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Abstract: Since December 2019, the global health population has faced the rapid spreading of
coronavirus disease (COVID-19). With the incremental acceleration of the number of infected cases,
the World Health Organization (WHO) has reported COVID-19 as an epidemic that puts a heavy
burden on healthcare sectors in almost every country. The potential of artificial intelligence (AI)
in this context is difficult to ignore. Al companies have been racing to develop innovative tools
that contribute to arm the world against this pandemic and minimize the disruption that it may
cause. The main objective of this study is to survey the decisive role of Al as a technology used
to fight against the COVID-19 pandemic. Five significant applications of Al for COVID-19 were
found, including (1) COVID-19 diagnosis using various data types (e.g., images, sound, and text);
(2) estimation of the possible future spread of the disease based on the current confirmed cases;
(3) association between COVID-19 infection and patient characteristics; (4) vaccine development
and drug interaction; and (5) development of supporting applications. This study also introduces a
comparison between current COVID-19 datasets. Based on the limitations of the current literature,
this review highlights the open research challenges that could inspire the future application of Al in
COVID-19.

Keywords: artificial intelligence; deep learning; COVID_19

1. Introduction

The first coronavirus was detected among humans in 1960 and was known as a human
coronavirus (HCoV) [1]. It caused mild diseases to the lower and upper respiratory that
led to acute respiratory failure in some cases [2]. The situation became more serious in
2003 with the appearance of a severe acute respiratory syndrome (SARS-CoV) in China [3].
At that time, nearly 1 million people were affected by SARS-COV, with a mortality rate of
9.5%. The spread of this virus stopped by isolating the infected people and detecting the
causes of infections. Subsequent experiments in wild animals have shown that SARS-COV
exists in cats and bats [4]. Therefore, it was believed that the virus spread to humans from
bats and cats, then spreading from human to human [5]. The situation has remained stable
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from 2004 till the appearance of another dangerous virus in 2102, known as the Middle
East respiratory syndrome coronavirus (MERS-CoV) [6]. The MERS-CoV appeared firstly
in patients with acute pneumonia in the Kingdom of Saudi Arabia (KSA) [7,8]. Although
MERS-CoV has a lower spread rate than SARS, the rate of mortality among MERS-CoV
patients was higher [9]. By the end of 2018, about 2500 MERS-CoV was reported with a
mortality rate up to 30%.

In 2019, the world faced another coronavirus that started to spread in Wuhan, China,
known as SARS-COV-2, which causes COVID-19. COVID-19 is a rapidly spreading disease
that transmits through contact with the infected person. Respiratory droplets (direct
contact) and aerosolized droplets (indirect contact) are considered the main cause of
infections [10,11]. If there is no vaccine for COVID-19 available, non-pharmaceutical
interventions such as personal hygiene and social distancing are the most precautionary
measure against COVID-19 outbreak [12]. It is noteworthy to understand that at its peak,
the pandemic overloads existing medical centers. Thus, emergency and the intensive care
centers have expanded beyond their capacity to serve the increasing number of infected
subjects. COVID-19 usually starts with mild symptoms, such as fever and cough, and
changes gradually, causing organ failure and death [13]. Therefore, in such pandemics, the
medical expertise and even the patient’s relatives need to make fast and educated decisions
to reduce the sudden deterioration.

The main challenges of COVID-19 are its identification and classification. This is due
to its interaction with other lung infections. Currently, reverse transcriptase quantitative
polymerase chain reaction (RT-qPCR) is the standard for COVID-19 identification [14].
Small quantities of viral RNA are collected from the nasal swab and then amplified to be
identified with virus detection techniques. Unfortunately, the traditional way for RT-qPCR
is time-consuming and requires the involvement of medical expertise, which may not be
available. On the other hand, some studies have shown high false-positive rates for RT-
gPCR testing [15-17]. Therefore, virology, medical, and artificial intelligence (Al) scientists
have stood right up to limit this crisis with innovative approaches.

In this regard, the Al community provided significant solutions that could help detect,
predict, and treat COVID-19 [18]. Textual and radiation data are considered basic data types
for a COVID-19 diagnosis. Textual data include patient records, PCR analysis, mobility
data, etc. Radiation data include chest CT, X-ray, etc. Al has been commonly used to
solve several problems based on various data types (i.e., text, image, video, signals, etc.).
Machine learning (ML) algorithms utilize the available data to learn and adapt models to
solve specific tasks. The main contribution of this paper is to survey the state of the art in
Al applications in a COVID-19 context, from different perspectives and various disciplines.

We discuss the detailed characteristics of COVID-19 symptoms, behaviors, and patterns.
We investigate the role of automated analysis and diagnosis of COVID-19 based on
the WHO statistics worldwide.

e  We propose a taxonomy for using Al, big data, and statistics in COVID-19 diagnosis,
prediction, and treatment. Based on this taxonomy, a comprehensive survey of current
Al literature is provided.

e  We collect the details about all available COVID-19 datasets (i.e., textual data, medical
images, and speech data).

o  We explore the limitations of the current literature of Al applications in the COVID-19
domain and draw the directions for future improvements that could handle these challenges.

The rest of the article is organized as follows. Section 2 introduces the taxonomy
of using Al for classifying COVID-19. Section 3 presents a survey of the literature for
using Al in a COVID-19 context. Section 3 shows a comparison among COVID-19 datasets.
Section 4 is a discussion of the results discovered from studying the literature. Limitations
of the current solutions and future directions are introduced in Section 5, and the paper is
concluded in Section 6. Table 1 include all terms and its abbreviation.
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Table 1. List of abbreviations.

Term Abbreviation
Al Artificial Intelligence
ARDS Acute Respiratory Distress Syndrome
AKI Acute Kidney Injury
AUC Area Under the Roc Curve
BSTI British Society of Thoracic Imaging
CAP Community-Acquired Pneumonia
CFRs Case-Fatality Rates
CNN Convolutional Neural Network
COVID-19 Coronavirus Disease 2019
CR Computed Radiology
CT Computed Tomography
DL Deep Learning
DX Direct X-ray Detection
EBI European Bioinformatics Institute
GISAID Global Initiative on Sharing Avian Influenza Data
ICT Information Communication Technology
KSA Kingdom of Saudi Arabia
NCBI National Center for Biotechnology Information
RNA Ribonucleic Acid
RT-PCR Reverse Transcriptase Polymerase Chain Reaction
SEIQR Susceptible-Exposed-Infected—Confirmed—-Removed
SEIR Susceptible-Exposed-Infected—Recovered
SIR Susceptible-Infected—Recovered
SIRM Society of Medical and Interventional Radiology
OR Odds Ratio
WHO World Health Organization
3CLpro 3C-Like Protease

2. The Study Taxonomy

The world is facing the COVID-19 pandemic, and it needs to be managed. A reliable
estimation of future confirmed cases, identification of disease pathology, and an effective
vaccine to slow down the spread of infection are highly needed. This section presents a
taxonomy that summarized the role of Al and information communication technology
(ICT) in facing the COVID-19 pandemic. As shown in Figure 1, this taxonomy divides the
literature into five main research domains: (1) Diagnosis, utilizing ML and DL in COVID-19
diagnosis based on various types of data, such as medical imagery data (CT chest scan,
X-ray images, and ultrasound images), respiratory data (breathing and cough sound),
or other data (e.g., symptoms); (2) Estimation, providing statistical estimation about the
expected future rounds and infection rate; (3) Association, using ML and DL techniques to
examine the correlation between the risk of COVID-19 infection and other patients’ data
(e.g., patient’s characteristics and medical comorbidities); (4) Treatment, by developing
models that help to analyze the virus protein and RNA sequences in a way that helps in
drug repurposing and drug development; (5) Application, by developing supportive tools
that help in taking preemptive actions, such as intelligent chatbots, monitoring systems, and
supportive robotics. Figure 1 shows the taxonomy of using Al in COVID-19 management.
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Figure 1. Taxonomy of using Al in COVID-19.

2.1. COVID-19 Diagnosis
2.1.1. Diagnosis Using Medical Images

Although medical images, such as those from CT scans and X-rays, could provide
valuable pathological information, only the qualitative assessment is written in the radi-
ological report. This is due to the lack of computerized tools that measure the infected
areas and their changes. Therefore, the changes across the medical images are often ig-
nored. On the other hand, contouring the infected areas in the CT scan is recommended
for quantitative evaluation. Unfortunately, manual contouring is time-consuming, tedious,
and may lead to discrepancies in the assessment. With this in mind, fast and automated
contouring tools for COVID-19 medical images are an urgent need to face the fast-growing
COVID-19 pandemic. The following subsections survey the ML and DL models used to
make auto controlling, segmentation, and classification of COVID-19 medical images for

disease diagnosis.

Diagnosis Using CT Chest Scans

Several studies have developed DL models for COVID-19 identification and diagnosis,
with promising results, which are mainly based on CT chest images [19]. For example, [20]
proposed a DL model to extract the visual features from CT chest scan images. The study
used the extracted features to differentiate between COVID-19 and other pneumonia
diseases. However, the proposed system was not able to define the progression of COVID-
19 disease. Ahuja et al. [21] developed a CNN model to analyze and detect COVID-19. The
developed model depended on extracting and specifying opacities in the lung images, and
it achieved 92.21% and 98.50% for sensitivity and specificity, respectively. The developed
system is considered robust in terms of pixel spacing. Jaiswal et al. [22] provided a DL
model for CT segmentation and detection of COVID-19 infection. Xue et al. [23] did a
similar task by developing a classification model to discriminate COVID-19 and other
non-pneumonia, with an accuracy of 86.30%. In [24], Ozturk et al. proposed a 3D CNN
model to classify COVID-19 patients from normal ones using chest CT images and other
images of viral pneumonia. First, the infected regions were segmented from a CT chest
scan using the 3D CNN model. Then, these separated images were categorized using
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the location attention model. Finally, the noisy-OR Bayesian function has been used to
calculate the confidence score.

Due to the limited access to COVID-19 datasets, several studies reported that the
pre-trained model and transfer learning became the most effective techniques to build
diagnosis and prediction models for COVID-19 [25-27]. For example, Jaiswal et al. [22]
utilized deep transfer learning to build a classification model for chest CT scans using
the DenseNet201 pre-trained model. A total of 1260 CT images for COVID-19 patients
and 1232 CT chest images for health patients were used to train and test the DenseNet201
model. The proposed model achieved promising results in terms of various metrics,
including precision, recall, F-measure, and accuracy, at 96.20%, 96.20%, 96.20%, and 96.21%,
respectively. In [28], Pathak et al. also used transfer learning and the ResNet50 pre-trained
model to build a 2D classification model for COVID-19 to classify infected CT chest images
from the normal images. The proposed model achieved a training accuracy of 96.32% and a
testing accuracy of 93.11%. However, the model takes a long training time. Wang et al. [29]
proposed a segmentation and classification model for the CT scans, the pipeline was
divided into two main steps. First, the segmentation step was based on DL models (i.e.,
U-Net, 3D U-Net++, and V-Net). Second, the classification was by using a pre-trained
model (i.e., ResNet-50, and DPN-92). The model was evaluated using CT chest scans of
732 cases and resulted in a classification model with an AUC = 99.01%. In [30], Weng et al.
developed a model that analyzed the changes in the CT chest images of the infected patients.
They developed a CNN model that utilized an inception pre-trained model and transfers
the learning technique to build an effective model for diagnosis. This model achieved a
performance of 89.66 % for accuracy and saved time.

Other studies tried to overcome the shortage in the CT datasets by training the
model in various types of pneumonia. For example, in [31], Cheng et al. proposed a
multiclass deep CNN model. The system evaluated more than ten thousand CT chest
images from four categories, including influenza, non-viral pneumonia, COVID-19, and
non-pneumonia subjects. The proposed system was evaluated based on 1940 samples, with
an AUC, sensitivity, and specificity of 95.76%, 90.10%, and 97.16 %, respectively. The same
procedure has been followed by [26,28,32-36].

In [37], Farid et al. proposed a prediction model that predicted the recurrences in both
COVID-19 and SARS cases. They composited a hyper feature extraction technique of the
main four filters, namely, a Gabor filter, MPEG-7 histogram filter, fuzzy-64, and local binary
histogram. Then, they built a hybrid classification technique of CNN and ML models to
achieve a high accuracy in prediction. The proposed model enhanced the performance and
reduced the false-positive rate after applying feature optimization techniques. The model
was evaluated by using only 51 images extracted from the Kaggle benchmark dataset.
As it is clearly noticed, the evaluation of the model using such a small dataset does not
guarantee the generalization ability.

Some studies tried to examine the relationship between CT scans and symptoms.
For example, brahmin et al. [38] analyzed 121 CT chest images of positive COVID-19
cases. They found that the prevalence of symptoms and the signs of diseases increased
with time from the onset time. In [39], Xueyan et al. proposed a COVID-19 prediction
system that integrated CT chest scan images, patient demographics (e.g., age, weight,
and sex), clinical symptoms (e.g., fever, cough, and sputum), and laboratory test (e.g.,
WBC, lymphocytes, neutrophils, etc.). The authors reported that the presence of pa-
tient symptoms and laboratory tests gave the classification model a better performance—
84.34% for sensitivity (con fidence interval [CI] = 77.1%, 90.0% ; p = 0.662)—compared
to a CNN model that used CT chest images only, which achieved a sensitivity of 82.6%
(CI =76.2%, 89.4% ; p = 1). The p-value clarifies the significant difference with respect
to the integrated model. Table 2 lists more COVID-19 classification models based on
CT- images.
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Table 2. Diagnosis ML and DL algorithms based on CT scans for COVID-19 patients.

Evaluation Metrics

Ref.  Year Model Task Dataset
ACC P SN
. 498 CT scans from 151 positive
Using CT chest .
[40] March 3D CNN model images infiltrative COVID.—19 sub]ectsf and 4?7 ct scans 70.02 - -
2020 . from different subjects with various
biomarkers .
types of pneumonia
Desenet201 . . .
[22] June pre-trained model .Ob]ect det.eC.tIOI.‘l, 1260 COVID-19 images .and 1232 CT 9621 9620 96.20
2020 . binary classification from health patients
with CNN
[g] June CNN Model Binary classification ~ +10 of COVID-19images and 439 of 93.01 9518 9145
2020 health images
Ma Multiclass 219 CT scans from COVID-19 patients,
[24] Y 3D CNN model e L 220 from IAVP and 174 from healthy 83.90 81.30 86.70
2020 classification
people
Segmentation
March models (V-Net, 732 COVID chest CT scan (400 from
[29] 2020 U-Net, FCN) and Detection normal cases and 332 from COVID_19 92.22 - 97.21
classification models cases
(ResNet, inception)
10,000 CT images related to four classes,
[31] May CNN model Mu.lt‘lcla.ss including COYID—19, non-viral . 95.75 90.11
2019 classification pneumonia, influenzas, and
non-pneumonia
60,457 CT chest scan images were
March Multiclass collected from 100 COVID-19 cases,
[35] 2020 ResNet-50 model classification 102 non-COVID-19 viral pneumonia, and 98.81 9820 94.52
200 normal lungs.
36] Y€ DenseNet121 model COVID-19 4106 CT images (925 COVID-19, 7833  76.61 80.39
2020 prognostic tool 342 pneumonia)
. e Predicting the
[37] March ;Izglid;éa(scsi\lﬁg talﬁg recurrences in both 51 SARS and COVID-19 CT chest scans 96.20 96.12 96.77
: 2020 ! ML) SARS and COVID-19 from the Kaggle benchmark dataset. ’ ’ ’
cases
Segmentation
March techniques (SegNet, Multiclass 3000 CT images of COVID_19 and
[41] DRUNET) and e . . - 94.33 91.22
2020 e . classification pneumonia then testing on external data
ResNet classification
model
618 CT images (219 images from 110
June Object detection and COVID-19 patients with mean age 50,
23] 2020 3D CNN model binary classification = 224 from IVAP patients with mean age 61, 86.60 8677 98.21
and 175 CT images from healthy people.
Examine the effect of
. 2143 chest CTs related to
May  U-net and ResNet32 synthetic data on s .
[42] 2020 models COVID-19 327 COVID-19-positive syb}ects across 90.06 - -
P seven countries
classification
Utilizing CT images,
March ML (RF and SVM) patient symptoms . .
[39] 2020 and CNN models for a binary 626, negative cases 279 patients 83.77 818 842
classification task
C o . 312 CT scan images in addition to patient
June  Multi-objective CNN Multiclass .
[43] 2020 model classification symptoms aggregated from COVID-19 93.40 91.00 89.00

patients in 9 days
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Table 2. Cont.

Evaluation Metrics

Ref.  Year Model Task Dataset
ACC P SN
622 CT chest images from 122 for
August CNN based on . e . ..
[27] 2020 ResNet 50 model Binary classification COVID-19 positive cases and 500 for 97.95 97.44 97.31
normal cases
Classification 219 images fI:Ol’n 110 patients with
Ma COVID-19 from COVID-19 (with mean age 50 years),
[44] y DL model . 224 images from 224 patients with IAVP 86.72  86.5 86.5
2020 pneumonia at early .
stages (mean age 61 years), and 175 images from
175 healthy cases (mean age 39 years)
ImageNet and
pre-trained model
June
[45] 2020 (ResNet50 and Binary classification - 89.22 - 89.61
ResNet100) and
CNN model
CT images from 1186 patients
April Fully connected DL . e b (132,583 CT slices). Data was divided
[46] 2020 model Binary classification into training, validation, and test datasets 9621 950 96.21
with percentage 7:2:1
Using Generative 1- pneumonia dataset that includes
Adversarial (5863 X-ray images categorized: normal
May Networks and . e and pneumonia.
[47] 2020 ResNet pretrained Binary classification 2- 624 images selected from normal and 9877 9875 99.21

model to classify
COVID-19 images

COVID-19 cases to demonstrate the
effectiveness of the model

Chest CT scan-based detection of COVID-19 is considered difficult, as patients need
to be moved to the CT room with a danger of radiation, and machines need a high level
of cleaning after each use. Therefore, a CT chest scan is not recommended as the main
identification tool for COVID-19.

From the previous table (Table 2), we could notice the following: (1) 60% of the studies
build binary classification models, 34% built multiclass classification models, and 6% used
object detection techniques to detect COVID-19; (2) 48% used transfer learning to overcome
the shortage in data; (3) studies that build binary classification models achieve better results
than binary-class classification models; and (4) 66% of the studies used DL models for
COVID-19 classification, whereas 34% used conventional ML models (i.e., SVM, RF, DT,
etc.). The best results are achieved when using pretrained models with the GAN network
model and ResNet pretrained model [47]. This is due to using a pretrained model to
fine-tune the network parameter and use GAN to provide a robust model and overcome
the overfitting problem.

Diagnosis Using X-ray

COVID-19 radiological analysis is a common and cost-effective technique for COVID-19
detection, especially in the intermediate stage of the disease. Medical experts in [48] re-
ported that X-ray of COVID-19 patients presented no change in the early stages of the
disease. However, with disease progression, two main observations are commonly ob-
served in X-ray images, including patchy infiltrates in the lower and upper zones of the
lungs. Moreover, the transfer of digital X-ray images does not need any transportation from
the point of acquisition to the point of analysis, making the diagnostic operation extremely
fast. Moreover, the portable X-ray machines allow testing within an isolation ward. These
machines minimize the main need for additional personal protective equipment. It also
minimizes the risk of hospital-acquired infections for patients. Therefore, several recent
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studies utilized X-ray in COVID-19 diagnosis. The main goal of this subsection is to discuss
the state of the art of COVID-19 diagnosis and detection based on X-ray images.

Several recent studies applied different ML and DL techniques in diagnosing COVID-19
based on radiographic imagery. For example, Elisha et al. [49] provided an ML model for
COVID-19 diagnosis. The developed model was used to examine patients” similarities
according to the X-ray images. It was trained using 1384 COVID-19 patients with ages
ranging from 18 and 63 and tested using 350 images. The results in accuracy reached
89.7%, and the AUC reached 94.0%. Other researchers utilized a pre-trained model to
improve the model performance. For example, in [50], the authors provided a diagnostic
model for COVID-19 using transfer learning. Thirteen pre-trained models, such as VGG,
AlexNet, ResNet, etc., were used to extract features from 380 X-ray images; then, SVM
was used for the classification. Authors reported that ResNet with SVM gave the highest
accuracy of 95.33% in 22 independent executions. In [51], Shi et al. provided a diagnosis
model called infection size aware random forest (ISARF). This model was built based on
1685 X-ray images from COVID-19 patients and 1027 from patients with pneumonia. They
used VB-net to identify the lesion size and categorized them into four main groups. Finally,
RF was used to provide the final classification decisions. The model provided accuracy,
specificity, and sensitivity of 87.9%, 83.3%, and 90.6%, respectively. Kiran et al. [52] pre-
sented a multi-image augmented model using the CNN model. This model enhanced the
COVID-19 detection process based on chest X-ray and chest CT scan images. The main
objective of this study was to provide medical experts with a more accurate diagnosis
system as the integration of X-rays and CT scans will ease the detection process of finding
changes in human lungs with zero false-positive and false-negative rates. The model was
trained on 19 COVID-19 cases and 50 cases of non-COVID-19. The classification accuracy
reached 99.44% for X-ray and 95.38% for classifying CT scan images. Kevser and Ferhat [53]
presented a DL transfer learning technique for detecting COVID-19 based on chest X-ray
images. The authors utilized various pre-trained models, such as VGG19, VGG16, ResNet,
DenseNet, and InceptionV3. They reported that using the VGG16 technique gave the
highest classification accuracy of 80% among the other four proposed models. The same
procedure has been followed in [35,54]. The authors in [54] used five pre-trained models,
including ResNet50, InceptionResNetV2, and Xception. These models were trained on
5857 chest X-rays and 767 chest CT images. Results in classification accuracy were 84%
for X-ray and 75% for CT scan. Table 3 lists more classification models based on the
X-ray images.

Table 3. Comparison between Al diagnosis algorithms based on X-ray for COVID-19 patients.

Evaluation Measures

Ref.  Year Method Task Dataset P SN
ACC (%) o o
(%) (%)
.. . 99.4 for
[52] July 2020 aulgdr;llitrll:cggaSZep }fﬁfﬁf ﬁfﬁﬁ?ﬁfﬁig 100 cases of COVID-19 and XT3y, 95098 9478
. e non-COVID-19 95.3 for CT ‘ ‘
learning classification model
scans
Evaluate the performance . .
- VGG16, VGG19, of CNN architecture and 1‘2; fgg{,}gf‘f;ifi:je
[53] 252 0 ResNet, DenseNet, transfer learning in the 700 pf Dheumonia. an d, 96.78 98.65 96.46
and InceptionV3 COVID-19 classification PP !
503 normal cases)
process
Using SVM (Support
Vector Machine), CNN (84 for
November (Conventional Neural = Examine the health status 5857 Chest X-rays and 767 Xora
[54] Networks), of the patient’s lung based Chest CTs for COVID-19 Y - -
2020 . 75 for CT
ResNet50, on CT scan and X-ray positive cases scan)
InceptionResNetV2,

Xception, VGGNet16
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Table 3. Cont.

Task

Dataset

Evaluation Measures

Ref. Year Method P SN
0,
ACC (%) ) (%)
499 CT images aggregated
from 13 December 2019, to
Supervised pre-trained Diagnostic tool for 23] anuar'y .2020' used for
March ) . the training process.
[60] 2020 based 2D model called COVID-19 detection using 131 CT images ageresated 90.01 90.65 91.21
DeCOVNET 3D images §€S a58Tes
from 24 January to
6 February, were used for
the testing process
CT scans images from
. . 88 patients with positive
Using 3D images to fast .
(1] February  DLmodelbasedon 400 Joo covID-19 from COVID-19 10limagesfrom g, ) go37 949
2020 relation extraction . patients infected with
pneumonia bacteria pneumonia, and
86 images of healthy cases.
Model firstly trained on
5977 images of viral
Anomaly detection Multiclass classification pneumonia (no COVID-19)
[62] July 2020 algorithm with based on anomal cases and 37,393 health 72.77 71.30 -
y g y y
efficient Net detection technology cases. Then testing on the
X-COVID dataset that
include106 COVID-19 cases
Using different Using image 423 X-rays of COVID-19
pre-trained models augmentation in cases, 1485 X-rays of viral
[63] June 2020 (ResNet, AlexNet, enhancing COVID-19 pneumonia cases, and 982 %7 982
SGDM- SqueezNet) classification 1579 of normal cases
Viral, normal, and bacterial
Feature optimization dataset available at
technique with Deep . (https:/ / github.com/
[64] June 2020 CNN model, known COVID-19 detection Perceptron21/CovXNet) 98.1 985 989
as COVXNet (Last access date:
10 February 2021)
A set of
5232 anterior—posterior (AP)
Data augmentation 1ma§ezso£ri)l:;l(irte;1;v ith
[65] May 2020 and DL classification COVID-19 detection & ) 99.25 - -

models

It includes 1583 normal
cases, 2780 bacterial
pneumonia, and 1493 CXRs
with COVID-19

From the previous table, we could notice the following: (1) 33% of the studies built
binary classification models, 46% built Multiclassification model, and 8% used anomaly de-
tection for COVID-19 classification (2) 68% used transfer learning to fine-tune the network
parameter for a limited size dataset. (3) ML models were used in 46% of the studies, where
44% used DL models. Using feature optimization techniques with DL models enhances the
detection and the classification process [64]. (4) Using data augmentation increases the size
of the available dataset and therefore enhances the classification accuracy [52,65]. Using
both X-rays and CT scans increase the performance of the classification model. The best
performance is obtained when using object detection with a pretrained darknet model [24].
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Diagnosis Using Ultrasound

Ultrasound (US) identification is an indoor positioning system (IPS) that is utilized to
automatically detect and define the location of objects in real time with high accuracy. It
is done by attaching nodes to the surface of persons, issues, and things; then, it transmits
an ultrasound signal to connect their locations to microphone sensors [66]. Ultrasound
is already used for various lung diseases, such as pneumonia and lung cancer [67]. The
authors in [68] presented a survey study about the ultrasound findings from many types
of research studies. It has been suggested as an effective method for diagnosis, especially
in low-income countries with limited resources. Therefore, US has started to be the
first-line examination instead of X-ray for COVID-19. However, the literature on the
applicability of US in COVID-19 diagnosis is still limited. For example, the proposed
approach in [69] utilized lung US to define suspected COVID-19 patients. The essential
goal relied on the investigation of identifying COVID-19 during the initial outbreak. The
outcome resulted in 41% of patients being COVID-19 positive, and includes 67% of them
that were diagnosed with CP. They achieved 95%, 61%, and 90% in terms of accuracy,
specificity, and sensitivity, respectively. In [70], the authors used 2,392,963 frames extracted
from 64 videos. These videos were aggregated with three different categories (COVID-19,
healthy, and pneumonia). The VGG-16 pre-trained model was used, followed by hidden
layers (dense, dropout, batch normalization, and an output layer with SoftMax activation
function) to identify COVID-19. The study resulted in a classification model with an
accuracy of 89% and sensitivity of 96%. Lung US is also used to specify the duration of
symptoms. In [71], authors used data from 28 patients (14 male and 14 female) that had a
positive COVID-19 infection to investigate the utilization of US in specifying symptoms
duration and disease severity. They reported that a thickness in the pleural line was
observed in most patients with a long duration of the disease than those with a lesser
disease duration. Pulmonary consolidation is also commonly observed in critical-case
patients compared to moderate-case patients. One of the main challenges in using US in
COVID-19 diagnosis is the quality of the US frames. This is due to the low penetration of
the sound waves, which may result in noisy and low-resolution frames. This limitation
motivated researchers to develop techniques that help in improving the quality of US
images, such as noise filtering wavelet deconvolution [72] and contrast-limited histogram
equalization (CLAHE) [73]. More classification models based on US images are listed
in Table 4.

Table 4. A comparison of ultrasound-based Al research for classifying COVID-19 patients.

Evaluation Measures

Ref Year Method Dataset Task
ACC P SN
150 exams. Lung

Aovril ultrasound was Evaluating diagnostic
[74] P Machine learning performed adopting accuracy of COVID-19 82.1 - -

2020 . .

the 12-region model, using lung ultrasound
6 on each side
evaluate the applicability

[69] May Deep learnin 58,924 US frames of ultrasound for making 95 61 90

2020 P & ! lung examination in

COVID-19 patients
Positive
. . Use lung US for 16 -

[67] August Machlne’learnmg 1650 frames from patients with COVID-19 to predlctlve'86 89 04

2020 algorithms 16 patients : . and negative

make the diagnosis L
predictive 96

Ma VGG-16 pre-trained 2392 963 frames form Provide automatic COVID-19: 97 % 7
[70] y model followed by o . detection of COVID-19 Pneumonia: 82 93 98

2020 64 videos

other hidden layers based on US images Healthy: 63 001 1.00
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We could notice the following: (1) only a few studies utilized ultrasound for COVID-19
detection from the previous table; (2) 80% of the studies used DL and pretrained models to
classify the images; (3) studies extracted image frames from ultrasound videos; and (4) the
best performance was obtained when using the pretrained model VGG followed by hidden
layers trained on a large number of frames [70].

2.1.2. Diagnosis Using Respiratory Data

Respiratory data in conjunction with ML and DL could help in detecting and diagnos-
ing COVID-19 through three main approaches [75,76]: (1) using cough sounds to classify
positive and negative COVID-19 cases; (2) screening COVID-19 patients using breathing
sounds and breathing rates; and (3) using patient sound to detect COVID-19 symptom:s,
including stress, anxiety, fatigue, etc. These speech datasets could also be used in remote
diagnosis, monitoring, and screening for COVID-19 patients through telemedicine applica-
tions [27,77]. Kranthi et al. [78] provided a comprehensive survey using respiratory data
for COVID-19 diagnosis.

Using the cough sound in COVID-19 diagnosis was motivated by several key findings,
including the following: (1) several studies have shown that cough sounds from several
diseases has distinct features, which could be used to train sophisticated Al models for
diagnosis and detection [36—40]. This finding was confirmed by the meta-analysis in this
study [41]. They reported that COVID-19 sound data include unique features that could
be used in COVID-19 diagnosis, which do not overlap with other respiratory infections.
In [76], the authors confirmed that the chest data they aggregated through stethoscope
examination were used for COVID-19 diagnosis. (2) The WHO [79] reported that coughing
is a common symptom among 67.7% of COVID-19 patients and considered to be the main
source of infection.

Based on these findings, recent studies explored how the cough sound is collected
from patients via various devices and used these data for COVID-19 diagnosis. For ex-
ample, the authors in [80] provided an early effort in creating a breathing sound dataset
for COVID-19. These data include the sound of the cough, breathing, and voice. These
sounds were collected using website applications to enable sound-based diagnosis for
COVID-19. In [81], Dunne et al. utilized three different datasets for diagnosis, including
(1) Google’s Audioset (http:/ /archive.is/MZMR]) (Last access date: 17 February 2021) ag-
gregated from YouTube videos (non-COVID-19); (2) the Corswara dataset (COVID-19); and
(3) data collected at Stanford University (https:/ /github.com /virufy/covid) (Last access
date: 17 February 2021). In [82], the authors developed a mobile application that analyzed
the patient’s cough sound and provided COVID-19 identification within 2 min. They built
a DL model based on 328 cough sounds aggregated from 150 patients using four categories
(bronchitis, asthma, COVID-19, and healthy). The developed model was able to differ-
entiate between COVID-19 cough sounds and the other sounds with an accuracy of 98%.
In [83], the authors depended on cough samples aggregated over the mobile phone from
3620 COVID-19-positive cases and built an application for COVID-19 diagnosis (known as
AI4COVID-19). The study explored transfer learning techniques to overcome the COVID-
19 cough training data shortage. It utilized the pre-trained model of ResNet18 to build a
classification model and achieved promising results (AUC = 97.0%, specificity = 94.6%, and
sensitivity = 98.5%). In [76], Brown et al. reported that respiratory sounds can be used to
distinguish COVID-19 respiratory sounds from normal sounds. They used a simple binary
classifier and achieved an AUC of 80%. Speech recordings from COVID-19 patients have
been analyzed to categorize a patient’s health status [84]. Faezipour et al. [77] depended on
sound data aggregated through web and android interfaces in building breathing tests for
COVID-19 diagnosis. They reported that this would be effective, especially with the rapid
increase of the required disease diagnostic tests. In [76], the authors used both cough and
breathing sounds to distinguish between COVID-19 and healthy sounds. They built three
binary classifiers, one for classifying COVID-19-positive cases from healthy individuals,
one for distinguishing COVID-19-positive cases from asthma cases, and one for classifying
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COVID-19-positive and healthy cases who have a cough. They achieved an AUC of 82%,
81%, and 80% for these classification tasks, respectively.

2.2. Estimation of Disease Spread

Since the first confirmed case in 2019, the confirmed COVID-19 cases in all world
were rapidly increased, which reached 86.7 million cases, including 1.87 million deaths
by January 2021. Determining the future severity of the outbreak is considered one of the
main keys to plan against this pandemic [85,86]. In this subsection, we survey the studies
that are concerned with analyzing the epidemic status, measure the reproduction number
and exponential growth using statistical and DL models. Such studies help prepare for
the potential spread and reveal the significance of strict health measures to manage the
COVID-19 pandemic.

The compartmental models are the most common models that are usually used for
studying the spread of pandemics [85]. In these models, the population is assigned to
specific labels, such as susceptible-infected-recovered (SIR) [87], susceptible—exposed—
infected—suspected again (SEIS), etc. [88]. Such models used stochastic frameworks to
forecast specific measures, such as the total number of infected people, infection rate,
and estimated epidemiologic parameters (i.e., reproduction number), and show how
public health strategies impact the epidemic outcome. For example, in the SIR model [89],
the susceptible population is assumed to be the whole population of the region minus
people that were previously infected by the disease. The infection rate is a function that
utilized both the number of infections and the rate of transmission to estimate the infected
population in each period. The SIR model has been used in several studies to estimate the
expected growth of COVID-19. For example, the authors in [90] used the SIR model to
measure the effect of social distancing in reducing the spread of infection. They tested the
model with different social distances to estimate the expected spread after the reopening.
Another study was conducted, at the beginning of the pandemic [91], using susceptible—
exposed—infected—confirmed-removed (SEIQR), which has been built upon the SIR model
to estimate the growth of COVID-19 in Wuhan, China. This study reported that the
lockdown in China would help limit the spread in the rest of the world. Similarly, in [91],
authors reported that the travel restrictions help in reducing the infection spread from
Wuhan to the rest of the world. Hazhir et al. [92] used the susceptible-exposed—infected—
recovered (SEIR) model to estimate the transmission of COVID-19 in 84 different countries.
This model tracked the infection transmission rate due to the travel network for each
country. SEIR was also used to forecast the pandemic peak in Japan [93]. The SIR and SEIR
models were used to compute the transmission rate from people to people, from animal
to people, and vice versa in [94]. Another study [95] was conducted in Egypt to predict
the time of the peak and study the changes in the Egyptian behavior during Ramadan
based on the SIR and SEIR models. The study measured the spread of the infection. In [96],
the authors used the DL model to estimate the risk of COVID-19 spreading outside China.
In [97], the authors utilized the logistic growth model to estimate the time and size of the
COVID-19 peak in South Korea and China.

Other studies tried to estimate the future spread based on basic and effective repro-
duction numbers (RO, Re) only. In epidemiology, the basic reproduction number RO is the
expected number of infected cases that are directly infected on average by one confirmed
case [98], where all populations are suspected to be infected. On the other hand, the effec-
tive reproduction number (Re) is the number of infected cases in a specific time and specific
environment; therefore, it is known as Rt (Rtime) [99]. In [100], Salihu et al. estimated the
expected growth and reproduction rate (R0) in Africa. Africa is considered one of the most
affected regions with coronavirus in the Middle East. The trade relations with China have
played a major role in aggravating the risk of African countries” exposure to infections and
spread of COVID-19 in a way that is difficult to counteract, especially with their reputation
for having fragile state health systems. Salihu et al. [100] analyzed the epidemic between
1 March and 12 April 2020 using the growth estimation function [101]. This estimated the
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exponential growth per day at 0.22 (95% CI: 0.20-0.24) and the reproduction number at
2.37 (95% CI: 2.22-2.51). In [102], authors depended on SEIR data of suspected, exposed,
infected, and recovered stocks that summarized the population groups and the changes in
screening, diagnosis, and contact rate to measure the expected growth. The study resulted
in a reproduction number of 2.6. In [103], the authors used Markov Chain Monte Carlo
(MCMC) to estimate the reproduction number and rate based on the number of confirmed
cases and deaths. The estimation results are a Re of 3.36 (94% CI: 3.20-3.64). In [104],
the authors studied the correlation between weather and COVID-19 spread in Indonesia.
Abdallah et al. [105] tried to estimate the epidemic spread in Kuwait using stochastic
modeling, and the same procedure has been done in Iraq [106,107] and Egypt [108,109].

DL models were also used to track the spread of COVID-19 virus infection in terms of
time and space. First, some studies utilized the respiratory patterns to predict tachypnea
as it is the first diagnostic feature that could be common among large-scale COVID-19
patients. In [110], Yunlu et al. used a bidirectional gated recurrent unit (GRU) to predict
tachypnea based on smartphone data. Second, researchers used DL models to predict
the risk level. In [111], Yanfang et al. introduced an Al system (known as «-satellite) to
specify hierarchic geographic risk assessment at different community levels. DNN was
applied to a large scale of real-time data aggregated via smartphone sensors to estimate the
risk level [112]. The aggregated data were then used in the development of an effective
strategy to combat the rapid increase of the pandemic. LSTM model was used to predict the
pandemic trend in Canada [113]. Shawni et al. [114] used a combined technique of LSTM
and GRU to measure the negative and positive of the release and death cases of COVID-19.

Despite the importance of such studies in facing the COVID-19 pandemic, the risk
of underestimation is still high due to several reasons [85], including (1) the nature of the
disease is insertable with other diseases, which results in a large number of populations
with mild symptoms (symptoms that similar to flu or cold) not being identified, and
thus some that have died due to COVID-19 infection will not be recognized; (2) the
variation in the number of tests across the countries resulted in imprecise estimations;
and (3) population density, interaction, and lifestyle resulted in variations in reproduction
numbers. Therefore, estimation should depend not only on statistical approximation, such
as RO and Re, but also on other factors such as socioeconomic status, population behavior
and awareness, and the quality of the healthcare system in each country.

2.3. Association of COVID-19 and Other Healthcare Factors

Currently, no biological markers have been confirmed to predict one’s susceptibility
to COVID-19. However, several studies tried to analyze the correlation between the risk
of COVID-19 infection and patient age, gender, blood type, and medical conditions (e.g.,
diabetes, cardiovascular, density, etc.) [100-103]. The following subsections discuss this
topic in detail [115-121].

2.4. Patient Characteristics
2.4.1. Blood Type

The susceptibility of viral infections among specific blood types has been previously
studied for various diseases. For example, Hepatitis and Norwalk were confirmed to have
relations with specific blood groups [122,123]. On that basis, researchers studied the rela-
tionship between blood type and COVID-19 risk of infection. In [116], the authors analyzed
the relationship between ABO blood type and the risk of COVID-19 infections. ABO blood
type donates the existence of antigens in erythrocytes in A and B blood types. The results
showed that the group A was correlated with a higher risk of infections in contrast to other
blood types. This study surveyed the blood test among 23,386 patients in Wuhan, China.
Applying statistical analysis tests (i.e., Chi-squared test) ended up in a 95% confidence
interval. The same results were reached in [124]. A few studies have analyzed the associa-
tion between Rh (positive and negative) and COVID-19 disease [115,125,126]. In [126], the
authors reported that a positive Rh is more protected against latent toxoplasmosis.



Diagnostics 2021, 11, 1155

14 of 44

24.2. Age

In this current pandemic, the association between patient age, risk of COVID-19
infection, and death have received much speculation. Most articles reported that older age
is considered one of the main factors for infection and mortality [127]. In [128], authors
analyzed the data from 20 European countries and reported that the R2 value ranged from
0.766 to 0.803 for patients above 75. Another study measured the infection rate and case
fatality rate among the population [129] and observed that Italy had a higher CFR of 9.3,
followed by the Netherlands with a CFR of 7.4 for patients more than 70 years old. The
study concluded that there is a strong relationship between age and fatality rate among
COVID-19 patients. The same conclusion was reached by [130,131]. Table 5 shows the
COVID-19 statistics according to patient age [130].

Table 5. Distribution of cases and CFR of COVID-19 patients across various countries.

Country Cases > 70 (%) CFR Death Age > 70 (%)
Canada 34.65 8.24 85.88
Italy 39.48 14.04 85.88
Denmark 17.01 4.71 87.45
Austria 16.82 3.85 85.12
Iceland 4.01 0.55 70.01
France 11.81 18.01 88.91
UK 16.62 16.14 82.33
USA 32.66 5.89 70.90
Spain 37.32 11.72 86.40
Sweden 21.01 7.44 88.94

2.4.3. Gender

The differences in men’s and women’s bodies due to their biology (sex) influence
the risk of COVID-19 infection and death rate. To attribute and address these differences,
several studies analyzed the infection distribution according to gender. In [132], the authors
reported that there is a gender inequality among COVID-19 infections. These differences
may be due to biological differences (i.e., comorbidities and immunity) or sociocultural
factors (i.e., number of tests for both males and females, timelines for medical support, etc.).
In [133], the authors reported that the proportion of death in males due to COVID-19 is
significantly higher than in females. In [134], the authors reported that a patient’s gender
might influence the risk of infection, and an immune response led to worse results in terms
of infection recovery. Figure 2 shows the statistics between males and females in terms of
infections, hospitalizations, admissions, and deaths. These statistics were built based on
the dataset available at https:/ /globalhealth5050.0rg (https:/ /globalhealth5050.0rg/ the-
sex-gender-and-covid-19-project/dataset/, access date: 10 February 2021).

For every 10 Female

R LI ll]
cases [JHEERERRREN There are 10 COVID-19 males
Hospittization [ [l NI NNERNEN There are 12 Hospitalization in males

ICU
addmission ............ ....... There are 19 ICU admissions - males
Co;:med ............... There are 15 confirmed death in males

Figure 2. Statistics between males and females based on the number of infected cases.

2.4.4. Obesity

Obesity is an indicator of high risk among various diseases (i.e., diabetes and heart
diseases) [135]. It has been associated with COVID-19 severity, admissions, and fatality
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rates [136]. An analytical study [137] on 16,000 COVID-19 patients conducted in the UK
reported that obesity is associated with COVID-19 death with a hazard rate (HR) of 1.33.
In [138], the authors analyzed data of 6000 COVID-19 patients and found that there was
a j-sharped curve between obesity and mortality. Another study was conducted in Latin
America [139] and reported a higher risk of infection for people with a body mass index
(BMI) > 30 kg/m?. This rate increased in lower-income people who already have a higher
risk of complications due to healthcare shortages.

2.4.5. Smoking

Smoking destroys the lungs and weakens the immune system [140], so fighting off
respiratory diseases such as COVID-19 is hard [141] in smoking people. According to
a WHO scientific report [142], around 9.7% of COVID-19 patients are active smokers or
have a smoking history. By giving up smoking, you are giving your lungs the chance
to become clean and be repaired, improving the ability of a faster recovery. In [143], the
authors surveyed the association between smoking, history of smoking, and COVID-19
severity. The study analyzed 16 articles that serve that relation. They concluded that there
is a higher association between people who have a history of smoking and COVID-19
infection (odds ratio (OR) = 1:51; 94% CI: 1.11-2.04; p < 0.008), between active smoking and
COVID-19 infection (OR= 2:18; 94% CI: 1.27-3.45; p < 0.001). In another study [112], the
authors compared different smoking histories (active smokers, not smokers, and smoker
quitter). They reported that 19.07% of COVID-19 patients are smokers.

2.4.6. Medical Comorbidities

Many reports found a high association between COVID-19 and other severe diseases,
such as diabetes, hypertension, acute kidney injury, etc. In [133], Wang et al. conducted a
meta-analysis study including 1570 patients with COVID-19 infection. The study indicated
that patients with serve illness were more likely to have respiratory diseases (OR = 3.42 (1.89
to 6.11)), hypertension (OR = 2.66 (1.46 to 3.82)), and cardiovascular disease (OR = 3.44 (1.44
to 3.82)). Another study [144] analyzed the risk factors of death among COVID-19 patients.
The study reported negative markers between COVID-19 infections and other chronic
diseases, such as diabetes (33.31%), hypertension (35.16%), chronic kidney disease (17.87%),
and diseases of the circulatory system (22.53%). They also compared the death rate among
COVID-19 patients and other chronic disease patients. They reported a mortality rate of
22 times higher for kidney disease patients, 10 times higher for patients with hypertension,
and 14 higher times for patients with diabetes. Table 6 shows the correlation between
medical comorbidities and risk of COVID-19 infection according to the WHO reports [145].

Table 6. Correlation between COVID-19 and medical comorbidities.

Diseases Correlation Percentage
Cardiovascular 14.08%
Diabetes 7.3%
Hypertension 7.0%
Respiratory diseases 12.4%
Liver disease 7.07%
Kidney failure diseases 11.32%

Other researchers focused on analyzing organ complications due to COVID-19 infec-
tions. For example, in [146], the authors surveyed organ complications study and showed
that about 3.75% of COVID-19 patients reported abnormalities in liver enzymes, 10% de-
veloped acute kidney injury, and 23% were afflicted with heart problems. Researchers
in [147] developed a DL model to analyze the relationship between mortality and other
medical comorbidities. They concluded that medical comorbidities are highly associated
with mortality, with percentages of 2.56%, 10.3%, 41.0%, and 6% for heart rate problems,
respiratory disease, hypertension, and diabetes; the same trend was found in [148-152].
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More details about the correlation between comorbidities and severe diseases are available
in [153,154].

2.4.7. Environmental Factors

Several studies addressed the relationship between environmental factors and COVID-
19 spread of infection. For example, Aabed et al. [155] investigated the impact of weather,
population density, and intra-provincial traffic. They found a positive correlation between
infection rate and population density and a negative correlation with social isolation and
temperature. The same results were found in [156]. Others focused on investigating the
effect of building operation factors, and they found that most infections occurred in an
indoor environment [157]. Another critical factor that influences the spread and course of
the disease is the possibility of having rapid access to diagnosis. These difficulties may be
found in developing countries and in urban areas with high population densities, where
the use of public transport and the prolonged frequentation of indoor environments lead to
the spread of contagion. These scenarios of inadequate health coverage have been mapped,
comparing the quality of access to care with the general conditions of development of the
territory [158].

2.5. Using DL in Developing Vaccines

Since the outbreak of COVID-19, clinicians and virologists worldwide urged to fight
this pandemic ubiquitously, searching for drugs or vaccines with precise and accurate
operations. It got even worse with the significant increase in infections [159]. Unfortunately,
drug discovery using traditional technologies is a complex process known to take many
years. Al techniques can reinforce and improve traditional technologies by accelerating
drug discovery, screening, and validation. Al also can speed up the pace by extracting
useful data for drug repurposing [160]. The following subsection details the role of Alin
drug repurposing, discovery, and vaccine discovery.

2.5.1. Drug Repurposing

Drug repurposing is an effective solution in mitigating pandemics, which are based on
previously approved drugs. This contributed to rapidly increasing the response against that
pandemic and accelerated the clinical trials [161]. Therefore, it is considered the best solu-
tion to yield an effective and faster drug against COVID-19 [162]. Several studies [163-165]
utilized ML and DL techniques, including LSTM, CNN, etc., to search for acting antivirals
among the previously known drugs. Four main approaches, namely, docking simulation,
ligand prediction, gene expression, and biomedical knowledge graphs (BKGs), have been
developed to achieve this goal. The following subsections discuss these four approaches in
detail. Figure 3 shows the general method of using Al in drug repurposing.
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Figure 3. Drug repurposing based on Al techniques.
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Biomedical Knowledge Graph

BKG is a basic technique that is used to aggregate data from heterogenous resources [166-168].
It also is used to capture the relation between entities such as viral proteins and drugs, a
pair of genes, etc. For example, Richard et al. [169] utilized BKG to identify Baricitinib.
Baricitinib is a drug used in arthritis therapy and is considered a promising treatment for
COVID-19. This is because Baricitinib inhibits the protein kinase enzyme, which makes it
difficult for the virus to infect the hosted cells. Recent studies showed two main techniques
for graph construction. First, in [170], the authors utilized a pipeline of three-part neural
network and tree search approach to understand the interaction between all molecules.
Second, in [171], the authors utilized BKG to describe the relations between the gene—
disease pairs. Others, in [172], utilized ML and statistical analysis techniques to integrate
and mine many BKG, showing a relation between the viral protein, human protein, and
previously known drugs. These graphs have been used to predict the effective drug
candidates against COVID-19.

In [173], the authors extracted 2045 human proteins, which are known drug targets
extracted from DrugBank. Then, a multitask ML model was then used to determine the
relationship between the known drug targets (KDTs) and the COVID-19 circuits that con-
form to the diseases. The results showed that 380 KDTs have a direct relation with circuits
of the COVID-19. In [174], the authors used a deep graph neural network to extract the
candidate drug representation according to biological interactions. They demonstrated that
the interactions between DNN and extensive interaction could facilitate the identification
of candidate drugs. In [175], the authors utilized an integrative DL model to discover can-
didate drugs named CoV-KGE. First, the authors built a list that includes 15 million edges
from 39 types of relationships, which were extracted from 24 million PubMed publications.
They concluded that CoV-KGE had a high performance in identifying repurposable drugs,
with an AUROC = 0.85.

Protein-Ligand Prediction

Ligands are molecules that bind with protein signals. In [176], the authors used
multitask neural networks to predict affinities based on a database of 4600 various drugs—
the developed model results in identifying 10 promising drugs with their affinity scores.
In similar research [177], authors used a CNN model to identify the inhibitors of the 3C-
like protease (the main protease in coronavirus)-based binding DB (BDB) [178] to find
an effective treatment for this protein. In [179], the authors also developed a template
model of the 3-C like protease, and then applied a mathematical DL model to identify its
inhibitors. This model relied on two different datasets (84 SARS inhibitors from chEMBL
DB and 15,843 protein affinities from bind DB) [178]. The study resulted in identifying a
list of promising COVID-19 drugs from the DrugBank DB.

Molecular Docking (Docking Simulation)

Docking is another approach that has been used for drug repurposing, in which
each ligand interacts with all proteins in different conformations and orientations. This
results in the generation of several poses (known as binding modes). These poses are then
utilized to predict the ligand’s affinity [178]. Since these docking simulation techniques are
computationally expensive, some studies tried to narrow the pool of candidates that need to
be docked using ML and DL techniques. For example, in [180], the authors trained a neural
network on 3 million candidates (3-C like protease inhibitors) extracted from 1 billion
compounds in ZINIC DB using a deep docking platform. Then, the authors docked
the result and presented only the first 1000 results. In another research, Btra et al. [181]
trained a random forest model on the SMILES dataset (https://2019-ncovgroup.github.
io/data/, access date: 10 February 2021) and applied the docking simulation, which
resulted in identifying 187 molecules in the coronavirus S-protein. In [182], the authors
proposed an ML framework that is used to predict viral protein activity. This was done by
developing an ensemble model that ranks the drugs according to their ability to inhibit
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the SARS-COV-2 virus proteases. The developed model helped in identifying 19 drugs
(7 antiviral, 3 antibodies, 6 anticancer, 1 antifungal, and 2 antimalarial). Then they use
molecular docking to evaluate the binding ability. They concluded that antiviral and
antimalarial drugs have more binding energy with 3CL pro protease than anticancer and
antibiotic drugs.

Gene Expression Signature

Studies discovered therapies that have a similar impact to other previously known
treatments depending on gene expression signatures. Avaachuv et al. [165] utilized this
approach to find a gene expression signature similar to COBP2, limiting COVID-19 replica-
tion. The study resulted in 20 promising drugs, many of which have been previously used
as antivirals [183]. Since all these drugs already got clinical approval, they may facilitate
the discovery of an effective treatment.

2.5.2. Drug Discovery

Another role of Al in COVID-19 treatment is to discover new chemical compounds,
using ML and DL models to identify baricitinib to tackle COVID-19 [161]. For example, Za-
havorkov et al. [180] tried to find inhibitors for the 3-C like protease. They used three main
inputs, include co-crystal ligands, a crystal protein structure, and the protein homology
model. In total, 28 different models were trained for each input (i.e., generative adversarial
networks and generative autoencoders [180]). The authors then used reinforcement learn-
ing with reward functions to evaluate the drugs according to different factors (i.e., novelty,
diversity, etc.), to confirm choosing the most suitable molecules and thus guaranteeing
to find a novel drug. Reinforcement learning has also been used in another study for
drug discovery [184], where the authors used a list of 183 molecules known as inhibitors
for SARS, breaking these proteins into 315 fragments. Deep Q learning was used then to
combine fragments based on fragment drug design (ADQN-FBDD). This design scored
the discovered molecules based on three points (drug-likeness, the existence of known
pharmacophores, and the presence of pre-pet-determined fragments). The 4900 molecular
were filtered using a heuristic filter to choose the promising compounds [180]. Similarly,
in [180], the authors used 1.6 million molecules extracted from the chEMBL dataset [185]
and generated 33 candidate inhibitors. Other researchers took a different path to discover
a new drug for COVID-19, which depended on the immune response. In the human body;,
B-cells produce antibodies (known as antigens) that attack the virus. As such, researchers
tried to discover new drugs by searching for antigen-neutralizing antibodies. For example,
in [180], the authors created a dataset of 1933 antigen sequences from similar diseases
(SARS, HIV, and EBOLA); then, they trained the XGBoost model (classification model) to
predict the antibody that will affect the antigen. Other researchers [186] tried to predict
effective anti-bodies from the future generation of COVID-19. They mutated the SARS
antibody sequence and generated 2900 antibody sequences. Then, these mutations were
filtered to choose the stable variants and propose the effective antibodies.

2.5.3. Vaccine Discovery

From the medical side, the human body attack viruses in two ways: (1) via B-cells
that produce antibodies (as described above); and (2) via T-cells. T-cells include small
cells called memory cells, which could recognize the antigen quickly, and then activate
more T-cells to attack the virus directly [187]. A part of the immune system is the complex
proteins (MHC I and MCH II), which shows the binding areas with the antigens (known
as epitopes); these proteins are encoded by Human Leukocyte Antigen (HLA) genes, and
vary from human to human [187,188]. On these bases, the vaccine should identify the
suitable epitopes and ensure that these epitopes could be presented by MCH I and II genes
generated from different HLA [189]. Altman et al. [190] identify 405 T-cell epitopes that
could be presented by MHC I and II proteins. They utilized a previously trained neural
network to predict the T-cell epitopes that could present with MHC genes. To assure
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choosing the potential epitopes, the authors examine 68 genetic variants of the SARS-COV
virus to analyze the mutation of the virus, to identify the areas of the virus that are more or
less likely to mutate [191,192]. They concluded that S-protein is the most suitable part for
the vaccine, as it does not include too many such mutations. In another research [193], the
authors used an XGBoost model to predict the best protein that could serve as an effective
vaccine. They reported that the six proteins (i.e., nsp3, nsp4, nsp5, nsp6, nsp7, and nsp8)
are also promising for vaccine development, in addition to the S protein. As far as we know,
three different vaccines (clinically approved vaccines) reported that they used ML in their
development process [189]. However, it is discouraging that the developed companies
published minimal information about their methodologies pipeline and how they integrate
ML into the vaccine development pipeline.

2.6. Applications of Al to Support COVID-19 Patients

ML and DL have been extensively used in various and critical health care applications,
such as predicting brain age [194], diagnosis of liver diseases [195], and many other
diseases [196,197]. In the current pandemic, governments and healthcare organizations
are in critical need of support and decision-aid tools, which may help get timely and
efficient support to avoid virus spread. Al tries to provide professional solutions that
mimicked human intelligence and results in various significant applications that could
be used in screening, diagnosing, and tracking the disease. This section concentrates on
Al applications that gained much interest and raised the world’s hope to fight against
COVID-19. Al is used to tracking patients through smart devices, such as mobile phones,
cameras, and other wearable sensors [198,199]. These devices could be used for diagnosing,
screening, and continuous monitoring [200]. Based on data aggregated from these devices,
Al could provide useful information for the decision-making process, such as prioritizing
the need for respiratory support as well as intensive care unit (ICU) admission [58,201].

Several Al applications have been developed to lighten the burden on medical ex-
perts as well as healthcare workers. This is done by automating procedures in a way
that minimizes their direct contact with patients as follows. (1) Al is used to analyze
patient’s data (i.e., symptoms, clinical reports, etc.), and to classify them into different
categories, such as mild, moderate, and serve. Accordingly, different therapy plans can be
adopted for patients efficiently. (2) Al telemedicine applications could help in reducing
the frequent visits to hospitals by providing continuous monitoring for patients with mild
symptoms [202]. (3) Another application that supports both patients and health care staff
is the Al-based medical chatbots (i.e., Clara chat boot 44). Chatbot is an Al service that is
incorporated with ML and DL models (i.e., feature extraction, NLP, etc.) to assist patients
with instant answers, providing continuous guidance on how to deal with potential prob-
lems. From the health care organizations’ side, chatbots could assist in triaging patients to
flow smoothly, automate primary care, and allow medical experts to focus on critical and
dire cases [203-205]. (4) Al is used as the core of service robotics that could assist in several
tasks, such as cleaning, disinfecting, delivering food, and treatment [206-208]. Moreover,
depending on Al to understand population awareness towards COVID-19 through social
media could help in specifying the correct strategy for mitigating this pandemic. ML and
DL were utilized to make a sentiment analysis towards the followed strategies, recognize
trends, and determine the origin of such misinformation and rumors [35,209,210]. Al could
also help analyze the updated information, such as the recovery rate and therapeutic re-
sults, which may help medical experts resolve panic and fear towards this pandemic [131].
More applications that utilized Al techniques to support or monitor COVID-19 patients are
expressed in Table 7.
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Table 7. Applications of using Al techniques in supporting COVID-19 patients.

Ref. Application Type of Data Al Technique Challenge
NLP (i.e., information .
. - Require a large amount of
extraction, text data to handle questions related
Chatbots to support Guidelines and summarization, and to an unsaved quer
[203-205] COVID-19 patients and information from a classification), speech query. .
. . . 1 - The challenge related to using
their relatives medical expert recognition, and . S
. various language expression (i.e.,
automated question language slang)
answerers tools. guag &
ﬁggi%;ﬁ;t t;?e - Privacy issues in different
COMMUNItY’s response Text gathering from NLP (i.e., information ~ countries
y P news, social media extraction, text - Insufficient data may lead to
[35,209,210] towards governmental L
and health strategies posts, healthcare, and summarization and skewed results.
(i.e., social distance governmental reports classification) - Imprecise results leading to
' .,lock down) ! anxiety among the population.
Monitoring patients CNN models and - Capturing the in-body
with temperature to Images extracted from  pre-trained models (i.e.,, temperature through remote
maintain safet infrared cameras in DesNet, AlexNet, etc.)  sensors may lead to imprecise
[32,95,207] y y p
S precautions) i.e., streets and public and other computer results.
mask-wearing, social enterprises. vision tools and - Issues related to the invasion
distancing, etc.) libraries of privacy
Predict the spread of
infection (number of Demographic data, Statistics tets and DL - Models such as
[87,96,100— . . . . . compartmental models may be
102] expected patients, population density, and  techniques (i.e., RNN complex
spread rate, disease compartmental tests, and LSTM) pex. .
peak, etc.) - Insufficient data
[28,36,43,63, CQVID—l? mgdlcal Medical images (i.e., ML and DL CNN - Insufficient medical images
diagnosis using X-ray, CT scan, and models, and Al .
211-219] . .. lead to an imbalanced dataset.
medical images ultrasound) computer vision tools
Diagnosis and triage - Unavailability of patient’s
a t?ent accordin ?o Patient medical history ML techniques (i.e., data (therapeutic outcomes and
P health statusg (Electronic health SVM, KNN, MLP, etc.), physiological data).
[220-224] Prescribe trea tm.en t record (EHR)), Patient Fuzzy logic systems, - Privacy issues
medical plan and mal,<e symptoms, laboratory  and DL techniques (i.e,, - Incomplete data may lead to
risk E valuation test result. LSTM, RNN) biased or accurate result in the
prediction
Analyses of viral RNA
and track genetic ' DL and Deep - Analyzing a large dataset for
[225-227] changes. Protein sequence and reinforcement learnin RNA or protein sequence may
Predict the viral viral RNA tools &  takea long time, result in
structure of the second unexplainable models
and third waves.
Viral structure, protein
. sequence, drug—drug DL models, computer
Analyze chemical interaction, vision tools, Rgsults need large jb'ed
[161,163,184, compounds and experiments to be verified,

185,228-231]

interaction for vaccine
development

drug—protein
interaction, and
protein—protein
interaction.

reinforcement learning,
and optimization
techniques

which may take a long time.
- Possibility of long-term risk.

[206-208]

Develop robots to
support both patient
and medical staff,
cleaning, vital signs
monitoring, deliver
food and treatment

Training autonomous
agent using
environment
simulation

DL models, computer
vision tools,
reinforcement learning,
and optimization
techniques

- Training autonomous agents
and implementing them in
machines may take great effort
and time.

- Maintaining a high level of
safety must be guaranteed
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Table 7. Cont.

Ref. Application Type of Data Al Technique Challenge

Develop a reponse
tracker (OXGRT) to
capture the
government policies
and the degree of

[232]

Use Al techniques to
Aggregating huge explore the empirical
dataset that is effect of government -

continuously updated policies on the spread
of COVID-19 cases

response

3. COVID-19 Datasets

The lack of accurate and sufficient data is one of the key problems in COVID-19
research, as the number of carried-out tests is small, and thus numerous death and infected
cases are left unreported. No country worldwide has succeeded in offering reliable and
accurate datasets to the virus’s existence among their population. However, the research on
this context cannot stop. Therefore, information fusion has a significant role in combining
information from multiple sources. Information fusion is used to integrate data from
various resources to provide valuable information for the characterization, identification,
and detection of a specific entity [233]. Given the fact that in ML and DL models the
existence of a large size dataset plays a key role in developing models with high prediction
accuracy, the datasets of COVID-19 were categorized into three main groups: (1) textual
data; (2) medical images; and (3) speech. Most COVID-19 image datasets were taken from
screening tools that belong to three main classes, namely, X-ray, ultrasound, and CT chest
scans. As the kits used in the PCR test are timely, limited, and costly, medical images are
considered an adequate alternative that lower the burden on PCR tests.

3.1. Medical Images Datasets

Medical images, such as X-ray and CT chest scans, were used to develop an automated
model for disease diagnosis. Datasets often need preprocessing steps, such as segmentation
and augmentation [25]. Image segmentation leads to portions of the image (region of
interest). Image augmentations include transformation and filtering to increase the size of
the dataset [42]. Consequently, ML and DL provide accurate models and avoid overfitting.
The following subsections discuss the available medical image datasets for COVID-19.

3.1.1. CT Chest-Scan Dataset

Owing to the rapid progression of the COVID-19 disease, a subsequent CT scan every
2-4 days is required to evaluate the progression and therapeutic effect. Figure 2 shows the
changes in CT chest images of the COVID-19 patient, which took place gradually [28,35,234].
Initially, there is a slight change in the chest CT images; but, as infection rises day by day,
bilateral differences are seen to take place. Chest CT images clearly show the growth of
pneumonia with linear opacity in the subpleural area [235]. Figure 4 shows the progression
in the patient’s status.
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Figure 4. (A-E) subfigures show progression of a CT scan of a COVID-19 patient across days (2, 4, 5, 6, and 8, respectively).
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A pioneering effort in collecting public CT scans datasets was in [236]. The dataset con-
sists of 125 chest CT scans. It includes images of several classes (COVID-19, SRAS, MERS,
and ARDS). The dataset was collected from several websites and publications, which
may affect the image quality and even the performance of the ML model [237]. Another
published CT chest dataset is in [25]. It includes 275 images of positive COVID-19 CT scans
extracted from 760 COVID-19 preprints. The dataset is used in various studies and updates
continuously in the online repository. To overcome the shortage in COVID-19 datasets,
several studies use augmentation and segmentation techniques to increase the size of the
dataset. The segmentation is considered a preprocessing step used to crop the region of
interest (infected region). For example, in [34], the authors use a 3D CNN model to segment
the infected regions from the CT chest scan dataset [236]. The system made auto-contouring
to estimate the shape and percentage of the infected region, resulting in an accuracy of 90%
in recognition. Other segmented datasets are listed in [238], consisting of 20 labeled COVID-
19 datasets categorized into left and right infected lungs. Another COVID-19 online dataset
is available at http://medicalsegmentation.com/covid19/, access date: 10 February 2021,
the segmented images obtained from a society of medical and interventional radiology
(SIRM) (https:/ /www.sirm.org/en/category/articles/covid-19-database/, access date:
7 February 2021; https://coronacases.org, access date: 10 February 2021) and categorized
into three classes (consolidation, pleural effusion, and ground glass). Another effort for col-
lecting a COVID-19 dataset is in https://coronacases.org/, access date: 10 February 2021.
The UK imaging and British society of thoracic imaging developed an online portal for
COVID-19-positive CT-scan images (https://www.bsti.org.uk/training-and-education/
covid-19-bsti-imaging-database/), access date: 10 February 2021. Each case is stored
with its characteristics, such as gender, age, and PCR result test. The same procedure
was done to collect the dataset in https://www.sirm.org/en/category/articles/covid-
19-database/, access date: 10 February 2021/Several studies utilized these datasets in
their research [18,239]. To make a binary classification for COVID-19 identification and
diagnosis, several studies use non-COVID-19 CT chest-scan images as a negative train-
ing example, such as the following: (1) the MedPix (https://medpix.nlm.nih.gov/home,
access date: 10 February 2021) medical images dataset that includes 5900 images for
1200 patients; (2) the LUNA (https:/ /lunal6.grand-challenge.org/) dataset for lung can-
cer patients that includes 888 CT chest scans for 888 subjects; and (3) the Radiopae-
dia online repository (https://radiopaedia.org/articles/covid-19-4?lang=us, access date:
10 February 2021) that includes 366,558 CT scan images.

3.1.2. X-ray Images Dataset

A chest radiograph (X-ray) is the common way to diagnose patients with respiratory
diseases. A chest X-ray image can be viewed as normal at the early stages, but it gradually
changed in a way that may correlate with other respiratory diseases such as pneumonia or
acute respiratory distress syndrome (ARDS). Two common changes that arise in the COVID-
19-infected lung include (1) accumulation of tissue or fluid in a way that prevents gas
exchange; and (2) the appearance of nodular shadowing. Figure 5 shows the progression
of X-ray images for a 45-year-old patient.

An earlier effort to develop an X-ray dataset for COVID-19 patients was in [240].
It includes 13,800 images for 13,000 patients collected from several online repositories.
Wang et al. [240] collected this dataset to develop a CONVNET model for COVID-19 di-
agnosis, resulting in a classification model with an accuracy of 93.11%. Another dataset
collected from online repositories by Cohen et al. [236] continuously updated through
the following link (https://github.com/ieee8023/covid-chestxray-dataset, access date
12 February 2021). Several researchers utilized the Cohen X-ray images dataset in their
studies. For example, Hemdan et al. [58] utilized Cohen et al.’s dataset [236] to develop
a CNN model for COVID-19 diagnosis. They developed five different DL models based
on transfer learning to overcome the shortage of the dataset. Other researchers merged
Cohen’s [236] dataset with other datasets to increase the size of the resulting dataset to
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enhance the performance and avoid overfitting. For example, in [241], the authors merged
the Kaggle dataset (https://www.kaggle.com/andrewmvd/convid19-X-rays, access date:
14 February 2021), for pneumonia with the Cohen dataset [236] to train a CNN model
using pre-trained models, including VGG19, Inception, Xception, MobileNet2, and ResNet
V2. Results show that MobileNet V2 outperformed other models in terms of accuracy,
specificity, and sensitivity. The authors extended their study in [215] by merging Cohen’s
dataset [236] with SIRM and RSNA [241] data, where a total of 455 images were obtained
for all classes. This research demonstrated that building the CNN model from scratch
based on a sufficient dataset outperformed transfer learning. In another research [24],
Cohen’s dataset [236] was merged with the Kaggle dataset (https://www.kaggle.com/
paultimothymooney/chest-xray-pneumonia, access date: 14 February 2021) and resulted
in a 100 CT image dataset that was divided into two balanced classes (50 normal and
50 positive). Apostolopoulos et al. [53] used the same dataset and merged it with the
Kaggle dataset (https:/ /www.Kagglee.com/andrewmvd/convid19-X-rays, access date:
10 February 2021). This resulted in 127 images from pneumonia and COVID-19 cases.
In [213], the authors utilized the augmentation techniques on Cohen’s dataset [236] in
resolving the COVID-19 data scarcity. The same has been done in [242], where authors ap-
plied data augmentation techniques on COVID-19 and non-COVID-19 X-ray images. They
obtained around 17,000 X-ray images from 4044 positive images and 5500 negative images.
The same was done in [243], where the authors utilized both the Cohen dataset and Kaggle
dataset at (https://www.kaggle.com/paultimothymooney/chest-xray-pneumoni, access
date: 16 February 2021). The authors used data augmentation techniques and obtained
2500 images (1340 viral pneumonia and 190 COVID-19 images). Data after augmentation
is available at (https://www.kaggle.com/tawsifurrahman/covid19-radiography-database,
access date: 14 February 2021). In [244], Signoroni et al. collected 4707 X-ray images for
COVID-19-positive subjects collected from an Italian hospital. To maintain a robust dataset,
the authors collected it from two different modalities, including (direct X-ray (DX) and
computed radiology (CR)) for patients with various statuses (i.e., supine, standing, and
with or without life support systems).

Figure 5. (A-F) subfigures show progression of an X-ray image for a COVID-19 patient across days (1, 3, 6, 7, 8, and

10, respectively).
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Notwithstanding the importance of X-ray in the diagnosis of COVID-19, X-ray chest
images are unreliable at the early stages of COVID-19 disease [245]. In other words, the
reliability of X-ray findings mainly depends on the difference in time between the first
symptoms and the imaging procedure. An Italian study, conducted in April 2020 on
72 COVID-19 patients [246], reported that the disease is visible on an X-ray image within
the first 4 days after the onset of the initial symptoms, such as a dry cough, fever, etc.

3.1.3. Ultrasound Dataset

Lung ultrasound correctly diagnosed COVID-19 in 96% of people with COVID-19.
However, few US datasets are available. For example, in [70], the authors aggregated
a dataset of 64 videos that were divided into 39 videos of COVID-19 and 15 videos of
pneumonia, and 12 videos for healthy patients. Another dataset available at (https://
tinyurl.com/yckfqreg, access date: 17 February 2021; https:/ /pocovidscreen.org/, access
date: 16 February 2021) includes 1101 ultrasound images and is categorized as 650 images
for COVID-19, 276 for bacterial pneumonia, and 171 for healthy cases. These images
were extracted from different videos published in research works. Figure 6 shows the
progression of a US image for a COVID-19 patient.

Figure 6. (A-F) subfigures show the progression of a US image for a COVID-19 patient across days (1, 3, 6,7, 8, and 10,
respectively). The white arrows in each subfigure clarify the change in each day.

3.2. Sound Dataset

The main challenge in developing such modes is the shortage of available datasets.
The earliest and noteworthy have been developed in [80,247], known as the Coswara
dataset (https://coswara.iisc.ac.in/, last access date (16 March 2021). Coswara is a public
dataset collected via public media interviews. Since writing this paper, Coswara included
102 records for breathing and deep cough sounds aggregated from COVID-19-positive
patients. The collected data include shallow and deep cough sounds and slow and fast
breathing sounds. Gender, age, health status (i.e., infected, cured, or exposed), and geo-
graphical information are also stored for each patient. Another cough dataset [248] was
collected in South Africa, known as SACRO (https://datahub.io/core/covid-19, last access
22 March 2021) (SARS COVID-19 South Africa). SACRO is a small dataset collected from
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21 cases (8 COVID-19 cases and 12 healthy cases) through a smartphone. Cough sounds
were collected, and then sampled at a 44.1 sampling rate. Age, gender, county, COVID-19
lab test result (positive or negative), and symptoms were also recorded in addition to the
cough sound. Due to the imbalance in the SARCO dataset, the authors used the synthetic
minority oversampling technique (SMOTE) [249] to make the data balanced before utilizing
it in detection and classification processes. In [250], the authors collected 260 sound samples
from 52 COVID-19-positive cases via the WeChat app. They recorded five sentences one
after the other via the mobile app for each patient. These sentences were analyzed to
specify the degree of anxiety, fatigue, sleep quality, breath rate, etc. In another dataset [76],
the authors collected 7000 sound samples that included 200 confirmed COVID-19 subjects.

3.3. Text Dataset

Since the COVID-19 pandemic, various textual datasets have been developed with
different targets. It could be categorized as following: (1) reporting and visualizing
COVID-19 cases in time-series formats; (2) measuring the community transmission; (3)
correlating the effect of mobility on virus transmissions; (4) evaluating the impact of
(non-pharmaceutical interventions) NPI on COVID-19 cases; and (5) analyzing COVID-19
scholarly publications for semantics. The categorization of the textual dataset is shown

in Figure 7.
Textual
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Figure 7. Types of textual datasets.

The earliest dataset that was developed to aggregate COVID-19 statistics summa-
rization (number of infected recovered and death grouped by county) can be found
in [251]. It was developed by Johns Hopkins University, where a real-time dashboard (https:
//www.arcgis.com/apps/opsdashboard /index.html, last access date (16 March 2021). was
developed to aggregate data. These data are publicly available at (https://datahub.io/
core/covid-19, last access date (16 March 2021). The main objective of this dataset is to
provide the health authorities as well as researchers with statistical data that could be
used to analyze, track, and predict the spread of the COVID-19 pandemic. The Chinese
Center for Disease Prevention and Johns Hopkins University developed another time-series
dataset, which includes the number of recovered and infected cases, the time of infection,
and the origin county. Other researchers [252,253] provided an epidemiological dataset
about COVID-19 cases in China. This dataset includes personal and laboratory information,
such as demographic data, disease onset date, admission date, last travel date, etc. It is
updated continuously to guide public health in the decision-making process. In [254], the
authors provided a textual dataset that includes four time series datasets: (1) the daily
infected cases in Wuhan; (2) the daily internationally exported cases; (3) the daily infected
cases in China; and (4) the percentage of the infected cases on vacation flights. This study
aimed to estimate the transmission of infection, the virus outbreak, and the effect of travel
bans on infection transmission. In the same manner, in [255], authors utilized the daily case
reports to evaluate the impact of travel restrictions on COVID-19 spread, where in [256], the
authors used case reports that were collected from location-based systems (i.e., WeChat).
In [257], the authors analyzed the effect of mobility and travel restrictions on spreading
COVID-19 in China. The authors developed a dataset that includes real-time and historical
data aggregated in Wuhan, China, in addition to the list of cases inside and outside Hubei,
available at https:/ /github.com/Emergent-Epidemics/covid19_npi_china, last access date
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(16 March 2021). This study found a high correlation between the spatial distribution of
COVID-19 and mobility. Another study utilized an epidemiological dataset extracted from
government websites and official sources [258] to evaluate the effect of travel restriction on
limiting the spread of infection.

Another research interest is concerned with studying the effect of NPI restrictions.
NPT is a wide range of rules and restrictions applied by the government to fight against
the COVID-19 pandemic (i.e., social distancing, travel limits and bans, contact reduc-
tion, etc.). Such datasets are essential to show the effect of applying NPI on infection
transmission. At Oxford University, a team of academic researchers started the Oxford
COVID-19 government response tracker (OxCGRT) project, which includes data from vari-
ous countries in the Stringency Index [259]. The Stringency Index consists of 17 indicators,
such as local and international travel bans, contact tracing, cancelling all public events,
etc. These indicators are utilized to compare the government response, the public aware-
ness, and the effect on the transmission rate. The aggregated data are available at a
GitHub repository (https://github.com/OxCGRT/covid-policy-tracker, last access date:
16 March 2021). Another dataset aggregated by a group of volunteers can be found at
https:/ /www.kaggle.com/davidoj/covid19-national-responses-dataset, last access date
(16 March 2021). The main objective of this is to analyze the effect of NPI regulations in
117 countries, regardless of economic factors. Unfortunately, the authors reported that
the data might be biased to some countries, as some countries are not concerned with the
document, and their actual implementation may differ from the basic reports.

It is essential to understand the emotional, public response, and worries towards the
COVID-19 pandemic in this global crisis. The earliest effort in this regard was in [260],
wherein authors requested various participants to report their emotions and developed a
dataset of tweets (short and long tweets) aggregated from 2500 participants. The authors
also asked the participants to rank their feelings using nine points, to gauge the anxiety,
anger, relaxation, happiness, and sadness they felt. In another large-scale tweet dataset, the
authors used Twitter API stream to aggregate tweets that include specific keywords (i.e.,
COVID-19, pandemic, SARSCOV, etc.) [261]. They aggregated 434 million tweets. Twitter
streaming API was also used to collect a dataset of Arabic tweets [262]. These data aimed
at analyzing the Arabian countries’ behavior towards the pandemic, and authors collected
2,433,660 tweets in addition to the geolocation of the tweet.

3.4. Genome Sequence Dataset

Genome sequencing is critical to specify the order of chemicals inside DNA molecules
and identify virus gene expression [1]. Virology scientists utilized these sequence data in
the processes of vaccine development or mutation recognition. During the early breakout of
the pandemic, there were a very limited number of genome datasets in Wuhan, China. The
lack of genome transfer data made the virus analysis more challenging and raised doubts on
virus recombination and phylogenetic network results. With the rapid increase of COVID-
19 in different countries, several studies reported that the virus had accumulated several
alterations of genome sequences, which have been seen in the spread of viral strains [163].
Until now, more than 66,000 viral genome sequences have been shared through the global
initiative on sharing avian influenza data (GISAID) (https://www.gisaid.org/, last access
date (16 March 2021). [263]. The availability of the mutated genome sequence raises the
chance to discover new drugs and vaccines. Several datasets have been developed for this
purpose. In this study [1], the authors developed a stream of virus sequence datasets that
included two types of data (raw data and processing data). The raw data had 1557 instances
of the SARS-COV-2 virus genome that was collected from NCBI and 11,540 collected from
another virus-host, in addition to three other virus sequences (bat-SL-COVZC45, bat-
SL-COVZC22, and RAT13). These viruses had a large similarity with the SARS-COV
virus. The processing part consists of various types of data stream representations (DSRs),
including direct mapping and k-mers mapping with Chaos Game Representation (GCR).
Another centralized repository of virus sequence included both the original coronavirus


https://github.com/OxCGRT/covid-policy-tracker
https://www.kaggle.com/davidoj/covid19-national-responses-dataset
https://www.kaggle.com/davidoj/covid19-national-responses-dataset
https://www.gisaid.org/

Diagnostics 2021, 11, 1155

27 of 44

sequence available at (https:/ /registry.opendata.aws/ncbi-covid-19/, last access date
(16 March 2021).

Other projects were developed to aggregate virus mutations. For example [264], the
VIPR project was a pathogen platform that provided the ability to search and download
information about virus mutation. However, it lacked the connecting information between
virus mutation, country, and time of occurrence, which is essential to analyze the trans-
mission path. The main objective of such projects was to give users the chance to analyze
virus mutations from different perspectives. Table 8 includes a summarization of all the
COVID-19 datasets from different angles.

Table 8. Comparison between the COVID-19 medical images datasets.

Ref. Type

Size URL Open-Source  Metadata

100 CT scans from 40 COVID-19 http:/ /medicalsegmentation.com/

medseg.ai  CT scan atient covid19/ (access date Yes Yes
patients 20 February 2021)
68,623 CT scan images for
[265] CT scan COVID-19 and non-COVID-19 - No No
images
370 CT scan images for COVID-19
[266] CT scan and non-COVID-19 images ) Yes No
13,800 X-ray images for
[240] Xray COVID-19 and phenomena ) No No
100 X-ray images for COVID-19
[236] Xray and healthy class images i No Yes
230 X-ray images for COVID-19
[241] Xray and non-COVID-19 images ) NO No
127 X-ray images for COVID-19
[531 Xray and non-COVID-19 images ) No No
17,000 X-ray images for three
[241] X-ray class (COVID-19, healthy and - No No
phenomena
2500 X-ray images for COVID-19
[242] Xray and non-COVID-19 images i Yes NO
4707 X-ray images for COVID-19
[243] Xray and non-COVID-19 images ) Yes Yes
359 X-ray images for COVID-19 https:/./www.kaggle.com/bachrr/
Kaggle X-ray and non-COVID-19 patients covid-chest-xray (access date Yes Yes
p 20 February 2021)
https:/ / github.com/agchung/
239 images for Actualmed-COVID-
GitHub X-ray COVID-19-positive cases, in chestxraydataset/tree/master/ Yes Yes
addition to some vital sings images, (access date
20 February 2021)
https:/ / github.com /UCSD-AI4H/

34 CT scan images for COVID-19

[25] CT scan ) . . COVID-CT, (access date Yes Yes
and non-COVID-19 patients 20 February 2021)
(654 COVID-19-positive subjects, P/ /github.com/jannisborn/
Ultrasound . . covid19pocusultrasound/tree/
[70] . 277 bacterial pneumonia, and Yes Yes
images 172 healthy subiects master/data, (access date
ysub) 20 February 2021)
CT scan https:/ / github.com/ieee8023/
[235] and X-ray 265 COVID 1zc(alr?55)x ray, 100 CT covid-chestxray-dataset, (access Yes Yes
images date 20 February 2021)



https://registry.opendata.aws/ncbi-covid-19/
http://medicalsegmentation.com/covid19/
http://medicalsegmentation.com/covid19/
https://www.kaggle.com/bachrr/covid-chest-xray
https://www.kaggle.com/bachrr/covid-chest-xray
https://github.com/agchung/Actualmed-COVID-chestxraydataset/tree/master/images
https://github.com/agchung/Actualmed-COVID-chestxraydataset/tree/master/images
https://github.com/agchung/Actualmed-COVID-chestxraydataset/tree/master/images
https://github.com/agchung/Actualmed-COVID-chestxraydataset/tree/master/images
https://github.com/UCSD-AI4H/COVID-CT
https://github.com/UCSD-AI4H/COVID-CT
https://github.com/jannisborn/covid19 pocus ultrasound/tree/master/data
https://github.com/jannisborn/covid19 pocus ultrasound/tree/master/data
https://github.com/jannisborn/covid19 pocus ultrasound/tree/master/data
https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
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Table 8. Cont.

Ref. Type Size URL Open-Source ~ Metadata
CT scan . https:/ /www.eurorad.org/
EOR and X-ray in}?r;?;zrcg (;s;al%?{l 9d ﬁ;ri:z ts advanced-search?search=COVID, No Yes
images & P (access date 20 February 2021)
CT scan Various CT scan and X-ray https:// b1t..1y / BSTICOVldl
BSTI and X-ray images for COVID-19 patients 9TeachingLibrary No Yes
images & P (access date 20 February 2021)
[82] Cough- 328 sound from 150 patient - No No
sound
[80] Cough- Cough and speech from 1079 https:/ /coswara.iisc.ac.in Yes Yes
sound normal and 92 COVID-19 (access date 20 February 2021)
[247] Cough Cough sound: 13 normal and https://coughtest.online Yes Yes
sound 8 COVID-positive cases (access date 20 February 2021)
. Cough 121 segmented coughs collected ~ https:/ /github.com/virufy/covid
GitHub sound from 16 patient (access date 20 February 2021) Yes Yes
Cough 144 segmented coughs,
[81] Sound aggregated from 28 patient ) No NO
. 260 sound record aggregated
[pa] ~ Breathing from 52 COVID (32 male, - No Yes
sound 1
20 females) positive cases
. 7000 unique samples, including
[76] BI;?:};glg 200 samples from - NO Yes
COVID-19-confirmed cases
https:/ /www.kaggle.com/
[266] Text data Syrrg}z)tO;rlﬁsei;diilgegfl}:;?s;etz for kimjihoo/coronavirusdataset Yes Yes
p (access date 20 February 2021)
Time series symptoms from https://datahub.io/core/covid-19
datahub  Text data COVID-19 patients (access date 20 February 2021) Yes Yes
https:/ /www.kaggle.com/
[69] ngl?n-)l ? 29 columns lisphilar/covid19-dataset-in-japan Yes Yes
P (access date 20 February 2021)
Word Covid-19 Text data extracted from https:// gl.thub.com / Sarmer}tor /
clouds Text 13,202 scientific papers POS-Tagging-Wordcloud-with-R Yes Yes
Dataset ’ (access date 20 February 2021)
28 demographic features about https:/ /www.kaggle.com/
Kagele COVID-19 96 countries (infection rate, nightranger77/covid19- Yes Yes
88 Predictors ~ number of ICU beds, death rate, demographic-predictors
etc) (access date 20 February 2021)
COVID-19 . Include 1nf01.‘mat10n about https:/ /www.kaggle.com/koryto/
different countries, such as death .
Kaggle country . . countryinfo Yes No
. rate, infection rate, and number of
info . (access date 20 February 2021)
rapid tests
Coronavirus 500,009 Tweets of users wrlte.the https:/ /www.kaggle.com/smid8
(COVID-  following hashtags: #coronavirus, . .
Kaggle . . 0/coronavirus-covid19-tweets Yes Yes
19) #covid_19 #coronavirusoutbreak, ( date 20 February 2021)
Tweets #coronavirusPandemic, #covid19 access date ebruary
CIV?LXiE;_g https:/ /sites.lafayette.edu/
[75] lage 1200 M tweets collected using lopezbec/projects/covid-19 Yes Yes
fwefts keywords related to COVID-19 -multilanguage-tweets-dataset/

Dataset

(access date 20 February 2021)
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https://bit.ly/BSTICovid19 Teaching Library
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https://github.com/virufy/covid
https://www.kaggle.com/kimjihoo/coronavirusdataset
https://www.kaggle.com/kimjihoo/coronavirusdataset
https://datahub.io/core/covid-19
https://www.kaggle.com/lisphilar/covid19-dataset-in-japan
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https://github.com/Sarmentor/POS-Tagging-Wordcloud-with-R
https://github.com/Sarmentor/POS-Tagging-Wordcloud-with-R
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https://www.kaggle.com/nightranger77/covid19-demographic-predictors
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https://www.kaggle.com/koryto/countryinfo
https://www.kaggle.com/koryto/countryinfo
https://www.kaggle.com/smid80/coronavirus-covid19-tweets
https://www.kaggle.com/smid80/coronavirus-covid19-tweets
https://sites.lafayette.edu/lopezbec/projects/covid-19-multilanguage-tweets-dataset/
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Table 8. Cont.

Ref. Type Size URL Open-Source  Metadata
237 million tweets extracted from  https://dataverse.scholarsportal.
COVID- . . . S
[76] 19 Twitter Twitter posts that mentioned info/dataset.xhtml?persistentld= yes Yes
Dataset “COVID” as a word or hashtag doi:10.5683/SP2 /PXF2CU
(e.g., COVID-19, COVID19) (access date 20 February 2021)
https:
Patient symptoms and report / /www.cdc.gov/coronavirus/20
CDCP Text data yop 1 rep 19-ncov/index.html Yes Yes
health status in .
https:/ /www.coronavirus.gov/
(access date 20 February 2021)
Cenome https:/ /www.ncbinlm.nih.gov/
NCBI data Viral protein sequence genbank/sars-cov-2-seqs/ Yes Yes
(access date 20 February 2021)
Genome . . https:/ /www.gisaid.org/
GISAID data Viral protein sequence (access date 20 February 2021) Yes Yes
Genome https:/ /db.cngb.org/datamart/
GC data Viral protein sequence disease/DATAdis19/ Yes Yes
(access date 20 February 2021)
Genome  Viral structure, RNA, and protein htps:
EBI data se, uencé P / /www.covid19dataportal.org/ Yes Yes
1 (access date 20 February 2021)
Genome . . https:// regl.stry.(.)pendata.aws /
(NCBI). data Viral protein sequence ncbi-covid-19/ Yes Yes
(access date 20 February 2021)
Case http:/ / open-source-covid-19
Zeng's reports Reports on 20 projects, 16 report .weileizeng.com/ Yes Yes

(access date 20 February 2021)

BSTT: British Society of Thoracic Imaging; CDCP: Centers for Disease Control and Prevention in the US; GISAID: The GISAID organization;
NCBI: NCBI GenBank; GC: GeneBank in China; EOR: European Organization for Radiology.

4. Discussion

The dramatic spread of the COVID-19 and the consequent increase in the number of
medical examinations throws a heavy burden on healthcare organizations. This is due to
the shortage of medical expertise and test kits. That is why Al is considered a forefront
tool to face the COVID-19 outbreak. Recently, several papers focused on surveys of the
COVID-19 state of the art from different perspectives. For example, in [267], the authors
surveyed the usefulness of the prediction models for COVID-19 diagnosis. In [268] and
in [242], the authors briefly summarized the deep learning applications that were developed
to combat COVID-19. Same in [269], where the authors summarized the state of the art
in medical image processing and its significant role in the COVID-19 domain. Another
survey focused on the role of transfer learning. The main differences between our study
and other surveys in COVID-19 are the following: (1) investigated the role of Al in the
COVID-19 pandemic; (2) covering all applications from diagnosis using various medical
datasets; (3) understand the current spread of the pandemic state and predict future spread;
(4) specifying the correlation between COVID-19 infection and other healthcare factors;
and (5) surveying the role of Al in developing drugs and vaccines. Table A1l show the
distribution of gender, ages, and death rate among various countries. Figure A1 show this
distribution graphically We tried to analyze how the progress of deep learning contributes
to combat coronavirus by developing effective solutions.

First, we compare studies that are concerned with using Al in COVID-19 diagnosis
through medical images. Based on this comparison, we observed that (i) a large num-
ber of studies have utilized CT scans and X-rays in their works [243,270,271], where few
studies utilized lung US [55,66,272]; (ii) although X-ray chest scans are considered less
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https://www.cdc.gov/coronavirus/2019-ncov/index.html
https://www.coronavirus.gov/
https://www.ncbi.nlm.nih.gov/genbank/sars-cov-2-seqs/
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https://www.gisaid.org/
https://db.cngb.org/datamart/disease/DATAdis19/
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https://www.covid19dataportal.org/
https://registry.opendata.aws/ncbi-covid-19/
https://registry.opendata.aws/ncbi-covid-19/
http://open-source-covid-19.weileizeng.com/
http://open-source-covid-19.weileizeng.com/

Diagnostics 2021, 11, 1155

30 of 44

sensitive than PCR tests in detection of COVID-19 at the early stages, it is recommended
for monitoring and evaluating the progression of a patient’s status, especially with critical
cases [215]; (iii) segmentation techniques that used to detect the infected region are primar-
ily used in CT scans [273]; (iv) augmentation techniques that used to increase the size of
the dataset are commonly used with X-ray datasets [274]; (v) the majority of COVID-19
studies utilized CNN in their classification process [52,275], where some of them integrate
CNN and transfer learning to overcome the shortage of the available dataset and increase
the accuracy of the model [32,201,276]; (vi) a small number of studies augmented CNN
with random forest and support vector machines to make feature extraction and classifica-
tion [277,278]; (vii) higher accuracy reported from studies that augmented CNN, transfer
learning, and SVM, where using CNN and DL are reported to overfit in some studies
due to the shortage of available datasets [37,162]; (viii) accuracy of diagnosis using X-rays
in diagnosis is approximately equal to the accuracy when using CT chest scans; (ix) the
sensitivity of X-ray in diagnosis is highly correlated with the difference between the time
of the initial symptoms and the procedural images;—it was not more than 55% after 2 days
from the initial symptoms and increased to 79% after 11 days from the symptom onset [147];
(x) VGG, MobileNet, and ResNet are the most commonly pre-trained models employed
for the classification tasks [21,52]; (xi) explainability of CNN model have been rarely used
in clarifying the results of CNN [57]; and (xii) most of the studies reported accuracies of
more than 90% for the binary classification tasks (i.e., COVID-19, non-COVID-19) [218,279],
and reported accuracies higher than 80% for three classification tasks (i.e., normal, viral
pneumonia, and COVID-19) [216,280]. Tables 2—4 present summarizations of the many
studies that used medical images in COVID-19 diagnosis.

Second, we concentrated on using Al techniques in COVID-19 diagnosis based on
respiratory sounds. Accordingly, we make the following observations: (i) a cough sound
has unique characteristics, and therefore could be used to differentiate respiratory diseases
in the early stages of the diseases. Al models could effectively learn these features and
discriminate between COVID-19 and non-COVID-19 cough sound; (ii) quantity and quality
of the respiratory sound datasets are the main challenges that face Al in providing robust
prediction; (iii) the majority of COVID-19 sound datasets have been aggregated by volun-
teering the general population through mobile apps and websites. Therefore, prescreening
tools are essential to build effective models.

Third, we focused on textual datasets and their role in fighting against COVID-19.
We observed that (i) a textual dataset is used for several purposes, including reporting
several infections in time series format, correlating the NPI and lockdown effect with virus
spread, estimating the reproduction and mortality rate, and analyzing social media data for
semantics) [136,189,281,282]; (ii) extracting human emotions towards the pandemic and the
NPI from articles and social media data are not deeply investigated; (iii) most research that
worked on social media data did not consider the timeliness of the study, as such data got
outdated quickly [242]; (iv) contact tracking application is very limited due to the difference
in privacy and security regulations across different countries [246,254]; and (v) several
papers were written in the Chinese language, especially papers published during the first
stage of the COVID-19 pandemic. Thus, it may not be useful for many researchers.

Finally, we compared all COVID-19 available datasets, make several observations.
First, regarding the medical images dataset, (i) several studies did not publicly include
their data and code. Therefore, we cannot reproduce the results of the research conducted
with these data [264,265]; (ii) other studies aggregate data from several resources, but they
did not host it in a new repository; and (iii) augmenting data may help in solving the data
scarcity issue, increase the performance of the model and avoid overfitting—however, the
accuracy of using augmented data needs to be evaluated. Second, we observe that real
news is much longer than fake news regarding textual datasets in terms of several words
per post or article. Table 7 summarizes all the COVID-19 datasets.
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5. Limitations and Future Directions

This section highlights the most critical challenges in the literature and the possible

research directions for future work.

Symptoms of COVID-19, pneumonia, and other respiratory diseases are very similar,
therefore developing a suitable DL model that could detect COVID-19 with optimum
accuracy remains a challenge [74].

The scarcity of a high-quality dataset for COVID-19 is a major challenge. This re-
turns to different reasons, including (1) closed source and non-published datasets;
(2) the distributed nature of COVID-19 datasets; and (3) privacy issues that limit data
sharing [32]. Therefore, the collaboration between all medical organizations across
the globe is essential to expand the existing dataset and accelerate Al research for
COVID-19.

The variability in the testing process across different countries and hospitals is a critical
concern that may lead to non-uniformity in the labeling process.

COVID-19 virus is rapidly mutated over different geographic areas. Therefore, data
collected from one region may not be suitable to draw interferences on another
region [226].

Medical staff are considered the first line of defense against this pandemic. Therefore,
work on more contact-less screening and diagnosis tools is an urgent need to protect
them from infections.

Most state-of-the-art DL models were trained in 2D images. However, most MRI and
CT scan images are 3D, and hence adding an additional dimension is essential to
optimize the impact of these images [40,44].

The non-standardized process when aggregating medical image datasets result in
increasing data variety; thus, this raises the need to ensure the robustness of DL-
generated models.

Most of the available COVID-19 datasets are limited in size. Therefore, transfer
learning is a future research direction that could help detect abnormalities in small
datasets and yield robust predictions and remarkable results [241].

Based on the literature, it is noticed that there is a correlation between COVID-19
infection and other medical comorbidities. Therefore, to provide a precise and accurate
prediction model, a patient’s history of other ailments (diabetes, liver, kidney, heart
disease, etc.) must be taken into consideration in both the COVID-19 prediction and
detection process [144—-146].

High computational resources are required to build complex DL models, processing,
and interpreting big data, compared to working with IoT devices. Therefore, edge
computing and fog computing could be effective in handling this challenge [199].
Various preprocessing steps are required to enhance the interpreting data extracted
from various sensors (i.e., data cleaning, outlier detection, quality improvement,
etc.) [51,260,283,284].

Current NLP applications have limited the benefit from such a diagnosis system.
Therefore, working in algorithms that measure semantic textual similarity (STS) [285]
is essential to translate performance to a specific domain environment (i.e., COVID-19).
Data fusion is a challenge because it integrates heterogeneous data [232]. However, it
improves the performance of the resulting models. There are many fusion techniques
in the literature. Therefore, adaptive multi-models are highly needed to handle data
from multiple sensors [286].

More sophisticated techniques are needed to optimize the performance of processing
X-ray and sound data.

The explainability and interpretability of ML /DL techniques is a key challenge. ML
model should not be a black box. Medical experts must know which features are
chosen to distinguish COVID-19 from non-COVID-19 [232]. Moreover, ML /DL should
investigate how to predict infections before the symptoms appear.
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e Several ML and DL models have shown promising results in COVID-19 screening,
diagnosis, and prediction. However, most of these models are not deployed in a
real environment (i.e., emerging services, hospitals, etc.) to show their capabilities in
tackling the COVID-19 pandemic. Therefore, lots of challenges need to be addressed
to deploy such diagnosis models, including (1) addressing the consistency of the
network security to provide more reliable communication and trusted data on the
network; (2) adaption of cloud, fog, and edge computing; and (3) security and privacy
issues regarding the patient’s data that also need to be handled.

6. Conclusions

COVID-19 is an ongoing pandemic that outperforms most communicable diseases in
terms of death and infection rate. Therefore, medical experts as well as Al scientists are
trying to fight against this pandemic and are searching for alternative techniques that could
provide rapid tracking, screening, and development of drugs and vaccines. This paper aims
to survey recent studies that investigated Al solutions to combat the COVID-19 pandemic.
It includes Al solutions for diagnosis, estimation, treatment, and association. This paper
also surveyed open-source datasets (medical images, speech dataset, test dataset, and
genome structure dataset) and studied the challenges and limitation issues of the current
Al literature. Finally, the paper discussed the future direction in terms of data aggregation,
data preprocessing, and ML and DL deployment in real environments. The study concludes
that ML and AI have dramatically enhanced disease screening, diagnosis, monitoring, and
drug/vaccine discovery for the COVID-19 pandemic and minimize human intervention in
a way that minimizes burdens on the healthcare sector.
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Figure A1. Distribution of infected people in terms of gender (male, female) among various countries.



Diagnostics 2021, 11, 1155 33 of 44

Table A1l. Distribution of gender, ages, and death rate among various countries. Note that these data were aggregated from
online health organizations.

Comy cowDue cwe Gt ool D Pplen o DubeG Dbl panpi  cmime  Comma  Sitenenls
Percentage Percentage
Afghanistan 12/15/2020 47,089 68.62% 31.38% 12/15/2020 1634 74.36% 25.64% 12/15/2020 3.74% 2.82% 1.33
Albania 01/02/2021 59,623 48% 52% 01/02/2021 1199 67% 33% 01/02/2021 2.81% 1.28% 22
Austria 01/06/2021 371,660 48.56% 51.44% 01/06/2021 6463 52.62% 47.38% 01/06/2021 1.88% 1.6% 118
Belgium 01/04/2021 649,570 4458% 55.42% 01/04/2021 19724 49.05% 50.95% 01/04/2021 3.34% 2.79% 12
}?e"fz‘:;;‘:ga 01/03/2021 73,108 51.68% 48.32% 01/03/2021 2118 64.59% 35.41% 01/03/2021 3.62% 2.12% 171
Chile 12/31/2020 684,375 50.43% 4957% 05/07/2020 294 60% 40% 05/07/2020 1.28% 097% 1.32
China 02/28/2020 55,924 51% 49% 02/28/2020 2114 64% 36% 02/28/2020 47% 2.8% 1.68
Costa Rica 01/03/2021 169,321 51.01% 4899% 01/03/2021 2185 62.33% 37.67% 01/03/2021 1.58% 0.99% 159
Denmark 01/04/2021 170,787 48.92% 51.08% 01/04/2021 1226 55.79% 4421% 01/04/2021 0.82% 0.62% 1.32
Ecuador 01/06/2021 217,377 52.65% 47.35% 12/13/2020 13874 66.51% 33.49% 12/13/2020 8.64% 487% 177
E‘é“ji:’::“ 12/31/2020 4786 59.32% 40.68% 12/31/2020 86 70.93% 29.07% 12/31/2020 2.15% 1.28% 1.67
France 10/22/2020 1,047,083 47.46% 52.54% 12/24/2020 42853 58.66% 41.34% 10/20/2020 2.72% 1.7% 1.59
Germany 01/06/2021 1,793,732 47.38% 52.62% 01/06/2021 36470 52.22% 47.78% 01/06/2021 2.24% 1.85% 121
Haiti 12/31/2020 10127 57.2% 42.8% 12/31/2020 237 61.6% 38.4% 12/31/2020 2.52% 21% 12
Indonesia 01/05/2021 779,548 50% 50% 01/05/2021 23109 56.4% 43.6% 01/05/2021 3.34% 259% 1.29
Tran 03/17/2020 14,991 57% 43% 03/17/2020 853 59% 41% 03/17/2020 5.89% 5.43% 1.09
Israel 01/06/2021 461,644 50.97% 49.03% 01/06/2021 3527 57.36% 42.64% 01/06/2021 0.86% 0.66% 1.29
Italy 12/29/2020 2,049,915 48.48% 51.52% 12/29/2020 70799 56.9% 431% 12/29/2020 4.05% 2.89% 14
Jordan 01/04/2021 293,466 53% 47% 01/04/2021 3852 64.3% 35.7% 01/04/2021 1.59% 1% 16
Latvia 01/04/2021 43,118 42.86% 57.14% 01/04/2021 692 49% 51% 01/04/2021 1.83% 1.43% 128
Luxembourg 01/05/2021 47,149 50% 50% 01/05/2021 514 56% 44% 01/05/2021 1.22% 0.96% 127
Mexico 01/04/2021 1,454,974 50.4% 49.6% 01/04/2021 127533 63.41% 36.59% 01/04/2021 11.03% 647% 171
Morocco 07/18/2020 17,015 53% 47% 09/21/2020 1855 66.31% 33.69% 07/18/2020 2.98% 1.65% 18
Myanmar 09/10/2020 2265 53% 47% 09/28/2020 26 64.16% 35.84% 09/01/2020 1% 0.26% 384
Nepal 01/05/2021 262,784 65.11% 34.89% 12/23/2020 1795 69.86% 30.14% 12/23/2020 0.76% 0.61% 1.24
Nigeria 12/27/2020 73,043 61.85% 38.15% 11/15/2020 1218 75.29% 24.71% 11/15/2020 2.26% 1.28% 176
I\{;’;ﬁ‘:‘;" 01/04/2021 81,222 46.08% 53.92% 01/06/2021 1383 51.19% 48.81% 01/06/2021 1.89% 1.54% 123
Portugal 01/03/2021 427,106 44.97% 55.03% 01/03/2021 7118 5211% 47.89% 01/03/2021 1.93% 1.45% 1.33
Relf:]g:;"f 01/02/2021 101,791 47.67% 52.33% 01/02/2021 2263 51.22% 48.78% 01/02/2021 2.39% 2.07% 115
Romania 01/03/2021 643,559 45.98% 54.02% 01/03/2021 16057 59.7% 40.3% 01/03/2021 3.24% 1.86% 174
South Africa 01/05/2021 1,117,139 42.23% 57.77% 01/06/2021 27108 49.33% 50.67% 01/06/2021 2.83% 213% 1.33
South Korea 01/05/2021 64,979 48.91% 51.09% 01/05/2021 1007 50.35% 49.65% 01/05/2021 1.6% 1.51% 1.06
Spain 12/29/2020 1,888,148 46.98% 53.02% 05/21/2020 20518 57% 43% 05/21/2020 10.87% 6.3% 173
Sweden 01/06/2021 469,748 46.9% 53.1% 01/06/2021 8985 53.89% 46.11% 01/06/2021 22% 1.66% 1.32
Switzerland 01/06/2021 470,667 47.46% 52.54% 01/06/2021 7433 53.73% 46.27% 01/06/2021 1.79% 1.39% 1.29
Taiwan 01/05/2021 815 47.61% 52.39% 01/05/2021 7 85.71% 14.29% 01/05/2021 1.55% 0.23% 6.6
Thailand 11/01/2020 3784 56.37% 43.63% 11/01/2020 59 76.27% 23.73% 11/01/2020 211% 0.85% 249
Tunisia 10/20/2020 42,727 46% 54% 08/30/2020 77 68.75% 31.25% 08/30/2020 3.24% 1.29% 249
Turkey 10/25/2020 362,800 51% 49% 10/25/2020 9799 61.86% 38.14% 10/25/2020 3.28% 2.1% 156
Ukraine 01/05/2021 1,001,131 40.1% 59.9% 01/05/2021 17395 53.22% 46.78% 01/05/2021 2.31% 1.36% 17
USA 01/04/2021 15,091,901 47.71% 5229% 12/26/2020 301671 5421% 45.79% 10/27/2020 3.51% 2.76% 127
Wales 01/05/2021 161,233 45.23% 54.77% 01/05/2021 3738 56.5% 435% 01/05/2021 29% 1.84% 157
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