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Abstract

In citrus fruit, citric acid is the predominant organic acid which influence fruit taste, flavor and

quality. The effect of hot air treatment (HAT 40˚C, 48 h) and 1.0% chitosan coating on the

change of organic acids and the related gene expression of citric acid synthesis and degra-

dation in ponkan (Citrus reticulata Blanco) fruit during cold storage have been studied. The

results showed that citric acid was the main organic acid in fruit, the trend change of citric

acid content was consistent with total organic acids and titratable acidity (TA) content, which

decreased with the prolongation of storage time, hot air treatment significantly promoted but

chitosan coating treatment significantly delayed citric acid degradation in Ponkan fruit. Hot

air treatment could induced CitAco2/3, CitIDH2/3, CitGAD4, CitACLs, CitPEPCKs and

CitFBPases expression during fruit storage period, but had no significant effect on CitGSs

expression, The enhanced expression of degradation-related genes was closely related to

the degradation of citric acid. The expressions of CitAco3, CitGAD4 CitACLα2/β, Cit-

PEPCKs and CitFBPases were inhibited, which leading to the degradation rate of citric acid

was slowed by chitosan coating during storage. These results showed that the degradation

of citric acid in fruit was regulated by ATP citrate lyase (ACL) pathway and γ-aminobutyric

acid (GABA) pathway.

Introduction

Acid is an important indicator of fruit quality. Depending on the type of major organic in ripe

fruit, the fruit can be divided into three types: citric acid type, malic acid type and tartaric acid

type fruit. Citrus fruit is citric acid type fruit Main text paragraph [1]. Ponkan (Citrus reticulata
Blanco) is one of the main mandarin citrus in China, the fruit are rich of organic acid [2].

Zhang et al. [3] have demonstrated that citric acid was the major organic acid in Ponkan fruit,

which accountings for 91.82% of the total content in single fruit. During the storage period,

the content of organic acids in fruit not only affected fruit flavor and quality, but also affected

the storage characteristics of fruit [4].
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A large number of studies have shown that the appropriate postharvest treatment could

effectively affect the fruit organic acid content, improve fruit storage quality. As a viable alter-

native to synthetic fungicides, the clove extract could significantly inhibit the water loss rate

and decay rate in ‘Newhall’ navel orange fruit during storage, delay the degradation of TA, TSS

and VC, and improve antioxidant enzymes activity, then the fruit could maintain good quality

at the later stage of storage [5]. 1-methylcyclopropene treatment could maintain the apple

acidity during fruit storage by adjusting the balance between malic acid biosynthesis and deg-

radation [6]. Exogenous GABA treatment could decrease the fruit rot rate, increase the content

of organic acids, maintenance and improvement of the storage performance of citrus fruits

[7].

Hot air treatment as a common method has been used for many species of fruit and vegeta-

ble after harvest, such as strawberry [8], peaches [9], ’Qingnai’ plum [10] and citrus fruit [2,

11]. Heat treatment of 50˚C for 5–10 minutes could delay the change of storage quality of

sweet orange fruit and reduce the occurrence of fruit decay [12]. Hot air treatment could

enhance oxygen scavenging and cell wall polysaccharides solubilization, thus enhancing the

cold resistance of loquat fruits [13]. Chitosan, is a natural polysaccharide from a wide range of

sources [14]. Due to its biocompatibility, biodegradability, bacteriostasis and film formation,

chitosan has great potential in various fields [15–17]. Chitosan coating treatment, as a posthar-

vest preservation method, has also been studied for many fruit [18, 19]. The effect of chitosan

coating on the antioxidant activity and malic acid metabolism were studied in ‘Huangguan’

pear during storage, the results showed that chitosan treatment had a significantly positive

effect on the activities of NAD-MDH and a negative effect on the activities of NADP-ME both

in pulp and peel. It also inhibited the gene expression of vVAtp2, as well as promoted gene

expression of vVAtp1 [20]. It was further proved that chitosan coating could effectively reduce

the occurrence of fruit anthracnose and postpone the decline of postharvest quality of fruit

[21, 22]. After treatment with a range (0.5, 1.0 and 2.0%) of chitosan solutions, respectively.

The respiration rate and weight loss of longan fruits were decreased during storage, the

increase in PPO activity and the changes in colour were delayed [23].

Most of research were focus on the effects of hot air treatment or chitosan coating on stor-

age of fresh fruit, and their influences on organic acid metabolism during storage stage of cit-

rus fruit were rarely studied. In this study, the changes of organic acids were measured in

Ponkan fruit treated by hot air and chitosan coating during cold storage, and the citric acid

degradation -related gene expression also were analyzed during storage, then the mechanism

of citric acid degradation were discussed in Ponkan fruit during storage.

Materials and methods

Ethics statement

The owner of the land gave permission to conduct the study on this site. No specific permis-

sions were required for these locations/activities. And the field studies did not involve endan-

gered or protected species.

Plant materials

Mature Ponkan (C. reticulata Blanco cv. Ponkan) fruits were harvested from a commercial

orchard in Jing’an county, Jiangxi Province, China (115º 35´E, 28 º 88´N), at the mature stage

(21th November, 2015). The fruit were transported to the laboratory for Postharvest Technol-

ogy and Nondestructive Testing of Fruits & Vegetables, Jiangxi Agriculture University (Nan-

chang, China) on the day of harvest.

Citric acid metabolism
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Treatments and sampling

Fruit in the uniform size and maturity, free of visible disease and mechanical wounding, were

divided into 200 fruit per group for postharvest treatments. The fruit were subjected to the fol-

lowing treatments: (1) control: the fruit were directly stored at 10˚C, 90–95% RH in a cold

room; (2) hot air treatment (HAT): the fruit were placed in a chamber at 40˚C, 90–95% RH for

48h, then the fruit were transferred to 10˚C with the same conditions as control treatment; (3)

chitosan treatment: the fruit were coated with 1.0% chitosan and dried naturally, then the fruit

were transferred to 10˚C with the same conditions as control treatment. All of the control,

HAT and chitosan treatment fruit were stored till 120 d after harvest.

Fruit qualities were measured at 0, 2, 15, 30, 45, 60, 75, 90, 105, 120 d during storage. Each

sampling consisted of fifteen fruit for each treatment, separated as three replicates with five

fruit each. After measurements, the flesh tissue samples were frozen in liquid nitrogen, and

stored at −80˚C, for further experiments.

TA and organic acids measurements

The fifteen fruit were divided into three replicates with five fruit each. Five grams of the fil-

trated juice for each group was titrated with 0.1 M NaOH to its end point at pH 8.1. The results

were expressed as the percentage of citric acid (1g of citric acid per 100 g FW), which repre-

sented the titratable acidity (TA) value.

The method of extracted organic acids were modified from the description of Chen. Four

grams of frozen flesh sample was ground to a powder in liquid nitrogen, add in 5.0 mL of etha-

nol (80%) solution and and water bathed at 35˚C for 20 min. The extract was centrifuged at

10,000×g for10 min. The residue was extracted twice and the supernatant was collected in vol-

umetric flask to final 25 ml with 80% ethanol. 1 ml extract solution was filtered with Ф0.22 μm,

Ф13mm water syringe filter (Shanghai Xingya Purification Material Factory, China). The fil-

tered solution was used for organic acids analysis.

Organic acids were measured using high performance liquid chromatography (HPLC, SHI-

MADZU LC-20A, Japan). The liquid chromatograph equipped with a degasser, quaternary

pump, 20 μL volume injection autosampler, ODS C18 column (4.6 mm×250 mm, Waters Cor-

poration, USA) and a diode array detector. The mobile phase was a solvent system of 50 mM

(NH4)2HPO4 phosphate buffer (pH = 2.7 adjusted with phosphoric acid) at a flow rate of 0.5

mL/min. Organic acids were detected at a wavelength of 210 nm. Lab Soblutions Software

(Shimadzu, Japan) was used to run the HPLC and process the results. Triplicate flesh samples

were analyzed.

RNA extraction and cDNA synthesis

Total RNA was extracted from frozen tissues by CTAB method [24], and the quality was

detected by agarose gel electrophoresis, each sample has three biological replicates. Reverse

transcription of RNA using reverse transcription kit (TaKaRa’s Cat. # RR047A, Japan). The

cDNA was used as the template for real-time quantitative PCR analysis.

Real-time quantitative PCR (Q-PCR) analysis

Q-PCR was performed on a CFX 96 real-time PCR detection system (Bio-Rad, Hercules, CA,

USA). The primers used in the qPCR analyses of individual genes were designed according to

Chen [25] and Guo [26]. For each q-PCR reaction, 2 μL of each diluted sample was used as

atemplate in a 25 μL reaction containing, 12.5 μL of SYBR green supermix (TaKaRa, Japan),

Citric acid metabolism
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9.5 μL of ddH2O and 2 μL of each primer. The following PCR conditions were used: 95˚C for

30s, followed by 40 cycles of 95˚C for 5 s, 60˚C for 30 s, and 95˚C for 15 s.

Gene-specific primers were described in previous report [25]. Three different RNA isola-

tions and cDNA syntheses were used as replicates for qRT-PCR.

Statistical analysis

The experiments were performed using a completely randomized design. Standard errors (SE)

and figures were made by GraphPad Prism (GraphPad Software, Inc., 7825 Fay Avenue, LA

Jolla, USA). The analysis of significant difference by using the new Duncan type repolarization

difference detection method in DPS 7.05 (Zhejiang University, Hangzhou, China).

Results

Effect of HAT and chitosan treatment on the content of organic acid and

TA

Organic acids, including citric acid, tartaric acid, malic acid and quinic acid, were measured

during Ponkan fruit storage “Fig 1”. Citric acid, the major organic acid in Ponkan fruit,

showed a decreasing trend during storage. Compared with the control, HAT significantly

accelerated the decrease of citric acid content in Ponkan fruit, but chitosan coating signifi-

cantly delay the decrease of citric acid. Quinic acid and tartaric acid content increased first

and then decreased in Ponkan fruit during storage, chitosan coating delay the decrease of qui-

nic acid content in Ponkan fruit, HTA accelerated the decrease of tartaric acid content.

Fig 1. Effect of hot air and chitosan coating on changes in the contents of citric (A), quinic (B), malic (C), tartaric

(D), total organic acids (E) and TA (F) in flesh of Ponkan fruit during storage. Vertical bars represent SD (n = 3).

Significant differences (p <0.05) between means are indicated by different letters.

https://doi.org/10.1371/journal.pone.0206585.g001
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Throughout storage, malic acid content was less than 0.01mg/g in Ponkan fruit, which had lit-

tle influence on fruit acidity in Ponkan fruit.

As the main of organic acid in Ponkan fruit, the degradation of citric acid leaded to the

decreasing of total organic acids and TA in fruit during storage “Fig 1”. In parallel, the content

of total organic acids and TA value were substantially lower in HAT fruit and higher in chito-

san coating fruit than in control fruit.

Effect of HAT and chitosan treatment on the expression of CitAcos
The effects of HAT and chitosan coating on expression patterns of three CitAcos genes were

different. HAT and chitosan coating had no significant effect on the expression of CitAco1,

and the relative expression level of CitAco1 among the three treatments had no significant dif-

ference during the entire storage “Fig 2”. HAT transiently induced the expression of CitAco2

Fig 2. Effects of hot-air treatment and chitosan coating on expressions of CitAcos in Ponkan fruit. Vertical bars

represent SD (n = 3). Significant differences (p<0.05) between means are indicated by different letters.

https://doi.org/10.1371/journal.pone.0206585.g002
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and CitAco3, and maintained the transcript abundance till the 75 d of storage. The CitAco2
expressions of HAT was 2.32 -fold of the initial value at 2d, the CitAco3 expressions of HAT

was 3.20 -fold of the initial value at 40d of storage “Fig 2”. However, chitosan coating decreased

the expression of CitAco2 and CitAco3. The stimulation of chitosan coating on CitAco2

expression was not significant, but the stimulation of chitosan coating on CitAco3 expression

was significant at 60d, 75d and 105d of storage “Fig 2”. Thus, the significant increase of

CitAco2/3 transcript levels, induced by HAT, may lead to the degradation of citric acid became

more faster in HAT Ponkan fruit during storage, and the significant changes of CitAco3 tran-

scripts, inhibited by chitosan treatment, may lead to the retard degradation of citric acid in

Ponkan fruit treated by chitosan. Comparing the relative expression levels of the three CitAcos
genes, it was found that the relative expression level of CitAco2 in HAT fruit at 2d was higher

than that of CitAco3 2d and 15d of storage, and was lower at other storage time. The relative

expression level of CitAco2 in chitosan coating fruit was higher than that of CitAco3, and the

difference was greater in the middle and late stages of storage. This indicated that CitAco2
played a major role in the degradation of citric acid in the early storage stage of citrus fruits,

while CitAco3 played a major role in the middle and late stages.

Effect of HAT and chitosan coating on the expression of CitIDHs
As the similar response to the CitAco genes, the effects of HAT and chitosan coating on expres-

sion patterns of three CitIDHs genes were also different. HAT and chitosan coating had no sig-

nificant effect on the expression of CitIDH1, but HAT transiently induced CitIDH2 and

CitIDH3 expression, HAT transiently induced CitIDH2 by 5.17-fold only at 2 d of storage “Fig

3”. HAT transiently induced CitIDH3 by 2.19-fold at 2 d and maintain higher transcript level

during the following storage, and peaked at 45 d of storage. On the contrast, chitosan coating

decreased the expression level of CitIDH2 and CitIDH3. The stimulations of chitosan coating

on CitIDH2 and CitIDH3 expression were not significant.

Effect of HAT and chitosan coating on the expression of CitGADs and

CitGS2
As presented in “Fig 4”, HAT and chitosan coating had significant effect on the expression of

CitGAD4, but no significant effect on the expression of CitGAD5 and CitGS2. The expression

of CitGAD4 was significantly higher in HAT fruit than control fruit during storage, which was

2.05 times of the control at 2 d. Chitosan coating significant decreased CitGAD4 expression,

which made CitGAD4 expression in chitosan coating fruit significantly lower than the control.

Effect of HAT and chitosan coating on the expression of CitACLs
As presented in “Fig 5”, the effects of HAT and chitosan coating on expression patterns of

three CitACLs genes were different. HAT significantly enhanced the expression of CitACLs
family genes in Ponkan fruit during storage. The expression of CitACLs in HAT fruit increased

at first and then decreased. The expression of CitACLα1 reached the highest value at 75 d and

CitACLα2/β were 105d. Chitosan coating decreased the expression level of CitACLα2 and

CitACLβ, which made CitACLα2 and CitACLβ expression in chitosan coating fruit signifi-

cantly lower than the control during storage.

Effect of HAT and chitosan coating on the expression of CitPEPCKs
The effects of HAT and chitosan coating on expression patterns of CitPEPCKs genes were dif-

ferent “Fig 6”. HAT induced the expression of CitPEPCK1 and CitPEPCK2, and the expression

Citric acid metabolism
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of CitPEPCKs in HAT fruit was significantly higher than that of control. However, the expres-

sion of CitPEPCK1 in chitosan coating fruit was significantly lower than that of control at 30 d

and 45 d, and the expression of CitPEPCK2 was 45 d and 60 d.

Fig 3. Effects of hot-air treatment and chitosan coating on expressions of CitIDHs in Ponkan fruit. Vertical bars

represent SD (n = 3). Significant differences (p<0.05) between means are indicated by different letters.

https://doi.org/10.1371/journal.pone.0206585.g003
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Effect of HAT and chitosan coating on the expression of CitFBPases
As presented in “Fig 7”, the expression of two CitFBPases genes in Ponkan fruit increased

gradually during storage. After treatment with HAT, the expression levels of two CitFBPases

Fig 4. Effects of hot-air treatment and chitosan coating on expressions of CitGADs and CitGS2 in Ponkan fruit.

Vertical bars represent SD (n = 3). Significant differences (p<0.05) between means are indicated by different letters.

https://doi.org/10.1371/journal.pone.0206585.g004
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were significantly induced in Ponkan fruit, the expression of CitFBPase1 was induced during

the later storage and CitFBPase2 was induced during the early storage. On the contrary, chito-

san coating decreased CitFBPases expression. The expression of CitFBPase2 in chitosan coat-

ing fruit was significantly lower than that of control during the later storage.

Fig 5. Effects of hot-air treatment and chitosan coating on expressions of CitACLs in Ponkan fruit. Vertical bars

represent SD (n = 3). Significant differences (p<0.05) between means are indicated by different letters.

https://doi.org/10.1371/journal.pone.0206585.g005
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Discussion

Citrus is a typical non-transgenic fruit, and its quality decreases gradually during post-harvest

storage [27]. Many studies had been shown that the appropriate postharvest treatments could

control the post-harvest storage quality of fruit. The soluble sugar metabolism was related to

the cold resistance of peach fruit, and the sucrose content of peach fruit treated with hot air

treatment and methyljasmonate was increased and the fruit’s tolerance to cold was enhanced

[28]. The CMC/chitosan bilayer coating could effectively improve fruit firmness during citrus

storage, especially on grapefruit [22].

A lots of study on organic acids metabolism in citrus fruit had been reported. Yamaki et al.

[29] analyed the organic acids components in 47 citrus fruit juices. Citrus fruit contained citric

acid, tartaric acid, quinic acid, malic acid, acetic acid, oxalic acid and so on. 44 citrus were cit-

ric acid-based fruit, which accounting for 75.4% -96.9% of organic acids content. The other 3

citrus were malic acid accumulation type, malic acid occupied 55.8% -60.1% of organic acid

content. The results of HPLC showed that citric acid was the main organic acid in Jing’an Pon-

kan fruit, which was consistent with the results of Carballo et al. [30]. As shown in Fig 1, Hot

Fig 6. Effects of hot-air treatment and chitosan coating on expressions of CitPEPCKs in Ponkan fruit. Vertical

bars represent SD (n = 3). Significant differences (p<0.05) between means are indicated by different letters.

https://doi.org/10.1371/journal.pone.0206585.g006
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air treatment could significantly promote the decline of citric acid, the content of citric acid

and total organic acid in the fruit was significantly lower than that in the control [25,31]. On

the contrast, chitosan coating could significantly delayed the degradation of citric acid and

maintained high level of organic acid content in ponkan fruit at the later stage of storage.

The organic acid metabolism in citrus fruit is very complicated, which includes the synthe-

sis, degradation and transportation of citric acid. Tadeo [32] proposed a citric acid synthesis

pathway: phosphoenolpyruvate (PEP) immobilized CO2 to form oxaloacetic acid (OAA) cata-

lyzed by phosphoenolpyruvate carboxylase (PEPC), and OAA combined with acetyl coenzyme

A to produce citric acid under the catalysis of citric acid synthase (CS). The citric acid content

of ‘Newhall’ navel orange [33] and Ponkan [34] fruits decreased gradually at the late stage of

fruit development, which was not directly related to citric acid synthesis genes CitCSs and Cit-
PEPCKs expression, it is mainly influenced by the genes related to degradation. Chen [25] sug-

gested that there was no significant correlation between postharvest organic acid metabolism

and synthetical genes, suggesting that the regulation of organic acids in citrus fruits was not

related to citric acid biosynthesis.Citric acid could be degraded in different ways, including

acetyl coenzyme A pathway (ACL) pathway, glutamine (GS) pathway and gamma aminobu-

tyric acid (GABA) pathway. Citric acid could produce acetoacetic acid and acetyl coenzyme A

under the action of ACL, and then turn to sugar ISO pathway or synthesize secondary metabo-

lites such as flavonoids and fatty acids through the action of PEPCK and FBPase [35]. CERCÓS

[36] and Katz [37] reported that ACL participates in citric acid accumulation during citrus

fruit development and maturation. Citric acid was decomposed to isocitrate in the presence of

Fig 7. Effects of hot-air treatment and chitosan coating on expressions of CitFBPases in Ponkan fruit. Vertical

bars represent SD (n = 3). Significant differences (p<0.05) between means are indicated by different letters.

https://doi.org/10.1371/journal.pone.0206585.g007
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aconitase (Aco), then metabolized into 2-oxoglutamate and glutamate under the action of iso-

citrate dehydrogenase (IDH) [36]. On one hand, glutamate generated glutamine by the role of

glutamine synthetase (GS), on the other hand glutamate was catalysed into γ-aminobutyric

acid (GABA) pathway. The Aco activity of citrus fruit was significantly decreased and the con-

tent of citric acid was significantly increased after surface coating [38]. CitNAC62 and

CitWRKY1 could transactivate the promoter of CitAco3, then improv the expression of

CitAco3 to control the degradation of citric acid in citrus fruit [39]. Zhang et al. [3] found that

40% soil water stress treatment could significantly inhibit the expression of CitIDHs in Citrus

fruit, and citric acid content was significantly increased, which was 66.3% higher than that of

the control. The expression of CitGAD4 and CitGAD5 in citrus fruit was inhibited under the

stress of water stress, and the degradation of citric acid was blocked and the organic acid was

accumulated, which indicated the important role of GABA cycle on citric acid degradation in

citrus fruit. Exogenous GABA treatment could inhibit the expression of glutamic acid decar-

boxylase (GAD) and increase the citric acid content of fruit. At the same time, the content of

amino acid and the activity of resistance enzyme could be improved, and the fruit rot was

reduced [7].

Our results showed that the expression of CitAco2/3, CitIDH2/3, CitGAD4, CitACLs, Cit-
PEPCKs and CitFBPases could be induced by HAT, but HAT had no significant effect on the

expression of CitGSs. The increased expression of these citrate degradation-related genes was

associated with the degradation of citric acid, which led to the lower citric acid level in HAT

Ponkan fruit than that of control during storage. Chitosan treatment could inhibit the expres-

sion of CitAco3, CitGAD4, CitACLα2/β, CitPEPCKs and CitFBPases during storage, and the

degradation rate of citric acid in chitosan coating Ponkan fruit was slowed down during stor-

age. These results suggested that citric acid may be degraded mainly through ACL pathway

and GABA pathway during postharvest storage of Ponkan fruit “Fig 8”.

Conclusions

Based on the present research, it was concluded that hot air treatment could induced the

expression of CitAco2/3, CitIDH2/3 and CitGAD4 genes, which resulted in the acceleration of

citric acid degradation through GABA pathway during Ponkan fruit storage. The chitosan

coating inhibited the expression of CitAco3 and CitGAD4 genes, which caused the degradation

of citric acid became slower in citrus fruit during storage. The specific regulation mechanism

Fig 8. The model for degradation of citric in Ponkan fruit. Red indicates induction; Green indicates inhibition.

https://doi.org/10.1371/journal.pone.0206585.g008
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of citric acid metabolism in citrus fruit remains to be further studied in many ways, such as cit-

ric acid transport, and through the means of transcriptional group, metabolic group and

proteomics.
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