can be accomplished using a number
of distinct approaches, ranging from simulated annealing
or gradient-descent minimization of the energy of the
representation (Enright & Ouzounis 2001; Li & Kurata
2005) to hierarchical clustering techniques that group
the nodes according to their similarity (Lu et al. 2004).
These techniques are commonly combined with heur-
istics, which are able to prune the often large set of
output arrangements. Moreover, several additional
criteria are considered when measuring the quality of
the graphical positioning of graph elements: the number
of crossing edges; the area occupied by the represen-
tation; or the distance between adjacent and non-
adjacent nodes (Tollis et al. 1998). OSPREY (Breitkreutz
et al. 2003), CYTOSCAPE (Shannon et al. 2003), VISANT
(Hu et al. 2004), PROVIZ (Iragne et al. 2005) and
BIOLOGICALNETWORKS (Baitaluk et al. 2006) further
enable the integration of biological data available at
public repositories. Functional annotations can be
loaded as node attributes from Gene Ontology (Ash-
burner et al. 2000) by OSPREY, CYTOSCAPE, VISANT and
BIOLOGICALNETWORKS. VISANT also supports GenBank
(Benson et al. 2007) and SWISSPROT (Wu, C. et al. 2006)
annotations. Edges can be complemented with infor-
mation on pathways and interaction types provided by
the KEGG (Ogata et al. 1999) database in both VISANT
and BIOLOGICALNETWORKS. The latter further accepts the
interaction data from the BIND (Bader et al. 2003) and
TRANSPATH (Krull et al. 2006) databases. Moreover,
VISANT enables the integration of homology infor-
mation and the projection to orthologous genes, based
on phylogenetic profiles available at COG (Tatusov et al.
2001). The superposition of gene expression data’s
additional node information is supported by both
CYTOSCAPE and BIOLOGICALNETWORKS. Additional func-
tionalities for querying, navigating and finding substruc-
tures in graphs using either clustering or common
algorithms in graphs are also provided by these tools.
Interaction network analysis tools aremostly available as
standalone applications. BIOLOGICALNETWORKS, VISANT
and OSPREY are the exceptions, the first being provided
solely as a web-based server and the others supporting
both standalone and online execution forms. While the
majority of these software tools are implemented in Java,
thus being compatible with a multitude of platforms, a
number of them are restricted to either WINDOWS

(Batagelj & Mrvar 1998; Li & Kurata 2005) or UNIX
environments (Enright & Ouzounis 2001).
3. COMPUTATIONAL ALGORITHMS

POLAR MAPPER introduces an alternative graphical
display of networks, designated a polar map, in an
application that was developed to be a practical, useful
auxiliary tool in biological research projects involving
the analysis of protein interaction networks. Additional
J. R. Soc. Interface (2009)
key features of the POLAR MAPPER software include:
(i) a convenient method for navigating the network
based on its modularity analysis, (ii) an optional visual
superposition of gene expression data upon the
interaction network display, (iii) the specification of
the nodes’ sizes as a way to encode further information
in the visualization (for instance, the molecular weight
of a protein, or the number of members in a protein
complex, for cases in which nodes represent protein
complexes, rather than individual proteins), (iv) the
ability to save network information as text and export
polar maps as raster (PNG) and vector (SVG and PDF)
image files, and (v) the support for maintaining the
data and manual annotations associated with a given
network in a POLAR MAPPER session file, enabling users
to conveniently have their network analysis work
evolve along with their biological research project.
Details on how to use the POLAR MAPPER software in
practice are provided in the POLAR MAPPER guide,
available at the POLAR MAPPER website (http://kdbio.
inesc-id.pt/software/polarmapper).

We next provide a description of the polar map
visualization algorithm (Valente & Cusick 2006)
integrated in POLAR MAPPER. An overview of the key
steps in the algorithm is shown in figure 1, while figure 2
shows an alternative, more detailed flow chart. Repre-
senting the proteins as nodes and the interactions
between the proteins as links between those nodes, the
question becomes where to place the nodes in the plane,
in order to obtain as meaningful and visually clear
representation as possible of the interaction network.
Now, given that the position of each node has two
degrees of freedom, this allows the encoding of two
distinct types of information in the graph: one, we shall
associate with the radial coordinates of the nodes; the
other with their angular coordinates.

The radial coordinate is used to introduce a
mathematical hierarchical classification for the nodes
based on their placement within the network (Brandes
2003). For this hierarchical classification, we choose
the betweenness centrality measure (Freeman 1977).
For a node, its betweenness centrality is defined as the
total number of shortest paths (between any two other
nodes in the network) that pass through it. In keeping
with what is visually intuitive, we place higher
betweenness centrality nodes closer to the centre of
the graph and lower betweenness centrality nodes
on the periphery of the graph. Owing to the long tail
of the betweenness centrality value distribution (Goh
et al. 2001), we use a logarithmic scaling, letting the
radial coordinate of a node be proportional to
log(maxBC/nodeBC), where nodeBC denotes the
betweenness centrality of that node and maxBC the
highest betweenness centrality in the network. Noting
that the proteins range from those that function only
within specific well-defined cellular processes to those
that play more global, higher level functional roles,
the inspiration for the above procedure lays in that,
perhaps, this biological hierarchy in the role of
proteins finds a correspondence in their placement
within the mathematical, abstract protein interaction
network. The true relevance and form of this parallel
between the mathematical network betweenness
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e.g.:

1. Protein coordinates: (r,q)

2. Radius r = a function of the betweenness centrality (Freeman 1977) of the protein

3. Assignment of q :

3.1. Q-Modularity algorithm (Clauset et al. 2004)
divides the network into disjoint modules

3.2. Ring ordering algorithm chooses the optimal
circular ordering of the conical sectors, based
only on the inter-module linkage pattern

3.3. Now, for each module (conical sector) taken as
an isolated network:

... Q-modularity clustering (3.1 above) is performed to find submodules.
Submodules are assigned to subconical sectors within the
conical sector of the respective module

... ordering of the subconical sectors within the conical sector
is chosen with the ring ordering algorithm (based on the
inter-submodule linkage pattern)

... theta coordinates are assigned to the proteins, respecting
their subconical sector placement

... polar map is complete

4. The entire described procedure can also be applied to just a single one of the
modules/submodules, obtained above, by considering that the module/submodule
is an isolated network. This produces a local polar map of a module/submodule region
of the network

... modules are assigned to distinct conical
sectors in the map

Figure 1. The polar map algorithm. Overview of the key steps in constructing a polar map display of a network.
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centrality (or possibly an alternative centrality
measure) of proteins and their ‘biological hierarchical
centrality’ is still an open question (Coulomb et al.
2005; Hahn & Kern 2005; Joy et al. 2005; Estrada
2006; Junker et al. 2006). Regardless, at least, used in
this fashion, it is very helpful in visually untangling
large protein interaction graphs.
J. R. Soc. Interface (2009)
The angular placement of the nodes in the map is
going to reflect the modular structure of the math-
ematical network, in the sense that it contains regions
comparatively dense in links. The greedy algorithm of
Clauset et al. (2004) is used to search for a partition of
the network into disjoint modules that maximizes the
modularity score



Nodes, interactions

Start polar map algorithm

Run the traffic algorithm

Traffic.
First version of the network navigation

structure (NNS): islands > nodes

End polar map algorithm

Run the modularity and ring ordering algorithms for each
island, adding the module level to the NNS

NNS: islands > ordered modules > nodes

Determine the radial and angular coordinates of each of the polar map
nodes based on the traffic and the modularity structure (established in the

NNS), respectively.

Assign the radial coordinate based on the traffic (nodes with higher traffic
get placed closer to the centre of the graph). Assign the angular coordinate
of each node such that: (i) modules are angle-wise kept together and their

circular ordering is as determined in the NNS, obtained using the ring
ordering algorithm, (ii) the condition (i) analagously holds for the submodules 
within the modules, and (iii) some blank angular spaces are added to separate 

the islands, the modules within the islands, the submodules within the 
modules and the nodes within the submodules

Run the modularity and ring ordering algorithms for each module of
every island, taken as an isolated network, hence adding the
submodule level to the NNS. Sort the islands by their size

NNS: ordered islands > ordered modules
> ordered submodules > nodes

Start ring ordering algorithm

Modules

Start loop

Shuffle the list of modules to produce a
potentially different order

End loop when a predefined number
of iterations is reached

End ring ordering algorithm

Start loop

Randomly choose two modules and
compute the new energy of the list
considering that the two modules

swap places in the circular ordering

Swap the placement of the two
modules in the circumference

Does the new
configuration have a lower

energy?

YES

NO

End loop when a predefined number
of iterations is reached

Start traffic algorithm

Start modularity algorithm

Nodes, interactions

Start loop

End modularity algorithm

Greedily merge the two modules
which yield the largest Q-score

increase

End loop when Q can no longer be
increased via additional merging of a

pair of modules

Generate a set of modules:
each module containing a

single protein

Nodes, interactions

For each node

Was the set
of nodes in the BFS previously

processed?

Start with the node as the root and traverse all the
reachable nodes using a breadth-first search

(BFS), simultaneously computing the weights of
the nodes based on the paths through them.

NO

End loop

End traffic algorithm

YES
The set of nodes in the BFS is a new

island. Add it to the set of islands

Update the traffic of each node in the
BFS tree, adding the ratios between the

weight of the node and the weight of each
child node and the traffic of the children nodes

(a) (b)

(c) (d )

Figure 2. Detailed flow diagrams of the algorithms used to generate a polar map. (a) Traffic computes the betweenness centrality
of each node (Freeman 1977; Newman & Girvan 2004) and divides disconnected groups of nodes in islands; (b) modularity
generates the modules via the Q-modularity algorithm (Clauset et al. 2004) (c) The ring ordering procedure (Valente & Cusick
2006) finds a good ordering for the modules; and, finally, (d ) the polar map algorithm calculates the polar coordinates of each
node based on the results from (a–c).
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QZ
intra-module links

total links
K

intra-module links

total links

� �
random

;

where the first term pertains to the network in question
as it is, while the second assumes that the links in that
network were randomized, subject to every node
keeping its original degree. In other words, a high
Q-score partitioning of the network guarantees that the
number of within-module links is maximized with
respect to a base random case, represented by the
second term in the above formula. Note that the
algorithm is not guaranteed to find the partition that
yields the Q global maximum (Clauset et al. 2004).
However, the so far significantly modular structure
found in protein interaction networks (Spirin & Mirny
2003; Brun et al. 2004; Pereira-Leal et al. 2004; Nabieva
et al. 2005; Valente & Cusick 2006; Wang & Zhang
2007) assures that, in practice, the partition found is
probably not far off the optimal one. Combined with
the fact that protein interaction networks are large
and this algorithm’s running time scales almost linearly
in the number of nodes for sparse networks (such as
protein interaction networks; Clauset et al. 2004), this
makes it a good choice for the purpose at hand. This
partitioning of the network is represented visually by
allocating each module to a distinct angular region in the
graph. That is, the angular coordinates of the nodes are
assigned so that all the nodes in a given module fall
within the same visual conical section. The biological
importance of the mathematical partitioning of the
network stems from evidence at present supporting that
protein modules dense in physical interactions tend to
correspond to biological functional modules in the cell
(Spirin & Mirny 2003; Brun et al. 2004; Pereira-Leal
et al. 2004; Nabieva et al. 2005; Valente & Cusick 2006;
see Wang & Zhang (2007) for a different view).

Now, the above procedure still leaves the circular
ordering of the modules in the graph undetermined. We
would like to choose this ordering based solely on the
linkage pattern across the modules, placing, to the
extent that is possible, closer to each other modules
that are in some sense more interconnected. Formally,
this is done via the ring ordering algorithm (Valente &
Cusick 2006), which works as follows. A function that
associates an energy E with each potential circular
ordering is defined. Given a circular ordering of the
modules, let the distance between two modules be the
shortest of the two possible distances between them
around the circle (i.e. if they are next to each other, the
distance is 1; if there is a module between them, the
distance is 2, etc.). The energy for this circular ordering
is then defined as

Eðcircular orderingÞZ
X
m

X
em

dem=jemj;

where m denotes a module in the network; em denotes
an edge between module m and another module; dem
denotes the distance between the modules connected by
the em edge; and jemj denotes the total number of edges
between module m and other modules. The normal-
ization by jemj ensures that every module is given equal
weight as far as determining the final arrangement.
Now, the lower the energy of an ordering, the better the
J. R. Soc. Interface (2009)
ordering is considered to be. The search for a low E
ordering is done via a greedy procedure. Taking a
random circular ordering as a seed, module position
permutations are successively checked and performed if
they yield a lower E circular ordering. The procedure is
also repeated starting from different random seeds,
with, eventually, the net lowest E circular ordering
found being the chosen one. Note that the procedure
does not guarantee that a global minimum for E is
achieved. The angular ordering of the nodes within the
angular section assigned to their module is further
refined as follows: (i) the module is considered as an
isolated network (by ignoring links from the module to
the rest of the network), (ii) the Q-modularity-based
partitioning is applied to the isolated module producing
submodules, (iii) the ring ordering algorithm is applied
to the linkage pattern between these submodules,
producing an ordering of the submodules, (iv) the
angular section of the module is divided among the
submodules, respecting their ordering from (iii), and
(v) within the angular section of a submodule, the
angular ordering of its nodes is arbitrary. The
motivation for this overall module ordering procedure
is again that the density of connections between
modules probably correlates with their biological
functional closeness, which can be valuably reflected
in the graphical display, at least to the extent allowed
by the linear circular ordering constraint.

The above algorithm produces a polar map for an
entire island (isolated graph) in the network (or for the
entire network itself, simply by, as a pre-step, assigning
separate angular sections to each island). However, it
can be useful to visualize polar maps of specific regions
in a network. A local module polar map is constructed
in the same fashion, upon considering the given module
as an isolated network. The modular breakdown into
islands, modules and submodules has the additional
advantage of providing a structured organization for
navigating the network, and it is used for that purpose
in the POLAR MAPPER software.
4. BIOLOGICAL CASE STUDIES

4.1. Human interactome preliminary analysis

The Center for Cancer Systems Biology Human Inter-
actome version 1 (CCSB-HI1) dataset (Rual et al. 2005)
is one of the two first ever collections of human protein–
protein interaction data experimentally obtained in a
large-scale fashion (Rual et al. 2005; Stelzl et al. 2005). In
that study, using the yeast two-hybrid assay in a high-
throughput format, the products associated with
approximately 8000 human genome open reading frames
were systematically pairwise tested for possible physical
interactions. This yielded approximately 2800 binary
physical interactions. Note that the large-scale format of
the assay is obtained at some cost; for instance, the assay
is strictly binary (effects on the interaction of third-party
proteins or post-translational modifications are not
addressed) and so is its output (interaction detected/
not detected, rather than a binding affinity type or
other more complex characterization of the interaction).
A basic question raised by the above extensive
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proteins

1. survival signalling
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Figure 3. The human interactome. A polar map showing the largest connected component of the human interactome based on the
Rual et al. (2005) yeast two-hybrid high-throughput protein–protein interaction dataset (1307 proteins and 2441 interactions).
The modules are numbered from 1 to 32. Some of them were manually annotated (using POLAR MAPPER), reflecting the biological
function of the proteins that constitute them. The modules marked with an asterisk contain annotated submodules.
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interactome mapping work is how to organize such a
large raw dataset: how to grasp its overall structure and
how to profitably turn the dataset into a useful aid in
specific biological research problems. A more concrete
fundamental question is whether indeed some form of
functional organization of the cell is present at the level
of the interactome, and, if it is, whether it is detectable in
such a dataset, given the disputed reliability of the yeast
two-hybrid technique (Hart et al. 2006) and the other
assay limitations alluded to above.

As our first application of POLARMAPPER, we use it as
an auxiliary tool in a preliminary exploration of the
CCSB-HI1 human interactome dataset. The reader is
encouraged to load the associated session file of the
human interactome, HumanInteractome.pm, and select
‘Island 1’ on POLAR MAPPER to follow along this analysis
(see the file session_instructions.pdf in the electronic
supplementary material for help). Henceforth, module
and submodule IDs and names refer to the annotations
in this session file. Figure 3 shows the largest connected
component of the network. We analysed the generated
modules in order to determine whether they reflected
J. R. Soc. Interface (2009)
biological functions of the cell. Some modules are
apparently not particularly functionally coherent,
which may be explained by the fact that the data
cover only a very small part of the interactome (of the
order of 1% of the existing protein interactions are
present in the dataset (Rual et al. 2005)). False-positive
Y2H interactions may also account for some discre-
pancies (Rual et al. 2005). Nevertheless, several
modules and submodules clearly show a theme, with
the majority of their proteins possessing related func-
tions or sharing common signalling pathways. We could
identify the modules and/or submodules that are related
to the regulation of transcription (mod. 17), house-
keeping/biosynthetic pathways (submod. 31), cell
proliferation/death and cancer (mod. 19), spliceosome/
pre-mRNA splicing (submod. 92), cell division and
cancer (submod. 104), cytoskeleton and protein scaffold-
ing (submod. 52) and survival signalling (mod. 1).

We now describe an interesting module (mod. 3) we
identified whose main theme is membrane-interacting
proteins (figure 4). All its submodules contain mem-
brane-interacting or transmembrane proteins. Three of
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Figure 4. Membrane-interacting proteins module within the human interactome. The local polar map of module 3 in figure 3. Its
central theme appears to be membrane-interacting proteins. Note how the submodules (encircled by grey lines) denser in these
proteins are found closer together in the circular ordering of the map. See the main text for a biological analysis of this module. To
compose this figure, the polar map was exported into an SVG file using POLAR MAPPER and the graphical highlight around the
submodules and relatedness of each protein concerning the module’s theme were edited using an external image processing
software (INKSCAPE).
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the submodules should be highlighted in particular, as
they are very coherent and can be further subcategor-
ized as vesicular transport (I and II) and secretory
pathway/membrane trafficking (figure 4). The vesicu-
lar transport I submodule contains well-known
SNAREs (soluble N-ethylmaleimide-sensitive factor
attachment protein receptors), known for their import-
ant role in diverse vesicle-mediated transport events:
VAMP4 and VAMP3; syntaxin 4, 5 and 11; and
SNAP23 and 25 (Hong 2005). NAPA, also known as
a-SNAP, is involved in intra-Golgi transport (Hong
2005). SCGN was apparently an outsider, but a recent
J. R. Soc. Interface (2009)
paper described that this protein binds directly to
SNAP25 in response to calcium and may be involved
in Ca2C-induced exocytotic processes (Rogstam et al.
2007). The SCGN–SNAP25 interaction was not present
in the Rual et al. (2005) Y2H dataset used in this study.
On the other hand, a SCGN–SNAP23 interaction was
present. It remains to be seen whether this is an artefact
of the Y2H screening due to the homology of the two
SNAPs, or whether this interaction is biologically
relevant. TAF6L is the only protein unrelated to
vesicular transport present in this submodule. The
second vesicular transport submodule we highlight
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contains the following: RABAC1, involved in vesicle
formation from the Golgi complex and that interacts
with SNARE complexes (Gougeon et al. 2002);
RAB1A, involved in vesicular transport from ER to
Golgi (Tisdale et al. 1992); RTN1, shown to bind to
several SNAREs (Steiner et al. 2004); and SNX15,
involved in endosomal trafficking (Barr et al. 2000;
Phillips et al. 2001). It also contains DUSP12, which
seems to be unrelated to this submodule’s general
theme: it is the human orthologue of the S. cerevisiae
YVH1 protein tyrosine phosphatase (Muda et al. 1999)
and is thought to negatively regulate the members of
the mitogen-activated protein (MAP) kinase super-
family. The remaining two proteins of the submodule
have unknown functions. The third submodule we
highlight is composed of proteins involved in secretory
pathway/membrane trafficking. Reticulons (RTN1–4;
RTN3 and RTN4 are contained in this submodule) are
associated with the endoplasmic reticulum and are
involved in either neuroendocrine secretion or mem-
brane trafficking in neuroendocrine cells (reviewed in
Oertle & Schwab 2003). All members of this family
have been shown to interact with and modulate BACE1
(a protease involved in the secretory pathway and a
therapeutic target in Alzheimer’s disease). Further-
more, the overexpression of any reticulon protein
significantly reduces the production of amyloid-beta
(He et al. 2004). RTN3 was described to be involved in
membrane trafficking and protein transport between
the ER and Golgi (Wakana et al. 2005). RAB33A is a
small GTPase Rab family GTP-binding protein that
localizes to dense-core vesicles and may be involved in
vesicle transport during exocytosis (Tsuboi & Fukuda
2006). LRCH4 is a poorly characterized leucine-rich
protein that contains a carboxyl terminus that may act
as a membrane anchor (Glockner et al. 1998), which
indicates a putative interaction with membranes.
PTPN9 is a phosphatase that localizes on secretory
vesicles (Saito et al. 2007) and is involved in their fusion
control (Huynh et al. 2004). Finally, COL4A3BP is a
kinase involved in the non-vesicular ER-to-Golgi
transport of ceramide (Hanada et al. 2003), and may
be a phosphorylation target of casein kinase 1-gamma 2
(CSNK1G2; Kumagai et al. 2007), which is also present
in this submodule (their direct physical interaction
tested positive in the Rual et al. Y2H screen).

For a different example, we now focus on a
submodule we found with POLAR MAPPER, whose
interpretation, although less apparent and necessarily
more speculative than in the previous case, may lead to
interesting findings. In fact, one of the main interests
for pursuing large-scale interactome mapping projects
is the hope that they can point researchers in a variety
of areas to new leads and directions of study. We
designated this submodule (submod. 4) as ‘crosstalk
between toll-like receptors (TLRs) and nuclear
receptors’. This submodule is found in a module
(mod. 2) containing two other submodules also with
proteins that fit in this category (figure 5). RARs and
RXRs are nuclear retinoid receptors that form RAR/
RXR heterodimers in response to retinoids (e.g. retinoic
acid), leading to the transcription of specific gene
networks (Bastien & Rochette-Egly 2004). RARA,
J. R. Soc. Interface (2009)
RXRB and RXRG are present in the submodule. SPOP
is a poorly characterized protein that is known to bind
to and modulate DAXX-mediated transcriptional
repression (La et al. 2004). SPOP was later identified
as an adaptor required for the ubiquitination of DAXX
by CUL3-based ubiquitin ligase and consequent
degradation by the proteasome (Kwon et al. 2006).
DAXX is a multifunctional protein that is involved in a
wide variety of processes, such as transcription, cell
cycle and apoptosis (Salomoni & Khelifi 2006). Unfor-
tunately, DAXX was not present in the Y2H dataset
(Rual et al. 2005) used in our study. Members of the
nuclear receptor superfamily repress proinflammatory
programmes of gene expression. The use of specific
agonists for nuclear receptors, such as GR (glucocorti-
coid receptor), LXR (liver X receptors), PPARs
(peroxisome proliferator-activated receptors) and, to
a lesser extent, RARs, was found to modulate both
common and distinct subsets of TLR target genes
(Ogawa et al. 2005).DAXXmRNA expression was over
12-fold upregulated upon stimulation of macrophages
using LPS, a well-known TLR agonist. In the presence
of specific agonists for GR, LXR a/b and PPARg, the
LPS-induced response was inhibited by 48, 55 and 18%,
respectively (Ogawa et al. 2005). Unfortunately, this
experiment was not done using RARs agonists, since
the authors of the study focused on the receptors that
modulated the higher number of genes on the initial
screening, which does not allow the confirmation of
whether RARs are involved in the modulation of
DAXX expression upon an LPS stimulus. Nevertheless,
the link between retinoic acid receptors and DAXX is
still present through RXRs, which may also form
heterodimeric pairs with other nuclear receptors
besides RARs, such as PPARs and LXR (Bastien &
Rochette-Egly 2004), which were shown to modulate
DAXX expression (Ogawa et al. 2005). DAXX was also
shown to negatively modulate the transcriptional
activity of androgen receptor (another nuclear
receptor; Lin et al. 2004). MYD88 (present in the
current submodule) is downstream of several TLRs and
is involved in innate immunity signalling (namely
through the p38 and JNK pathways) (Ogawa et al.
2005) and TLR-induced apoptosis, through an
interaction with FADD (Aliprantis et al. 2000).

Overall, this preliminary analysis of the CCSB-HI1
dataset served to confirm the presence and relative ease
of finding of functional coherent modules in high-
throughput interactome data. The latter specific
example, found and discussed above, also hints at the
likely presence of potentially interesting new leads for a
variety of biological research areas in these datasets.
4.2. Comparative expression analysis of yeast
under hydrogen peroxide and heat shock
stress

Microarray-based high-throughput gene expression
profiling assays provide, in many regards, a similar
challenge to high-throughput interactome mapping
assays, namely how to handle the associated large
quantities of data and how to extract valuable insights
from them. Again, as in the interactome field, the
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extent to which the level of noise in microarray gene
expression assays affects the usefulness of the produced
data is a point of dispute. It has been shown already
that jointly analysing interaction and expression
data can be particularly informative (Jansen et al.
2002; de Lichtenberg et al. 2005; Palotai et al. 2008).
POLAR MAPPER has been set up to allow this in the
most straightforward possible fashion: by visually
superimposing the expression data (with the standard
green/red colour scheme; see POLAR MAPPER guide in
the electronic supplementary material for details on the
colouring scheme) over the interactome network. In
the following example, we use POLAR MAPPER, the
S. cerevisiae filtered yeast interactome (FYI; Han et al.
2004) and high-throughput expression data from Gasch
J. R. Soc. Interface (2009)
et al. (2000) to probe for the differences between the
yeast oxidative stress (hydrogen peroxide) and heat
shock gene expression responses in yeast. The heat
shock and oxidative stress responses in yeast are
reported to be very similar (Gasch et al. 2000). This
similarity has been explained as a result of the general
environmental stress response (ESR) of yeast (Gasch
et al. 2000). The main difference between the responses
to the two stimuli was identified as being associated
with a restricted set of genes related to detoxification
processes and reductive reactions in the cell (Gasch
et al. 2000). We note that the POLAR MAPPER

interactome-based visualization of the expression data
can be useful to make apparent other potential
differences between these similar expression responses,
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in particular the differences associated with specific
cellular processes, since the modular structure of an
interactome appears to reflect such processes.

We start with a POLAR MAPPER analysis of the
observed hydrogen peroxide (HP) stress response by
itself. The reader is encouraged to load the associated
session file for the yeast gene expression response to
hydrogen peroxide,Yeast_H2O2_fyi.pm in the elec-
tronic supplementary material (showing the expression
data superimposed on the interactome network data),
and select ‘Island 1’ on POLARMAPPER at this stage. The
module and submodule names and numeric references
in the analysis that follows all refer to that annotated
POLAR MAPPER session. Note that most of the names
annotating the modules are lifted from the analysis in
Valente & Cusick (2006). Overlaying the mRNA
expression data (Gasch et al. 2000) obtained from S.
cerevisiae under HP stress (0.30 mM for 20 min) on the
FYI yeast interactome using POLAR MAPPER, it becomes
immediately evident that the genes in several modules
of the largest connected component of the interactome
behave as ensembles, resulting in entire modules having
a clear trend towards repression or induction (figure 6).
This pattern is also visible at the submodular level.
Some modules present clusters of genes that are up- or
downregulated, which are consistent with the submod-
ular grouping (e.g. the cell-cycle control (mod. 23),
signalling (mod. 20) and the RNA processing/trans-
lation (mod. 18) modules). A very robust repression of
ribosomal transcripts (see the large 60S (mod. 6) and
small 40S (mod. 25) ribosomal subunit modules) is
apparent. This type of response to stress (including
oxidative stress) is well known (Warner 1999; Gasch
et al. 2000; Marques et al. 2006). Modules composed of
genes involved in mRNA-related processes are
repressed as well, which is evident in the exosome
(mod. 8) and the spliceosome (mod. 17) modules.
Additionally, translation has also been reported to be
repressed during stress (Gasch et al. 2000; Shenton et al.
2006), which can be readily identified in the translation
initiation complex module (mod. 21) and the trans-
lation/translation initiation submodule (mod. 18, sub-
mod. 74). Genes involved in mitosis are also repressed,
as seen in the anaphase-promoting complex (APC)
submodule (mod. 14, submod. 55), the chromosome
condensation/segregation module (mod. 13), the cyto-
kinesis/chromosome segregation module (mod. 22) and
submodule 99 of the cell-cycle control module (mod. 23;
analysed later in greater detail). These results are
consistent with the reports that HP induces a G2/M
arrest in yeast (Shapira et al. 2004). Conversely, some
modules are clearly upregulated. There is induction of
genes involved in protein degradation, namely protea-
somal genes (see the proteasomal regulatory complex
and the proteasomal catalytic complex modules,
modules 4 and 3, respectively), which is in agreement
with other studies using HP as a stressor on yeast
(Marques et al. 2006). The DNA repair submodule
(mod. 14, submod. 57) is also upregulated. It is known
that HP and other oxidative stress inducers may
generate DNA damage and induce the cellular DNA
repair mechanisms (Gasch et al. 2000; Ikner & Shiozaki
2005). Other modules present upregulated submodules,

but, overall, the notion that gene repression is
predominant under oxidative stress (Gasch et al.
2000) becomes rather evident upon visualization of
the overall expression profile superimposed on the
interactome (figure 6). The cell-cycle control module
(mod. 23) is an interesting example of one module that
does not show a clear trend towards up- or down-
regulation. However, by zooming in at the module level,
it becomes evident that it contains submodules that are
induced, while others are repressed. One of the
submodules, named the G1/S submodule (submod.
98), contains mainly proteins that are involved in the
G1- and S-phases of the cell cycle. This submodule is
upregulated, which is in agreement with the results
showing that yeast cells are able to progress through
G1/S upon HP challenge (Shapira et al. 2004).
Interestingly, this study also showed that the S-phase
duration was slightly prolonged compared with
untreated cells. This fact is consistent with the
observation that, despite many G1/S transcripts
being upregulated, CDC6 is downregulated. This gene
is essential for DNA replication initiation during the
S-phase (Speck et al. 2005). Several G2/M-related
proteins can be found in submodule 99 in which, with
the exception of CAK1, all the G2/M-related genes are
downregulated. This reinforces the strong effect of HP
on this phase of the cell cycle.

We now compare the heat shock (HS; 25–378C for
20 min, data from Gasch et al. 2000) and HP stress
responses of yeast. A key technique we use here is to
visualize the HP stress expression response relative
to the heat shock (HS) stress expression response.
This is done by loading into POLAR MAPPER the
difference between the log expression data for the HP
and HS responses (figure 7; POLAR MAPPER session
Yeast_H2O2-Heat_Shock_fyi.pm, ‘Island 1’ in the
electronic supplementary material). For the most
part, the trend towards induction or repression in any
given interactome module is the same under both HP
and HS stresses. However, by looking at the above
difference, the modules that are more intensely induced
or more intensely repressed under HP than under HS
become evident, since they retain their net original
colour associated with up- (red) or downregulation
(green), respectively, observed in the HP-only image
(figure 6). Conversely, when the colour trend is reversed
between figures 6 and 7, it must be that the induction/
repression is more intense in HS than in HP. It becomes
therefore simple to visually identify the modules and
submodules that may be more affected or regulated by
each specific stress.

From figures 6 and 7, it becomes evident that some
modules are more strongly up- or downregulated by
each particular stimulus (table 1, HP versus HS).
During the HP challenge, the repression of the G2- and
mitosis-related modules is stronger than in HS stress
(see the chromosome condensation/segregation module
(mod. 13), the APC submodule (submod. 55) and the
cytokinesis/chromosome segregation module (mod.
22)). The cell-cycle control module (mod. 23) provides
us with further information: the G2/M inducers are
more repressed or less upregulated in HP than in HS
(table 2). This suggests that HP has an effect on the
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Table 1. Summary of the main modules and submodules identified using POLAR MAPPER as being more strongly upregulated or
downregulated under the hydrogen peroxide or heat shock stimulus in yeast. (See the main text for analysis.)

hydrogen peroxide heat shock

stronger downregulation chromosome condensation/segregation large 60S ribosomal subunit
cytokinesis/chromosome segregation small 40S ribosomal subunit
anaphase-promoting complex (submod. 55)a translation initiation complex

exosome complex
nucleoplasmic RNA/protein transport
core RNA polymerase

stronger upregulation DNA repair submodule (submod. 57)b protein folding submodule (submod. 100)
G1/S submodule (submod. 98) proteasomal catalytic complex

aThe APC submodule does not show a clear trend towards downregulation during heat shock.
bThe DNA repair submodule, in fact, shows a downregulation trend during heat shock.

Table 2. Comparative expression of cell-cycle genes present in
the cell-cycle control module upon hydrogen peroxide
treatment and heat shock in yeast. (See the main text for
analysis.)

HP HS

G1/S inhibitors
SIC1 unchanged C

G1/S inducers
CLB5 unchanged K
CLB6 unchanged K
SWI4a CC C
SWI6b KK K
MBP1 K n.a.
CLN1 K KK
CLN2b KK K

G2/M inducers
CKS1 n.a. K
CLB1 KK K
CLB2 K n.a.
CLB3 KK K
CLB4 K K
CAK1 C CC

aSWI4 is involved inDNA synthesis and also inDNA repair.
bGenes whose expression is opposite to the trend of most
genes in the submodule. CDC28 is also present in this
submodule, but it is involved in both G1/S and G2/M
progressions.
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cell cycle, namely on the G2/M phase of the cell cycle.
This is in agreement with published data, reporting
the existence of a G2/M block after HP stress (Shapira
et al. 2004), but not during HS (Li & Cai 1999). In
fact, this heat shock study (Li & Cai 1999) reports that
HS induces a transient G1/S arrest. This is supported
by the data showing that several key G1/S genes are
differentially expressed between HP and HS: the
expression of the G1/S inhibitor SIC1 remains
unchanged in HP and is upregulated in HS; conversely,
the G1/S inducers CLB5 and CLB6 (critical for DNA
replication) remain unchanged in HP and repressed in
HS; SWI4 (involved in G1/S progression) is also less
strongly upregulated in HS than in HP. Although there
are some exceptions and also some incomplete data, in
general, the G1/S gene expression comparison on this
module fits the experimental data (table 2). Interest-
ingly, the DNA repair submodule (submod. 57; table 1)
is more strongly induced in HP than in HS, which is also
in line with the general notion that direct DNA damage
is extremely important during oxidative stress (Wang
et al. 1998; Ikner & Shiozaki 2005; Pan et al. 2006).
Overall, this analysis suggests that there is a tighter
control on proteins and RNA synthesis and degra-
dation, as well as on G1/S progression upon heat
shock; whereas mitotic control and DNA repair are
more strongly regulated during HP stress (table 1).

Owing to the small number of chaperones present in
the FYI dataset that we analysed, a relevant matter we
did not explore is the collective change induced by
stress in chaperones and their low affinity, but
fundamental, transient interactions (Korcsmáros
et al. 2007). For instance, similarly, based on a
combined gene expression and protein interaction
data analysis, it has been hypothesized that, in yeast,
cellular stress leads chaperones to become more central
in the interactome (Palotai et al. 2008). A next step in
validating and refining some of the ideas related to the
dynamic nature of the interactome will probably
require the actual experimental testing of protein–
protein interactions in cells under different conditions.
It has also recently been shown that, in eukaryotic cells,
in contrast to bacteria, there are two distinct chaperone
networks, one being involved in de novo protein folding
(coupled to translation) and the other in the rescue of
stress-denatured proteins (Albanèse et al. 2006). In this
regard, from the 14 chaperones identified as translation
J. R. Soc. Interface (2009)
coupled by Albanèse et al. (2006), seven out of the eight
present in the FYI dataset that we analysed belonged to
the same interactome submodule (mod. 23, submod.
100; the exception being one protein present in mod. 23,
submod. 101). Conversely, out of the 20 chaperones
categorized as stress coupled by Albanèse et al. (2006),
the four present in the FYI dataset were all grouped
together by POLAR MAPPER in a distinct module from
the translation-coupled one (mod. 10, submod. 37). The
placement in the interactome of these few chaperones
present in the FYI dataset seems therefore to be
consistent with the two separate functional chaperone
classes identified in the study of Albanèse et al. (2006).

Overall, our case study showed how this graphical
platform, combining expression and interaction data,
can aid in a first-pass analysis and organization of
expression data. Note, in particular, how it allowed a
faster identification of relevant cellular processes,
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giving hints on biological processes that should be
subjected to a more detailed study. It also serves to note
that, in spite of the respective assay reliability
limitations, the present-day high-throughput inter-
action and expression data can already be valuable
resources in biological research.
5. SUMMARY

This paper introduces POLAR MAPPER, a computational
application centred around the polar map visualization
of protein interaction networks. It is meant to be a
practical, ready-to-use auxiliary tool in biological
research work that involves the analysis of protein
interaction networks. A second objective of this paper is
to make available to the scientific community a
reusable implementation of the polar map algorithm
in order to contribute to the ongoing development of
improved biological network visualization tools. To this
end, the source code and documentation are open and
freely available to the community. Finally, although
visualization of protein interaction networks was the
primary motivation for this application, we note that it
may probably be profitably employed in the display of
many other kinds of binary interaction data networks.
6. AVAILABILITY

POLAR MAPPER is implemented in Java and may be used
within several platforms and environments, as long as a
Java virtual machine installation is provided. Binaries
and source code, as well as documentation, are
available both as the electronic supplementary material
at the Journal of the Royal Society Interface website
and at the POLAR MAPPER website (http://kdbio.inesc-
id.pt/software/polarmapper).
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