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Introduction
Directed evolution methods mimic evolutionary principles at 
the laboratory level. For this, strategies for the generation of 
genic diversity are implemented, either by inducing mutations 
or by recombining DNA and, after this, selective pressure is 
carried out.1 Directed evolution methods, through modified 
polymerase chain reaction (PCR) cycles, allow obtaining chi-
meric libraries of recombined genes. In this regard, 2 highly 
homogeneous and fragmented parental genes are subjected to 
PCR cycles without primers, until obtaining recombined genes 
with lengths close to the parental genes.2 From these libraries, 
enhanced genes are selected, which are used to obtain a new 
chimeric library (see Figure 1).

First, in silico approaches of directed evolution were present 
from the construction of statistical models3-5; then models 
were enriched, including intrinsic thermodynamic information 
of parental genes6,7; and later, kinetic information of reactions 
was included.8 These initial models laid the basis for under-
standing optimal experimental conditions that favored the effi-
ciency and diversity of chimeric protein libraries such as 

triazine hydrolase, dioxygenases, green fluorescent protein, and 
beta-lactamases.4,8,9

Subsequent studies explored the potential of heuristic 
techniques to model directed evolution experiments. They 
assessed the incidence of experimental parameters in the 
generation of chimeric libraries, recreating the epistasis 
given in genic sequences through NK landscapes and pro-
viding suggestions about favorable experimental conditions 
in experiments of directed evolution. The experimental 
parameters assessed were the number of cycles, selective 
pressure, and mutation rate under high- and low-stringency 
conditions.10

This study presents a heuristic model based on a genetic 
algorithm, designed to obtain chimeric libraries of cry11 genes. 
We have selected this group of genes as our biological model, 
given their high biotechnological potential.11,12 These genes 
are known to be present in a sporulated Gram-positive bacteria 
named Bacillus thuringiensis13 and encode toxic proteins (δ-
endotoxins), which are useful for the biological control of  
disease-spreading Diptera.14
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The biological model of Cry toxins presents at least 2 rele-
vant characteristics for our study. First, Cry toxins have a struc-
ture of 3 conserved domains for the 74 or so groups and more 
than 290 holotypes described so far, and despite their structural 
conservation, each reported group has a high specificity in its 
target organism (http://www.lifesci.sussex.ac.uk/home/Neil_
Crickmore/Bt/).

Second, experimental models of directed evolution have 
been reported, where at least 2 Cry holotypes have been used, 
cry1Ca and cry11A12 genes. In the study of Lassner and 
Bedbrook,15 an increase in toxicity of the Cry1Ca protein has 
been reported against green doughnut (Spodoptera exigua) and 
fruit worm (Helicoverpa zea), while the study developed by 
Craveiro et al16 was able to extend the action spectrum of the 
Cry11A12 toxin to the giant sugarcane borer species (Telchin 
licus licus), for which the toxin produced by the parental gene 
was not lethal.15,16 These studies are an alternative to increase 
the biopesticide action of native toxins and react to resistant 
insects.17-19

Our study uses a heuristic model, which considers the 
intrinsic information of cry11Aa and cry11Ba genes, to gener-
ate chimeric libraries and explore the incidence of experimental 
parameters of directed evolution on the characteristics of chi-
meric libraries generated in silico, in terms of Diversity, Identity, 
Delta Energy, and Sequence Truncation.

Materials and Methods
We have implemented a software named HeurIstics 
DirecteD EvolutioN (HIDDEN), which was written in 
Python 3 language and simulates a recombining technique 
of directed evolution by using a genetic algorithm, predict-
ing chimeric libraries from 2 parental genes (http://soft-
hidden.com)

HeurIstics DirecteD EvolutioN takes advantage of the 
common basis of Darwinian evolution used by the evolutionary 
techniques of artificial intelligence and the recombinant DNA 
techniques, achieving to reproduce the processes of diversity 
and selective pressure generation through a genetic algorithm, 

by which potentially improved genetic variants are obtained. 
This software is designed to generate libraries from genes with 
high homology, with preference to genes encoding proteins 
with 3 conserved domains; it can be used for other gene 
sequences other than Cry, as an example, Botulinum parental 
gene cross-linking is presented (see http://soft-hidden.com/
help).

Creation of initial populations

The genetic algorithm generates 2 initial populations, 1 for 
each parental gene, so that mutated genes are created from 
the cry11Aa and cry11Ba parental genes until completing the 
desired number of individuals in the initial populations. The 
new mutated genes correspond to the genes obtained by 
crossing the parental genes and performing random muta-
tions. For each cross, 2 parental genes are used, and as a 
result, a mutated gene is obtained for each of the 2 popula-
tions (see Figure 2).

Iterative cycles given by the number of generations

Once the initial populations have been created, the genetic 
algorithm starts its iterative process given by the desired num-
ber of generations. This iterative cycle includes the following 
actions: assessment of individual fitness, creation of the off-
spring, and replacement of a percentage of the population.

Assessment of individual f itness.  The process of fitness assess-
ment is carried out by evaluating the energy delta for every 
gene in each population. The energy delta is calculated by 
dividing the sequence of a gene in its possible 2-mers. Later, 
the energy contribution of each 2-mer is added, and the final 
energy delta of the gene is obtained without exclusion of nucle-
otides in the generated sequence, because the DeltaG allows all 
the combinations in the genetic code.

Figure 2.  Creation of mutated genes.

Figure 1.  Recombinant DNA techniques of directed evolution.

http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/
http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore/Bt/
http://soft-hidden.com
http://soft-hidden.com
http://soft-hidden.com/help
http://soft-hidden.com/help
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Creation of the offspring.  For each individual in the offspring, a 
parent from each of the populations must be selected. The pro-
cess of choosing a parent of the population includes selecting 2 
candidates by using the roulette method, considering their fit-
ness value. Then both candidates must compete, but only the 
best one in terms of penalty gets selected as the parent of such 
population to be used in a cross. The penalization value is cal-
culated as the sum of 3 terms: penalization for mutations (pm), 
penalization for the size of the open reading frame (ORF) (ps), 
and penalization for delta value (pd)

The penalization for mutations is equal to 0 if the mutations 
in domains 1, 2, and 3 of the new gene are not higher than the 
desired number of mutations for each domain. If the number of 
mutations is higher than the desired number, then the penali-
zation value is the sum of the additional mutations in each of 
the 3 domains.

The penalization for the size of the ORF is equal to 10 if its 
size is smaller than the ORF of the parental gene. Otherwise, 
the value is equal to 0.

The penalization for delta value is the absolute value of the 
difference between the delta value of the new gene and the 
limit of the desired interval. If the value belongs to this interval, 
then the penalization value is equal to 0.

In this regard, the contest for choosing a parent from each 
population must be carried out as many times as new individu-
als are to be created in each population. Once the 2 parents 

have been selected, the new children will be created by follow-
ing the methodology explained in Figure 2.

Replacement of a percentage of the population.  Then, selective 
pressure is applied, rejecting a part of the population with defi-
cient fitness values to be replaced by the individuals of the new 
population. The number of individuals to be replaced is ruled 
by the parameter of population replacement, which aims to 
ensure that the most recent generation or population contains 
the most suitable individuals from the previous generation.

These actions are repeated cyclically over a determined 
number of generations (see Figure 3).

Diversity generation

HeurIstics DirecteD EvolutioN uses 2 parameters to generate 
diversity: mutation rate and fragmentation length. The muta-
tion rate is a probability value that rules the allowed rate of 
DNA changes in the parental genes and can be considered as 
homogeneous or non-homogeneous throughout the parental 
gene. In the latter case, HIDDEN takes advantage of intrinsic 
thermodynamic markers of parental genes, calculated with the 
SANAFold software.20 SANAFold allows the characterization 
of genes from the thermodynamic behavior of their genic 
regions to favor the formation of secondary DNA structures, 
under conditions of directed evolution experiments.21,22 The 

Figure 3.  HIDDEN genetic algorithm. HIDDEN indicates HeurIstics DirecteD EvolutioN.
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mutation rate with non-homogeneous distribution is based on 
the assumption that the formation of secondary DNA struc-
tures does not favor the gene recombination or the mutation 
appearance.20

On the contrary, the fragmentation length is considered as 
the second parameter that generates diversity, because it regu-
lates the crossing operation of individuals in the genetic algo-
rithm. This parameter corresponds to the number of base pairs 
(bp) expected in the small pieces of DNA of parental genes, 
which act as substitutes for primers in a DNA shuffling experi-
ment.2 This parameter is incorporated into HIDDEN through 
a Poisson probability model, indicating to the genetic algo-
rithm the location of the crossing point where any 2 genes of 
the population are recombined.5

Simulation scenarios

Simulation scenarios were designed for conditions of low com-
putational performance,10 in which each simulation produces a 
library of up to 100 individuals or chimeric sequences. The 
DNA sequences used as parental genes belong to the group of 
Cry11 toxins of Bacillus thuringiensis, and cry11Aa and cry11Ba 
genes with high homology were selected from this group (see 
Table 1).

Each simulation scenario includes the parameters of diver-
sity (Mutation Rate and Fragmentation Length) and selection 
(Number of Generations). The ranges established for the vari-
ation of these parameters were taken from in vitro DNA shuf-
fling conditions.

Values established for the Fragmentation Length were 75bp 
and 150bp, which correspond to experimental length values of 
fragments obtained through the action of DNAsaI in in vitro 
DNA shuffling experiments with cry11 genes.23

On the contrary, the values of 15 generations and 100 gen-
erations established for the parameter of number of genera-
tions correspond to values close to the range reported as 
favorable for the obtention of chimeric libraries, in in vitro10 
and in silico directed evolution studies.23 This parameter allows 
replicating the number of cycles of directed evolution that is 
used as stop criteria for the execution of the HIDDEN genetic 
algorithm.

As for the third parameter (Mutation Rate) that has an 
impact on the simulation scenarios established, 6 values 
(0.001, 0.003, 0.005, 0.01, 0.02, 0.05) were selected, from 

which 0.02 and 0.05 have been reported in some in silico 
studies as optimal simulation values. However, to explore the 
incidence of mutation rate, lower values reported in other 
experimental scenarios of directed evolution were intro-
duced.10 This third parameter is incorporated into the simu-
lation scenarios by using 2 strategies: the first one assumes 
that the Mutation Rate is homogeneously distributed 
throughout the gene; the second one assumes that the cry 
gene, made up of 3 genic regions, distributes the mutation 
rate preferentially in these regions, where the distribution cri-
teria are ruled by the intrinsic thermodynamic information of 
the region.20 In this regard, each mutation rate value consti-
tutes itself as a parameter that generates 2 possible scenarios, 
simulations in mutation conditions with Homogeneous and 
Non-Homogeneous Distribution. Based on these, 48 simula-
tion scenarios were constructed by combining these parame-
ters: distribution of mutation rate (homogeneous distribution, 
non-homogeneous distribution), fragmentation length (75bp, 
150bp), number of generations (15, 100), and mutation rate 
(0.05, 0.02, 0.01, 0.005, 0.003, 0.001)

Statistical analysis

Four estimators were established to assess the results of the 48 
simulation scenarios: Diversity, Identity, Truncated Proteins, 
and Fitness (Energy Delta). Each individual obtained through 
HIDDEN is an amino acid sequence of a Cry11 variant, and 
each sequence provides biological information that can be sim-
plified in the constructed estimators. The arithmetic mean of 
the information provided by a group of 100 individuals that 
make up a chimeric library generated by HIDDEN constitutes 
the value of an estimator, which is useful to assess the incidence 
of the diversity and selection parameters in the different simu-
lation scenarios.

The simulations of the 48 scenarios were performed in 
triplicate to ensure the statistical variability of the data. In 
total, 144 simulations were performed and provided that 
each simulation scenario gives 2 populations, 1 population 
for each parental gene, 288 values were obtained for each of 
the 4 population estimators, ie, a total of 1152 values were 
calculated.

For the statistical analysis, tests were performed to analyze 
the variance of a single factor and n variables, depending on the 
configuration of the data required. These tests were useful in 

Table 1.  Information on cry11 genes used in in silico simulations.

Toxin Source of 
extraction

Open reading frame

AA St-Sp (Bp) GenBank access ID

Cry11Aa1 Bt israelensis 646 32-1972 M31737-J03510

Cry11Ba1 Bt jegathesan 724 64-2238 X86902

Abbreviation: AA, amino acids; BP, base pairs.
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establishing whether the differences in estimators among sim-
ulation scenarios were statistically significant or not.

Results and Discussion
As a result of the 144 simulations, a total of 288 chimeric 
libraries were obtained, from the 48 simulation scenarios run in 
triplicate, because each simulation produces 2 chimeric librar-
ies: a chimeric library with 100 sequences of Cry11Aa variants 
and another chimeric library with 100 sequences of Cry11Ba 
variants. A total of 28 800 sequences were obtained, corre-
sponding to 14 400 sequences of Cry11Aa variants and 14 400 
sequences of Cry11Ba variants.

Four population estimators were calculated from these 
sequences: (a) Library Diversity, ie, the percentage of the 
obtained population that was not repeated; (b) Population 
Identity, which corresponds to the average of population 
identity with the parental gene, obtained from the calcula-
tion of the identity matrix using the ClustalW algorithm 
(https://www.ebi.ac.uk/Tools/msa/clustalo/); (c) Library 
Functionality, consisting of the arithmetic mean of the pen-
alty factor of individuals concerning the presence of coding 
fragments for internal stop codons; and (d) Library Fitness, 
calculated from the arithmetic mean of the Gibbs Energy, 
constituting the thermodynamic stability of each individual. 
The 48 scenarios were organized in pairs of comparable  
scenarios for the first 3 parameters: 24 pairs of comparable 
scenarios based on the distribution of mutation rate (homo-
geneous distribution vs non-homogeneous distribution), 24 
pairs of comparable scenarios depending on the fragmenta-
tion length (75bp vs 150bp), and 24 pairs of comparable sce-
narios based on the number of generations (15 generations vs 
100 generations).

Finally, the 48 simulation scenarios were organized in 8 
groups to assess the mutation rate parameter, making 1 group 
for every 6 simulation scenarios, where only the mutation rates 
change (0.05, 0.02, 0.01, 0.005, 0.003, 0.001). For these 8 
groups, the Tukey test was performed when there was a statisti-
cally significant difference among them.

Thus, a total of 72 pairs of comparable scenarios and 8 
groups were assessed for a review of 80 evaluation environ-
ments. For each one of them, 4 ANOVAs (analyses of vari-
ance) were estimated, 1 ANOVA for each population 
estimator, for a total of 240 ANOVAs evaluated in Cry11Aa 

chimeric libraries and 240 ANOVAs in Cry11Ba chimeric 
libraries. A statistical review was performed based on the 480 
ANOVAs calculated.

Number of generations

The Number of Generations parameter showed significant 
differences in the 4 estimators for the chimeric libraries 
with Cry11Aa and Cry11Ba variants. However, the Energy 
Delta and Diversity estimators showed a greater number of 
significant differences when varying the number of genera-
tions parameter. For Cry11Aa libraries, the number of dif-
ferences was 22 and 8, and for Cry11Ba libraries, it was of 20 
and 6, corresponding to Delta Energy and Diversity, respec-
tively. On the contrary, the Truncated Proteins and Identity 
estimators of the variants concerning the parental gene 
showed differentiated behaviors that were not very repre-
sentative (see Table 2).

The Number of Generations, as a parameter of the genetic 
algorithm, showed effects on the Diversity estimator of the 
chimeric libraries obtained from cry11Aa and cry11Ba genes. A 
significant decrease in Diversity was observed in simulation 
scenarios where the number of generations was equal to 100, 
compared with the simulation scenarios using a number of 
generations equal to 15. Diversity values near 0.95 and 0.96 
that were obtained with 15 generations decreased to values 
near 0.84 and 0.86 with 100 generations for cry11Aa and 
cry11Ba gene libraries, respectively (see Table 3). This can be 
attributed to the characteristics of the genetic algorithm devel-
oped: by increasing the number of generations, the best indi-
viduals are conserved for the next generations. Thus, a selected 
group tends to remain and duplicate individuals. Therefore, if a 
greater Diversity is desired, few generations of directed evolu-
tion are preferred.10

On the contrary, though a high number of generations has 
an undesirable effect on the Diversity estimator, it favors the 
Delta Energy estimator (see Table 3). The Delta Energy esti-
mator represents the thermodynamic stability of the variants 
obtained, which showed an increase in stability in simulation 
scenarios of 100 generations, demonstrating an average energy 
increase of 46.53 Kcal/mol for Cry11Aa variants and 45.23 Kcal/
mol for Cry11Ba variants. However, this can be also attributed 
to the characteristics of the genetic algorithm, given that the 

Table 2.  Significant statistical difference (ANOVA), based on the number of generations parameter.

Cry11 15 generations vs 100 generations

15 generations Delta energy Truncated energy Identity Diversity 100 generations

Cry11Aa 15 Generations 22/24 1/24 1/24 8/24 Cry11Aa 100 Generations

Cry11Aa 15 Generations 20/24 2/24 2/24 6/24 Cry11Ba 100 Generations

Abbreviation: ANOVA, analysis of variance.
Number of ANOVAs of 24 that has a value of P < .05 for each estimator.

https://www.ebi.ac.uk/Tools/msa/clustalo/
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greater the number of generations, the better the values of the 
fitness function are likely to be obtained.

In addition, a high number of generations is supported by a 
good average in the truncated protein estimator (see Table 3), 
where there is a slight improvement of the indicator, to inter-
pret this estimator, values that are very close to 1 imply a 
high penalty of population individuals due to the presence of 
internal stop codons. Thus, in comparison with arithmetic 
means, an improvement near 0.11 is observed for Cry11Aa 
and 0.12 for Cry11Ba. Then, for the benefit of the thermo-
dynamic stability and with average favorable truncations, 
scenarios with a high number of generations are preferred.10 
This is because the genetic algorithm (HIDDEN) simulates 
a high selective pressure that includes energy delta penalties 
and internal stop codons.10

Furthermore, average population values of identity around 
0.6 were observed. Although it is not a high population iden-
tity value, it is maintained despite the number of generations 
implemented. The above seems to indicate that without 
another modified experimental condition, 3-domain Cry11 
variants are highly conserved.24

To conclude, a high number of generations compared with 
a low number of generations favor the efficiency (Delta Energy, 
Truncated Proteins) of the Cry11 chimeric libraries and do not 
favor the generation of diversity (Diversity). These data coin-
cide with the reported one in previous studies where a strong 
selective pressure has been proved to be beneficial in directed 
evolution experiments.10,25

Fragmentation length

The results of the ANOVA to evaluate the behavior of the 
population estimators from a 75bp-to-150bp fragmentation 
length showed some significant differences in 3 out of the 4 
estimators: Delta Energy, Truncated Proteins, and Identity for 
the Cry11Aa variant populations as well as in all 4 estimators 
for the Cry11Ba variant populations (see Table 4). In both 
cases, the number of scenarios with significant differences was 
very low [0%-16%] (see Table 4).

When checking the incidence of fragmentation length 
on the population arithmetic mean of the estimators, an 
improvement of about 0.09 was observed for Cry11Aa and 
0.11 for Cry11Ba on the truncated protein estimator, when 
using 75bp fragmentation lengths (see Table 5). This situa-
tion may be because 75bp fragmentation lengths do not 
favor the formation of heteroduplex in the process of genetic 
algorithm recombination, reducing the possibility of includ-
ing restriction codons within the sequences,6 then favoring 
the efficiency of the library.

Distribution of mutation rates

The Mutation Rate parameter was applied using a 
Homogeneous and a Non-Homogeneous Distribution,20 pre-
senting significant differences in 3 out of the 4 estimators: 
Delta Energy, Truncated Proteins, and Identity for the variant 
populations of Cry11Aa as well as in all 4 estimators for the 
variant populations of Cry11Ba (see Table 6). In both cases, the 

Table 3.  Population averages of the estimators in simulation scenarios with variation in the number of generations.

Estimators Cry11Aa variants Cry11Ba variants

15 generations 100 generations 15 generations 100 generations

Diversity 0.95 ± 0.03 0.84 ± 0.1 0.96 ± 0.03 0.86 ± 0.09

Identity 0.67 ± 0.12 0.63 ± 0.14 0.62 ± 0.13 0.59 ± 0.12

Truncated proteins 0.92 ± 0.17 0.81 ± 0.34 0.92 ± 0.16 0.80 ± 0.35

Delta energya –2391.33 ± 31.17 –2437.86 ± 30.02 –2675.83 ± 33.48 –2721.06 ± 32.71

aUnits of energy Delta are Kcal/mol; other estimators are in proportions.

Table 4.  Significant statistical difference (ANOVA), based on the fragmentation length parameter.

Fragmentation length: Cry11 75Bp vs 150Bp

75Bp Delta energy Truncated proteins Identity Diversity 150Bp

75bp fragmentation 
length for Cry11Aa

4/24 1/24 3/24 0/24 150bp fragmentation 
length for Cry11Aa

75bp fragmentation 
length for Cry11Ba

2/24 2/24 3/24 2/24 150bp fragmentation 
length for Cry11Ba

Abbreviation: ANOVA, analysis of variance; BP, base pairs.
Number of ANOVAs of 24 that has a P < .05 value for each estimator.
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number of scenarios with significant differences was very low 
[0%-12%].

When reviewing the incidence of mutation rate distribution 
on the population arithmetic mean of the estimators, an 
improvement of about 0.11 for Cry11Aa and 0.12 for Cry11Ba 
was observed on the truncated protein estimator, when using 
non-homogeneous mutation rates, ie, distributed according to 
thermodynamic criteria differentiated in the 3 conserved Cry 
domains (see Table 7).

The above suggests that the intrinsic thermodynamic infor-
mation in the cry11Aa and cry11Ba gene sequences affects the 
recombination process, favoring the efficiency of the recom-
bined sequences. These differences may be associated with the 
evolutive characteristics of the parental genes.20,24

Mutation rates

Delta energy.  Significant differences are observed in the “Delta 
Energy” values, among simulation scenarios with medium-low 
mutation rates [0.001-0.001] and high mutation rates [0.02, 
0.05]. This occurs for both Cry11Aa (see Table 8) and Cry11Ba 
(see Table 9).

The percentage of scenarios with high mutation rates and 
significant differences when comparing the 8 groups was in the 
range of [12%-100%] for Cry11Aa (see Table 8) and in the 
range of [0%-75%] for Cry11Ba (see Table 9).

These significant differences in the Delta Energy value lead 
to the conclusion that high mutation rates [0.02, 0.05] favor 
the thermodynamic stability of the obtained libraries (see 

Table 5.  Population averages of the estimators in simulation scenarios with variation in FL.

Estimators Cry11Aa variants Cry11Ba variants

FL 75Bp FL 150Bp FL 75Bp FL 150Bp

Diversity 0.88 ± 0.09 0.88 ± 0.07 0.92 ± 0.07 0.91 ± 0.06

Identity 0.67 ± 0.97 0.63 ± 0.13 0.62 ± 0.10 0.59 ± 0.12

Truncated proteins 0.82 ± 0.23 0.91 ± 0.10 0.80 ± 0.20 0.91 ± 0.10

Delta energya –2411.33 ± 37.28 –2417.80 ± 36.65 –2694.32 ± 38.37 –2702.48 ± 38.15

Abbreviation: FL, fragmentation length; BP, base pairs.
aDelta energy units are in Kcal/mol; other estimators are in proportions.

Table 6.  Significant statistical difference (ANOVA), based on the parameter of mutation rate distribution.

Mutation rate distribution: Cry11 homogeneous vs non-homogeneous

Homogeneous Delta energy Truncated proteins Identity Diversity Non-homogeneous

Homogeneous 
distribution for 
Cry11Aa

3/24 2/24 1/24 0/24 Non-homogeneous 
distribution for Cry11Aa

Homogeneous 
distribution for 
Cry11Ba

3/24 2/24 2/24 1/24 Non-homogeneous 
distribution for Cry11Ba

Abbreviation: ANOVA, analysis of variance.
Number of ANOVAs of 24 that has a value of P < .05 for each estimator.

Table 7.  Population averages of estimators in simulation scenarios with variation in the number of generations.

Estimators Cry11Aa variants Cry11Ba variants

H-MR NH-MR H-MR NH-MR

Diversity 0.89 ± 0.08 0.88 ± 0.11 0.92 ± 0.07 0.90 ± 0.10

Identity 0.65 ± 0.13 0.65 ± 0.13 0.62 ± 0.13 0.59 ± 0.12

Truncated proteins 0.92 ± 0.17 0.81 ± 0.34 0.92 ± 0.16 0.80 ± 0.35

Delta energya –2415.35 ± 40.25 –2413.85 ± 36.52 –2698.99 ± 42.29 –2697.89 ± 37.74

Abbreviations: H-MR, homogeneous mutation rate; NH-MR, non-homogeneous mutation rate.
aDelta energy units are expressed in Kcal/mol; other estimators are in proportions.
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Figure 4). From the algorithmic point of view, we may consider 
that higher values in the mutation rates allow greater explora-
tion of the spectrum and favor the optimization of the fitness 
value of the obtained sequences.

Identity.  Significant differences are observed in the “Iden-
tity” values among simulation scenarios with medium-low 
mutation rates [0.001-0.002] and the highest mutation rate 
[0.05], with respect to Cry11Aa (see Table 10) and between 
medium-low mutation rates [0.001-0.001] and high muta-
tion rates [0.02, 0.05] for Cry11Ba (see Table 11).

The percentage of scenarios with high mutation rates 
and significant differences when comparing the 8 groups 
was in the range of [25%-87%] for Cry11Aa (see Table 10) 
and in the range of [0%-25%] for Cry11Ba with respect to 
a mutation rate of 0.02 and [0%-62%] for Cry11Ba with 
respect to a mutation rate of 0.05 (see Table 11).

These significant differences in the Identity value lead to 
the conclusion that high mutation rates [0.02, 0.05] do not 
favor the identity of the obtained libraries (see Figure 5). This 
conclusion was expected as mutation rates allow the algorithm 

to explore sequence changes that favor the fitness function 
(Gibbs Free Energy of the sequence).

Truncated proteins.  Significant differences are observed in the 
“truncated proteins” values among simulation scenarios with 
medium-low mutation rates [0.005-0.05] and lower mutation 
rates [0.001, 0.003], for both Cry11Aa (see Table 12) and 
Cry11Ba (see Table 13).

The percentage of scenarios with low mutation rates and sig-
nificant differences when comparing the 8 groups was in the range 
of [0%-12%] for Cry11Aa with a mutation rate of 0.003 and of 
[12%-25%] for Cry11Aa with a mutation rate of 0.001 (see Table 
12). Similar behavior was observed for Cry11Ba (see Table 13).

These significant differences in the “Truncated Proteins” value 
lead to the conclusion that low mutation rates [0.001] favor the 
formation of sequences without internal stop codons (see Figure 
6). This conclusion was to be expected as the high mutation rates 
increase the inclusion of variations in the sequence, increasing the 
probability of incorporating stop codons.

Table 8.  Significant statistical difference of the energy Delta estimator 
for Cry11Aa based on the variation in mutation rates.

Delta energy for Cry11Aa

0.001 0.003 0.005 0.01 0.02 0.05

0.001 0 0 1/8 8/8 8/8

0.003 0 0 0 8/8 8/8

0.005 0 0 0 5/8 7/8

0.01 1/8 0 0 1/8 6/8

0.02 8/8 8/8 5/8 1/8 6/8

0.05 8/8 8/8 7/8 6/8 6/8  

Number of P < .05 values obtained with the Tukey test among simulation 
scenarios for 8 compared groups.

Table 9.  Significant statistical difference of the Delta energy estimator 
for Cry11Ba based on the variation in mutation rates.

Delta energy for Cry11Ba

0.001 0.003 0.005 0.01 0.02 0.05

0.001 0 0 0 5/8 6/8

0.003 0 0 0 4/8 6/8

0.005 0 0 0 2/8 6/8

0.01 0 0 0 0 4/8

0.02 5/8 4/8 2/8 0 4/8

0.05 6/8 6/8 6/8 4/8 4/8  

Number of P < .05 values obtained with the Tukey test among simulation 
scenarios for 8 compared groups.

Figure 4.  Behavior of the population “Delta energy” estimator, when 

varying the mutation rate and the H-MR (homogeneous mutation rate) 

and NH-MR (non-homogeneous mutation rate) distribution.

Table 10.  Significant statistical difference of the identity estimator for 
Cry11Aa based on the variation in mutation rates.

Cry11Aa identity

0.001 0.003 0.005 0.01 0.02 0.05

0.001 0 0 0 0 7/8

0.003 0 0 0 0 6/8

0.005 0 0 0 1/8 2/8

0.01 0 0 0 0 4/8

0.02 0 0 1/8 0 2/8

0.05 7/8 6/8 2/8 4/8 2/8  

Number of P < .05 values obtained with the Tukey test among simulation 
scenarios for 8 compared groups.
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Diversity.  Significant differences were observed in the “Diver-
sity” values among simulation scenarios with low mutation 
rates [0.001-0.005] and the highest mutation rate [0.05] for 
Cry11Aa (see Table 14), while there were no significant differ-
ences for Cry11Ba.

These significant differences in the “Diversity” value lead to 
the conclusion that low mutation rates [0.001-0.005] favor the 
formation of conserved sequences (see Figure 7). This conclu-
sion was expected as the low mutation rates make the explora-
tion of new global optimizations through the function of the 
algorithm optimization difficult, so it tends to replicate the 
best solutions in high numbers.

Then, the analysis of the incidence of mutation rates on the 
estimators resulted as expected. High mutation rates [0.02-
0.05] favor the Energy Delta estimator but do not favor the 
identity estimator. Meanwhile, low mutation rates [0.001-
0.003] favor the Truncated Protein estimator but do not favor 
the Diversity estimator.

These analyses of population estimators provide some guid-
ance on how directed evolution parameters may affect results in 
libraries generated from parental genes that code for proteins 
from 3 conserved domains.

Structural analysis of the best sequences obtained 
using HIDDEN

The HIDDEN algorithm creates libraries of 3-domain Cry 
variants. The generated sequences have associated scores: 

Table 11.  Significant statistical difference of the identity estimator for 
Cry11Ba based on the variation of mutation rates.

Cry11Ba identity

0.001 0.003 0.005 0.01 0.02 0.05

0.001 0 0 0 2/8 5/8

0.003 0 0 1/8 2/8 5/8

0.005 0 0 0 1/8 4/8

0.01 0 1/8 0 0 4/8

0.02 2/8 2/8 1/8 0 0

0.05 5/8 5/8 4/8 4/8 4/8  

Number of P < .05 values obtained with the Tukey test among simulation 
scenarios for 8 compared groups.

Table 12.  Significant statistical difference of the truncate proteins 
estimator for Cry11Aa based on the variation in mutation rates.

Cry11Aa truncated proteins

0.001 0.003 0.005 0.01 0.02 0.05

0.001 1/8 1/8 1/8 2/8 2/8

0.003 1/8 1/8 1/8 1/8 0

0.005 1/8 1/8 0 0 0

0.01 1/8 1/8 0 0 0

0.02 2/8 1/8 0 0 0

0.05 2/8 0 0 0 0  

Number of P < .05 values obtained with the Tukey test among simulation 
scenarios for 8 compared groups.

Table 13.  Significant statistical difference of the truncate proteins 
estimator for Cry11Ba based on the variation in mutation rates.

Cry11Ba truncated proteins

0.001 0.003 0.005 0.01 0.02 0.05

0.001 1/8 1/8 2/8 2/8 2/8

0.003 1/8 0 1/8 1/8 0

0.005 1/8 0 0 0 0

0.01 2/8 1/8 0 0 0

0.02 2/8 1/8 0 0 0

0.05 2/8 0 0 0 0  

Number of P < .05 values obtained with the Tukey test among simulation 
scenarios for 8 compared groups.

Figure 5.  Behavior of the population “identity” estimator when varying 

mutation rates and H-MR (homogeneous mutation rate) and NH-MR 

(non-homogeneous mutation rate) distribution.

Figure 6.  Behavior of population “truncated proteins” estimator when 

varying the mutation rate and H-MR (homogeneous mutation rate) and 

NH-MR (non-homogeneous mutation rate) distribution.
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penalties due to energy delta, penalties due to protein truncation, 
penalties due to the number of mutations in the DNA sequence, 
and in the amino acid sequence. Six libraries generated by 
HIDDEN were randomly selected, and from these libraries, the 
best sequence was selected by filtering the truncation penalty 
equal to 0. A structural review was performed on these randomly 
obtained sequences.

As a first approximation, the structural analysis was focused 
on establishing the percentages of identity and similarity of 
each of the mutant proteins obtained by using the in silico tools 
previously described, compared with the Cry11Aa and Cry11Ba 
parental ones (see Table 15).

These results show that the variant with the lowest identity 
and similarity in relation to the Cry11Aa parental protein was 
H15pop1-25 with values of 75.5% and 84.8%, respectively. On 
the contrary, the variant with the highest identity and similar-
ity values was S15pop1-1, with percentages of 85.1% and 
89.9%. Regarding the Cry11Ba parental protein, the mutants 
with the highest and lowest percentages of identity and simi-
larity were H15pop1-25 (67.1%/76.1%) and S100pop1-1b 
(59.4%/70.4%), respectively. As the highest percentages of the 

identity of the entire set of mutant proteins were given with 
Cry11Aa, the subsequent analyses were performed considering 
its amino acid sequence.

Mutation rates of the mutant protein group ranged between 
14.9% and 24.5%, showing that the lowest mutation rate pro-
tein was S15pop1-1 and the highest one was H15pop1-25. On 
the contrary, the H15pop1-6, H15pop1-15, S100pop1-1a, and 
S100pop1-1b mutants showed values of 19.1%, 17.7%, 16.9%, 
and 19.9%, respectively.

Later, an analysis of substitutions, deletions, and insertions 
domain-wise was performed. This information is vital to deter-
mine how thermodynamic parameters are involved in the 
mutant recombination. It is possible to observe that domain III 
is the one that presented the least number of variations, both in 
variants of homogeneous mutation rate and in mutants of 
restricted variation by domains, according to the parameters of 
DNA thermodynamic spontaneity with SANAFold.20 The 
mutants with the most variations in the domain I were 
S100pop1-1b, H15pop1-6, and S100pop1-1a, with values of 
10.73, 8.53, and 7.10, respectively. As additional information, it 
was observed that the S15pop1-1 mutant did not present any 
mutation in domain III, confirming at the same time that it is 
the least changing with respect to Cry11Aa (see Table 16).

There are positions in domain I that are described as impor-
tant factors in the toxicity, all this in relation to the formation 
of lithic pore, regions such as the α4 helix and α5 helix, to 
which the formation of the oligomer is attributed.26 On the 
contrary, regions located in domain II have been identified, 
specifically, the positions corresponding to the loops 3, α8, β4, 
and these regions are reported as residues involved in receptor 
bindings.27 Finally, domain III, which has been reported to play 
an important role in the stability of receptor bindings, mainly 
with aminopeptidases (aminopeptidase N (APN)) and alkaline 
phosphatase (ALP), also plays an important role in the conser-
vation of protein integrity with the solvent. It also presents 
important regions such as the coding zone to the β16 leaf, 
which is mainly involved in the stability of the toxin-receptor 
bindings.28

In this regard, it is important to verify the changes that the 
mutants maintain concerning these zones. As for the coding 
region of the α4 helix, the variants H15pop1-6, H15pop1-25, 
H15pop1-15, S15pop1-1 show changes, being H15pop1-6 the 
one with the highest number of changes with 6 substitutions 
(LF-TS) in positions 138-139 and (LSGA-QLIS) in posi-
tions 141-144. Studies conducted by Girard et al29 show the 
importance of this region with specific substitutions. This 
study reports a reduction in the toxic activity of Cry11Aa com-
pared with Manduca sexta due to changes in the positions 
I132C, S139C, and V150C.

With respect to the α5 helix, it was one of the important 
regions with a great variation by the mutants, only the mutant 
S100pop1-1 maintained this region with respect to the 

Table 14.  Significant statistical difference of the diversity estimator for 
Cry11Aa based on the variation in mutation rates.

Cry11Aa diversity

0.001 0.003 0.005 0.01 0.02 0.05

0.001 0 0 0 0 1/8

0.003 0 0 0 0 1/8

0.005 0 0 1/8 1/8 1/8

0.01 0 0 1/8 0 0

0.02 0 0 1/8 0 0

0.05 1/8 1/8 1/8 0 0  

Number of P < .05 values obtained with the Tukey test among simulation 
scenarios for 8 compared groups.

Figure 7.  Behavior of the population “diversity” estimator when varying 

the mutation rate and H-MR (homogeneous mutation rate) and NH-MR 

(non-homogeneous mutation rate) distribution.
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Cry11Aa parental protein. The mutant with the highest num-
ber of changes in this region was H15pop1-25 with 3 changes, 
2 of them (LH-FN) in positions 174-175 and the last one in 
position T177G. A study in M. sexta conducted by Alzate 

et al showed that a change in position L157 from the α5 helix 
region provoked a decrease in the toxic activity of the Cry1Ab 
protein. However, the same modification produced an increase 
of up to 4 times compared with Lymantria dispar.24

Table 15.  Table of percentage of identity (upper triangular matrix) and similarity (bottom singular matrix—region in gray) of the variants for the 
parental proteins.

Cry11Aa Cry11Ba H15pop1-6 H15pop1-25 H15pop1-15 S15pop1-1 S100pop1-1a S100pop1-1b

Cry11Aa 53.7 80.9 75.5 82.3 85.1 83.1 81.1

Cry11Ba 67.7 61.0 67.1 65.2 64.1 62.4 59.4

H15pop1-6 87.8 71.4 69.8 79.5 78.9 79.3 73.9

H15pop1-25 84.8 76.1 81.4 81.8 83.1 77.7 67.7

H15pop1-15 89.3 75.0 86.5 89.8 91.4 87.1 75.6

S15pop1-1 89.9 74.7 86.8 89.9 95.0 84.0 76.8

S100pop1-1a 89.8 73.1 86.2 87.0 91.3 89.9 75.2

S100pop1-1b 88.5 70.4 82.6 80.6 86.0 85.7 84.8  

The values show the identity and similarity of the variants for Cry11Aa and Cry11Ba.

Table 16.  Changes in the mutant domains.

Variant DOMAIN I Totala DOMAIN II Totala DOMAIN III Totala Total

H15pop1-6 6.59 SUS 8.53 5.68 SUS 6.73 2.64 SUS 2.64 6.40

0.78 INS 0.75 INS 0.0 INS

1.16 DEL 0.30 DEL 0.0 DEL

H15pop1-25 4.52 SUS 5.3 11.21 SUS 11.96 8.92 SUS 9.12 8.57

0.39 INS 0.45 INS 0.0 INS

0.39 DEL 0.30 DEL 0.20 DEL

H15pop1-15 4.01 SUS 5.18 9.87 SUS 10.32 1.01 SUS 1.01 5.89

0.39 INS 0.45 INS 0.0 INS

0.78 DEL 0.0 DEL 0.0 DEL

S15pop1-1 3.49 SUS 4.27 9.12 SUS 9.72 0.0 SUS 0.0 5.06

0.39 INS 0.30 INS 0.0 INS

0.39 DEL 0.30 DEL 0.0 DEL

S100pop1-1a 5.04 SUS 7.10 7.32 SUS 7.77 1.42 SUS 1.82 5.99

0.90 INS 0.45 INS 0.20 INS

1.16 DEL 0.0 DEL 0.20 DEL

S100pop1-1b 7.63 SUS 10.73 4.48 SUS 5.08 2.43 SUS 3.25 6.92

1.55 INS 0.30 INS 0.41 INS

1.55 DEL 0.30 DEL 0.41 DEL

Abbreviations: DEL, deletion; INS, insertion; SUS, substitution; Total, percentage of changes throughout the sequence.
The analyses were performed comparing the amino acid sequence of the Cry11Aa parental protein. The sizes for Domain I, Domain II, and Domain III are 774, 669, and 
493, respectively. The size of the parental protein is 1936.
aTotal: percentage of changes in each domain.
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The α8 loop region showed multiple changes. However, 
the mutants S15pop1-1 and S100pop1-1b did not show any 
changes in this region. The most variable mutant was 
H15pop1-15 with 5 substitutions (PVNY286-289NISP) 
(E291D), an insertion in position 285N. These changes may 
suggest a variation in mutant toxicity, as in the study con-
ducted by Fuji et al that highlights the importance of the α8 
loop of the Cry1Ab toxin in the interactions of the toxin 
with the cadherin BT-R1 receptor.30,31 This suggests that 
mutants may be potentiated concerning the binding to the 
receptor or, in another context, an improvement in addi-
tional interactions with target insects that have not been 
reported yet.

The mutants H15pop1-25 and S100pop1-1a showed 
changes in the β4 loop region. The first mutant showed a 
specific change in position N358T, and the second mutant 
had an insertion in position 362HN. Studies conducted by 
Fernández et al32 highlighted the importance of β4 loop in 
Cry11Aa bindings to the corresponding receptors of Aedes 
aegypti. Similarly studies conducted by Li et al, where mutants 
with variations were obtained in the regions associated to the 
β4 loop, and 2 potentiated mutants of Cry2Ah1 (Cry2Ah1-vp 
and Cry2Ah1-sp) were produced. The mutant Cry2Ah1-vp 
had an insertion of a Proline in position 354 (V354VP), and 
Cry2Ah1-sp showed a change from a Valine to a Serine and 
Proline (V354SP); these mutants had increased toxicity of 1.5 
and 5.3 times, respectively, compared with the parental activ-
ity. The attribution of the increase according to the authors of 
the study may be correlated with the toxin-receptor interac-
tion of Helicoverpa armígera.33

On the contrary, the mutants H15pop1-15 and S100pop1-1a 
showed changes in the region corresponding to loop 3, the for-
mer containing the highest number of changes (4) in positions 
RI483-484KL, S488G, Q492E. The changes in this position 
may represent the importance of the acquisition of increased 
toxicity. Several studies state that loop 3 region of Cry toxins is 
directly related to the significant binding to cadherin BT-R1 
receptors with Cry1Aa and Cry1Ab binding to the BtR recep-
tors of Heliothis virescens.30 Studies on mutagenesis in coding 
regions to loop 3 conducted by Pacheco et al34 demonstrate the 
importance of this amino acid region, in which variations of 
toxicity could be correlated to changes made in Cry1Ab loop 3, 
ascribing that the lack of binding of toxins to the BBMV of M. 
sexta result in changes in oligomerization and affect the toxicity 
of the protein

Almost all mutants show changes in domain III, except 
for S15pop1-1. Studies conducted by Burton et al reported 
reductions in the toxicity of Cry1Ac proteins when making 
changes in domain III through mutagenesis. The obtained 
variants showed decreases in the toxic activity compared with 
M. sexta, strongly suggesting a loss in the binding affinity to 
the receptor.35,36 In another study conducted by Liu et al, 
they revealed that the position W544 from β18 to β19 

regions plays a fundamental role in maintaining the toxin 
integrity and made changes in this position. Although the 
mutant W544F showed no change in its toxicity, which 
remained the same, it showed greater stability compared 
with the ultraviolet (UV) radiation exposure than its paren-
tal protein.37 Lucena et al also reported in 2014 the impor-
tance of β16-β17 regions. In this study, they made mutations 
in Cry1Ac, increasing the toxic activity in 1.4 times compared 
with Spodoptera exigua, where they conclude the implication 
of domain III in the aspects mentioned above.38

In addition, the mutant S100pop1-b showed no changes in 
most of the regions mentioned above. However, it exhibited 
multiple changes throughout the amino acid sequence in 
regions of domain I other than α4 and α5 helixes, as it is the 
zone corresponding to the α1 helix with 3 substitutions (NYT-
GRL) in positions 25-27. This may suggest a change in the 
protein toxicity because this helix has also been described in 
the formation of the oligomer and, additionally, in the binding 
and stability of the helix to the GPI (glycosylphosphatidylino-
sitol) receptors.39

This review exposes that the algorithm generates sequences 
that could be biologically viable candidates to synthesize in 
future studies and perform toxicity experiments on them. For 
example, the sequence S100pop1-1a presents variations in 
domain II, loop 3, α8 helix, and β4 loop, as well as variations of 
domain III in β16 region, conserving the regions necessary for 
pore formation in domain I. These characteristics make it a 
great candidate as an improved Cry variant to control A. aegypti 
or any other biological target.

The number of variations in the sequences reviewed in this 
section (see Table 16) is explained by the selection process, 
where the filter used was the truncation penalty score but not 
the mutation penalty score. We used this filter with the idea of 
doing future in vitro toxicity evaluation studies. However, 
despite the high percentage of similarity with respect to 
Cry11Aa protein in wild type, it can be assumed that these in 
vitro experiments can be carried out.

Conclusions
The genetic algorithm coupled to experimental conditions of 
DNA shuffling for 3-domain cry11 genes proved to be a useful 
computational approach to analyze the incidence of experi-
mental parameters of diversity and selection generation in the 
obtention of chimeric libraries of Cry variants.

Data analysis led to the conclusion that the chimeric libraries 
of Cry11 variants, ie, Cry11Aa and Cry11Ba variants, are favored 
in Diversity with few simulation generations (15 generations) 
and high mutation rates [0.02, 0.05]; in Energy Delta with 
many simulation generations (100 generations) and high muta-
tion rates [0.02, 0.05]; in Identity with respect to the parental 
genes, with low mutation rates [0.001-0.005]; in the decrease of 
the number of truncated proteins, with low fragmentation 
lengths (75bp), low mutation rates, and non-homogeneous  
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distribution in the 3 conserved domains, according to the ther-
modynamics associated to the SANAFold calculations.

Any other way, it was possible to demonstrate from the 
structural review of a 6-variant sample that the obtained 
sequences have structural characteristics from the Cry protein 
families of 3 conserved domains. On the other side, a high per-
centage of identity and similarity was obtained, in relation to 
the Cry11Aa and Cry11Ba parental sequences, with variations 
in structural regions suggesting feasibility to perform in vitro 
toxicity evaluation studies.

We consider that these findings will be useful for all those 
working in in silico and in vitro directed evolution methods 
involving Cry proteins of 3 conserved domains.
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