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a b s t r a c t 

The activity of functional brain networks is responsible for the emergence of time-varying cognition 

and behaviour. Accordingly, time-varying correlations (Functional Connectivity) in resting fMRI have been 

shown to be predictive of behavioural traits, and psychiatric and neurological conditions. Typically, meth- 

ods that measure time varying Functional Connectivity (FC), such as sliding windows approaches, do not 

separately model when changes occur in the mean activity levels from when changes occur in the FC, 

therefore conflating these two distinct types of modulation. We show that this can bias the estimation 

of time-varying FC to appear more stable over time than it actually is. Here, we propose an alterna- 

tive approach that models changes in the mean brain activity and in the FC as being able to occur at 

different times to each other. We refer to this method as the Multi-dynamic Adversarial Generator En- 

coder (MAGE) model, which includes a model of the network dynamics that captures long-range time 

dependencies, and is estimated on fMRI data using principles of Generative Adversarial Networks. We 

evaluated the approach across several simulation studies and resting fMRI data from the Human Con- 

nectome Project (1003 subjects), as well as from UK Biobank (13301 subjects). Importantly, we find that 

separating fluctuations in the mean activity levels from those in the FC reveals much stronger changes in 

FC over time, and is a better predictor of individual behavioural variability. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Large-scale networks of brain activity can be detected as fluc- 

uations of blood oxygenation levels in functional magnetic res- 

nance imaging (fMRI) ( Biswal et al., 1995; Fox et al., 2005 ). 

hese functional networks can be detected in the presence of an 

xperimental paradigm and in spontaneous resting-state activity 

 De Luca et al., 2006; Tavor et al., 2016; Fox and Raichle, 2007 ).

any studies estimate FC by calculating the average correlation 

cross an entire fMRI scanning session data ( Rogers et al., 2007; 

’Reilly et al., 2012; Smith et al., 2013; Smith, 2012; Pervaiz et al., 

020 ), and these time-averaged measures of FC have been widely 
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ssociated with cognitive phenotypes and neuropsychiatric disor- 

ers in the literature ( Greicius et al., 2004; Anand et al., 2005; 

ahn et al., 2011; Hacker et al., 2012; Lynall et al., 2010 ). 

There is now increasing interest in studying the time-varying 

ature of FC in fMRI. Significant within-session fluctuations in 

C during rest or task fMRI have been demonstrated in a num- 

er of studies ( Lurie et al., 2020; Vidaurre et al., 2017; Hutchison 

t al., 2013; Allen et al., 2014; Parr et al., 2018 ) and are also well-

stablished in electrophysiological data ( Baker et al., 2014; Vidau- 

re et al., 2018b; De Pasquale et al., 2010; 2012 ). Further, a num- 

er of research studies have shown the utility of time-varying FC 

TVFC) in identifying many psychiatric and neurological conditions 

.g., multiple sclerosis ( Van Schependom et al., 2019; d’Ambrosio 

t al., 2020; Huang et al., 2019 ), schizophrenia ( Abrol et al., 2017 ),

arkinson’s ( Cai et al., 2018 ), stroke ( Chen et al., 2018 ), autism

pectrum disorder ( Guo et al., 2019 ), epilepsy ( Klugah-Brown et al., 

019 ) and major depressive disorder ( Zhi et al., 2018 ); and the
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ynamics of TVFC have been shown to coactivate with sponta- 

eous replay of recently acquired information ( Higgins et al., 2021 ). 

oreover, inter-subject differences in TVFC have also been associ- 

ted with a number of behavioural and cognitive traits ( Liégeois 

t al., 2019; Vidaurre et al., 2017 ), with some aspects of intelligence 

nly being explained by TVFC ( Vidaurre et al., 2021 ). 

Despite these successes in the estimation and use of TVFC, it is 

triking how homogeneous FC actually appears to be in fMRI data 

ver time. Indeed, there are a number of studies reporting that 

here is even insufficient evidence of within-session fluctuations in 

C in resting fMRI data ( Laumann et al., 2017; Hindriks et al., 2016;

eonardi and Van De Ville, 2015 ). While it is possible that close to

omogeneous FC in fMRI is a genuine phenomenon, it is also pos- 

ible that it is instead caused by limitations in the methods used 

o compute TVFC. 

Most previous work is based on the sliding window correla- 

ion (SWC) approach ( Sako ̆glu et al., 2010 ). There are many vari-

nts of the SWC method ( Allen et al., 2014; Lindquist et al., 2014;

iégeois et al., 2016; Leonardi and Van De Ville, 2015 ), which are 

ypically limited by using sliding windows of a specified, fixed 

idth. This means that they fail to adapt to the intrinsic time- 

oint by time-point variability of the FC, resulting in changes in 

C getting smeared together, thereby making FC look more homo- 

eneous over time. Some of these limitations can be overcome by 

ethods that adapt automatically to time periods of distinct net- 

ork activity, such as those based on Hidden Markov modelling 

HMM) ( Vidaurre et al., 2018a; Quinn et al., 2018 ). Even then, a

urprising amount of apparent homogeneity in the FC over time 

ersists. 

SWC and the HMM have in common that the mean activity and 

C estimations are coupled; that is, changes in the mean activity 

evel are by definition accompanied by changes in the FC, when 

oth are modelled. For example, the most common version of the 

MM for fMRI characterises each state as a Gaussian distribution 

ith both mean and covariance. Since there is no biological rea- 

on for this coupling assumption, in this work we consider the 

onsequences of relaxing that constraint, in fact showing that this 

hange can offer a potential explanation for the homogeneity of 

VFC seen in approaches that tie the dynamics of the mean and 

he FC together. 

Our proposed method for uncoupling the dynamics of the mean 

ctivity and FC is called the Multi-dynamic Adversarial Generator- 

ncoder (MAGE). This proposes a multi-dynamic modelling ap- 

roach that allows the mean activity and FC to fluctuate in time 

ndependently from each other. At the same time, MAGE captures 

ong range temporal dynamics of FC and mean activity using re- 

urrent neural networks (in contrast to the Markovian assumption 

f the HMM) ( Gers et al., 20 0 0; Graves and Schmidhuber, 20 05 ).

inally, our proposed model allows multiple brain states to be si- 

ultaneously active (in contrast to the categorical “mutual exclu- 

ivity” assumption of the standard HMM). To estimate this model 

n fMRI data, we developed a novel adversarial generator-encoder 

etwork framework inspired by the adversarial regularization used 

n generative adversarial networks (GANs) ( Goodfellow et al., 2014; 

owd and Meek, 2005; Makhzani et al., 2015 ). 

In this paper, we demonstrate the validity of MAGE on several 

imulation studies and a cognitive task dataset. We also apply the 

ethod to resting-state fMRI studies and deduce several outcomes 

egarding TVFC temporal dynamics, revealing more distinct pat- 

erns of FC over time than are obtained with SWC and the HMM, 

roviding an explanation as to why resting fMRI FC has appeared 

o temporally stable in previous work ( Laumann et al., 2017; 

indriks et al., 2016; Leonardi and Van De Ville, 2015 ). Finally, 

e substantiate our findings by demonstrating improved predic- 

ion of behavioural and cognitive traits using MAGE-derived TVFC 

stimates. 
n

2 
. Methods 

.1. multi-dynamic model 

Our proposed approach assumes that fMRI data is generated 

y a multivariate Normal distribution process with a time-varying 

ean, m t , and covariance, C t : 

 t = N (m t , C t ) (1) 

here Y t is the value of standardised fMRI data, Y (N x T) at time

oint t, and N is the number of channels (e.g., brain regions). 

In order to separately model the time-varying variances and the 

orrelations, we partition the covariance into a NxN diagonal ma- 

rix of standard deviations for each brain region, G t , and an NxN 

orrelation matrix, F t : 

 t = G t F t G t (2) 

here the correlation matrix, F t , captures instantaneous correlation 

etween brain regions; which we refer to as instantaneous FC. 

Clearly, it will not be possible to estimate the instantaneous 

orrelation and means (and variances) at every timepoint with- 

ut further constraints. As such, we model regularised versions of 

hem by capturing their repeating spatio-temporal structure using 

n adaptive temporal prior. 

Specifically, we assume that the means and correlations (and 

ariances) are generated from their own linear mixture of a lim- 

ted, underlying set of dynamic modes or states: 

 t = 

∑ 

p 

αt p S p (3) 

 t = 

∑ 

q 

βtq D q (4) 

 t = 

∑ 

r 

γtr diag (E r ) (5) 

here αt p is a scalar corresponding to the time course of the pth 

mean activity” state (p = 1... P), and S p is its Nx1 spatial map of 

ean activity; and βtq is a scalar corresponding to the time course 

f the q th “correlation” state (q = 1... Q), and D q is its NxN correla-

ion matrix; and γtr is a scalar corresponding to the time course 

f the rth “variance” state (r = 1... R), and E r is its Nx1 spatial map

f the standard deviations. The D q correlation matrices capture the 

tate-specific correlation between brain regions; which we refer to 

s the state-specific FC. As we shall describe in detail later, we as- 

ume that both the state time courses [ α, β and γ ] and the state- 

pecific maps [ S p , D q , E r ] are unknown and need inferring from

he data. Also, αt p , βtq and γtr are not coupled together and are 

ompletely free to fluctuate independently. 

Note that in Eqs. (3) , (4) , (5) the correlations and means (and

ariances) are regularised using their own distinct priors, or dy- 

amics. This is in contrast to most TVFC methods, which are single- 

ynamic approaches in that the dynamics of the means and the 

orrelations (i.e., the FC) are tied together. However, there is no 

mperative to assume that the dynamics of the means and corre- 

ations are the same as each other. As such, the proposed method 

s designed to explore what happens when we do not tie all of the 

ynamics together. We refer to this approach as multi-dynamic , as 

llustrated in Fig. 1 [A]. 

.1.1. Special case - Sliding window correlation 

Sliding window correlation (SWC) measures of TVFC capture 

ow the between-brain-region correlation fluctuates over time. 

or simplicity here (but without loss of generality), we assume 

on-overlapping sliding windows. This corresponds to Eqs. (3)–(5) , 
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Fig. 1. Single-dynamic versus multi-dynamic brain networks. [A] Top plot shows example brain network dynamics for the two scenarios; line width indicates functional 

connectivity (FC) strength, and size of node indicates mean activity amplitude. Middle and bottom plots highlight how the single-dynamic case assumes that the means and 

the FC change together, whereas in the multi-dynamic case they can change at distinct times. [B] Simple simulation illustrating the potential benefits of a multi-dynamic 

approach. The ground truth is that there are different dynamics underlying the time-varying means and FC. The multi-dynamic approach is able to accurately adjust to 

fluctuating FC (illustrated for four edges of the FC matrix), whereas the single-dynamic approach is not able to accurately capture these fluctuations, producing time-varying, 

instantaneous FC that erroneously looks much more homogeneous, as is often observed in time-varying FC estimates in real fMRI data. Lastly, the multi-dynamic approach 

is also able to adjust to fluctuating mean as shown in Figure S6. 
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here αt p , βtq and γtr are set to be the same, and are fixed a pri-

ri to correspond to the P = Q = R different positions the sliding win-

ow can take as it slides through time (e.g., in the case of square

indows, α and β and γ have a value of one inside the slid- 

ng window, and a value of zero outside of it). Note that P = Q = R

eeds to typically be very large to span all the data over time; 

nd so SWC approaches are normally followed by a clustering ap- 
3 
roach, such as k-means, to find repeating correlation patterns 

 Allen et al., 2014; Tagliazucchi et al., 2012 ). Typically, information 

bout how the mean fluctuates over time is ignored. Since αt p , βtq 

nd γtr are set to be the same, i.e., the means and correlations 

and variances) are modelled using the same dynamics, then SWC 

orresponds to what we refer to as a single-dynamics approach 

see Fig. 1 [A]). 
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.1.2. Special case - hidden Markov models 

Hidden Markov Models (HMM), with multi-variate Normal ob- 

ervation models, capture how both the mean activity levels and 

he between-brain-region correlations fluctuate over time. This 

orm of the HMM is the same as SWC in that it corresponds to Eqs.

3)–(5) where the time courses αt p , βtq and γtr are the same how- 

ver, αt p , βtq and γtr are now inferred from the data at the same 

ime as S p , D q and E r . This means that the approach can adjust to

ow the transient network states are coming and going for differ- 

nt durations at different points in time. Note that in addition, the 

MM assumes that αt p = βtq = γtr are binary time courses, defin- 

ng when states p switches on and off, and that no two states can 

e active at the same time (i.e., the states are mutually exclusive). 

s with SWC, since the means and correlations (and variances) are 

odelled using the same dynamics, then this version of the HMM 

orresponds to what we refer to as a single-dynamics approach (see 

ig. 1 [A]). 

.2. What do we mean by functional connectivity? 

Typically, correlation-based functional connectivity in fMRI 

efers to the correlation between two fMRI time series. However, in 

he model we are proposing, there are multiple entities that could 

e described as FC, all of which capture some different aspect of 

orrelation between brain regions. First, the model describes the 

orrelation at each time point, i.e., F t (Eqs. (1),(2) ). We refer to 

hese as the instantaneous FCs . Second, a set of state-specific cor- 

elations, i.e., D q , are mixed together to regularise the instanta- 

eous FC (see Eq. (4) ). We will refer to these as state-specific FCs .

inally, we might also consider correlations in the mean activity 

ime courses, which is a single correlation matrix that corresponds 

o the correlation of m t over all time, i.e., Corr( m t ). We will refer to

his as the mean activity FC ; this is potentially quite independent 

f the state-specific FCs. 

Our model provides a regularised estimate of the instantaneous 

C, and so we can more parsimoniously represent the instanta- 

eous FC using the state-specific FCs. Hence in this work, we focus 

n using the state-specific FCs as our main TVFC feature of inter- 

st, for example when predicting behavioural traits. 

.3. Multi-dynamic adversarial generator-encoder (MAGE) 

Equations (1) –(5) describe the modelling framework for the 

ulti-dynamic approach we are proposing. In this section, we will 

escribe the more complete generative model, including the gen- 

rative process assumed for the dynamics of αt p , βtq and γtr , and 

ow we infer on the model. We refer to the overall approach as 

he Multi-dynamic Adversarial Generator-Encoder (MAGE). 

In practice, MAGE assumes that the dynamics of the means 

nd variances are tied together, but crucially the correlation is as- 

umed to fluctuate independently. This corresponds to Eqs. (3) , (4) , 

5) with αt p = γtr (P = R), but with βtq free to be inferred sepa- 

ately. 1 Alongside the state time courses we also infer the state- 

pecific features: S p , D q and E r . Note that while the dynamics of

oth the means and the variances are always modelled (and are 

ied together with the same dynamics), for simplicity we will tend 

o refer to just the dynamics of the means throughout the paper. 

In addition, unlike the HMM, MAGE does not assume that state 

ime courses are binary and mutually exclusive. Instead, we as- 

ume that they describe time-varying linear mixtures with a sum- 
1 The reason MAGE models the variances to be independent of the correlation 

i.e., γtr free to be not equal to βtq ) is to allow maximum temporal independence 

o the correlation. We will expand onto this in Section 4 but allowing γtr = βtq re- 

ulted in weaker state-specific FCs dynamics, and hence was not a preferable mod- 

lling choice. 

(

(

d

c

l  

4 
o-one constraint ( αt p , βtq and γtr separately sums to one at each 

ime point), which we will refer to as “partial volume” state time- 

ourses. This sum-to-one constraint is an identification condition 

hat is imposed to ensure identifiability ( Huang, 2014 ) on the in- 

erred states and makes the post-model temporal analysis inter- 

retable. 

In summary, MAGE describes the data as being generated from 

 finite set of states. These states are linearly mixed together 

t each time-point to generate a time-varying description of the 

ata’s mean and covariance. 

.3.1. Generative model 

The generative model for the data, Y t , corresponds to Eq. (1) . 

ach instance of Y t is described by a multivariate Normal distribu- 

ion parameterised by the mean activity at time t, m t , ( Eq. (3) ) and

he covariance matrix at time t, C t ( Eq. (2) ). We model the state

ime courses, αt , γt and βt , based on their underlying logits: 

t = γt = ζ ( θm 

t ) (6) 

t = ζ ( θ c 
t ) (7) 

here ζ is the softmax function, ensuring that α and β sum to 

ne (over states) at each time point. 

The dynamics in θm 

t and θ c 
t (and implicitly the dynamics of the 

tate time courses) are captured using a unidirectional sequence- 

o-sequence long short-term memory (LSTM) model, which uses 

he history of θ , to predict the value at the next time point. Specif- 

cally, it predicts the prior means of the latent, time-varying pa- 

ameters [ θm 

t , θ c 
t ]. 

ˆ m,θ
t = f (LST M uni (θ

m 

<t , ω 

m 

g ) , λ
m 

g ) (8) 

ˆ c,θt = f (LST M uni (θ
c 
<t , ω 

c 
g ) , λ

c 
g ) (9) 

here ˆ μm,θ
t and ˆ μc,θ

t are the prior means of θm 

t and θ c 
t respec- 

ively. f () is the affine transformation and λm 

g and λc 
g represents 

he weights of the affine transformation. ω 

m 

g and ω 

c 
g are the gener- 

tive model LSTM weights. The proposed generative model for the 

ata is illustrated in Fig. 2 (and the in-depth architecture is illus- 

rated in Figure S2). 

.3.2. Inference 

Given fMRI data, we need to infer on the parameters [ S p , D q ,

 r , θm , θ c , ω 

m 

g , ω 

c 
g , λ

m 

g , λ
c 
g ] in the generative model. We infer point

stimates with uniform priors for the global parameters in the 

odel, i.e., [ S p , D q , E r , ω 

m 

g , ω 

c 
g , λ

m 

g , λ
c 
g ]; but for the more chal-

enging inference of the latent, time-varying parameters [ θm , θ c ], 

e want to regularise using priors (which here corresponds to the 

rior means of [ θm , θ c ] as stated in Eqs. (8),(9) ). This could be

ttempted using a number of different approaches. For example, 

ariational Bayes (VB) methods could be used based on the ideas 

rom Variational autoencoders (VAEs) ( Kingma and Welling, 2013 ), 

here the generative model acts as a decoder that maps from the 

atent, time-varying parameters [ θm , θ c ] to the fMRI data. The loss 

unction in VB inference is based on optimizing the variational free 

nergy ( Friston et al., 2007 ) and consists of two terms - the recon-

truction likelihood, and the Kullback-Leibler (KL) divergence that 

egularises the solution by matching the learned posterior distribu- 

ion to a prior distribution over the latent variables (i.e., Eqs. (8), 

9) ). 

Here, we take an approach based on an adversarial autoencoder 

AAE) ( Makhzani et al., 2015 ). Again, the generative model acts as a 

ecoder that maps from the parameters underlying the state time 

ourses, [ θm , θ c ], to the fMRI data, and hence the reconstruction 

ikelihood term of the AAE is the same as it would be in a VAE.
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Fig. 2. Generative model for MAGE. The proposed model generates data by first generating instantaneous means and the instantaneous correlation matrices (i.e., functional 

connectivity). MAGE also models instantaneous variances, whose dynamics are tied to be the same as the mean (not shown here). The instantaneous mean is modelled using 

an underlying set of states, for which the state time courses are generated using a long short-term memory (LSTM) model. The instantaneous correlation is also modelled 

using an underlying set of states, whose state time courses are generated using a completely different LSTM, making the approach multi-dynamic. The generative model for 

SAGE is illustrated in Figure S1. 
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owever, the AAE replaces the regularising KL divergence term of 

he VAE with an adversarial training criterion ( Makhzani et al., 

015; Mescheder et al., 2017 ). This takes the idea of adversarial 

oss from GANs to achieve the prior regularization - by forcing the 

osterior means underlying the state time courses, [ θm , θ c ], to be 

lose to the specified prior means (i.e., Eqs. (8), (9) ). To do this,

e train a discriminator, separately from the training that corre- 

ponds to the generative model parameter inference, to be able to 

istinguish between the prior and posterior versions of the [ θm , 
c ]. The trained discriminator is then used to enforce closeness be- 

ween the posterior and prior (alongside the reconstruction likeli- 

ood) when performing the model parameter inference. 

Encoder Model The encoder model maps from the fMRI data to 

he posterior estimates of the latent, time-varying parameters [ θm , 
c ]. This can also be referred to as the inference network or infer- 

nce model and corresponds to the idea of amortized inference in 

AEs, whereby the encoder allows an efficient means to “look-up”

he posterior estimates given the data ( Kingma and Welling, 2013 ). 

he authors who proposed AAEs ( Makhzani et al., 2015 ) explored 

he benefits of being fully Bayesian on the latent variables, by 

ssuming that the posterior is a Gaussian distribution (with the 

ean and variance predicted by the encoder, in a similar manner 

o the VAE); but after an extensive hyper-parameter search, they 

id not find any additional advantages, and only reported results 

sing a deterministic version of the posterior. As such, we learned 

 single nonlinear mapping that is used to map from the data, Y t ,

o the posterior means at any time point: 

m,θ = f (LST M bi (Y, ω 

m 

e ) , λ
m 

e ) (10) 
t 

5 
c,θ
t = f (LST M bi (Y, ω 

c 
e ) , λ

c 
e ) (11) 

here μm,θ
t and μc,θ

t are the posterior means of θm 

t and θ c 
t respec- 

ively. LST M bi is a sequence-to-sequence, bidirectional LSTM model, 

nd ω 

m 

e and ω 

c 
e are the encoder LSTM weights. f () is the affine 

ransformation and λm 

e and λc 
e represents the weights of the affine 

ransformation. Note that the approach is still stochastic since we 

se batching of the data. 

Discriminator Model As mentioned above, a discriminator is 

eeded to be able to distinguish between the prior and posterior 

ean estimates of the state time courses, [ θm , θ c ]. The discrimina- 

or is also constructed using a sequence-to-sequence, bidirectional 

STM model and it classifies whether samples are from the poste- 

ior or prior estimates of [ θm , θ c ]: 

 θm 
t 

= σ ( f (LST M bi ([ ζ ( ̂  μm,θ
t ) , ζ (μm,θ

t )] , ω 

m 

d ) , λ
m 

d )) (12)

 θ c 
t 

= σ ( f (LST M bi ([ ζ ( ̂  μc,θ
t ) , ζ (μc,θ

t )] , ω 

c 
d ) , λ

c 
d )) (13)

here σ is the sigmoid activation to ensure that discriminator out- 

ut is either 0 or 1, and ω 

m 

d 
and ω 

c 
d 

are the discriminator LSTM 

eights. f () is the affine transformation and λm 

d 
and λc 

d 
represents 

he weights of the affine transformation. Note that the discrimina- 

or takes in as input the full history of both the prior and posterior 

ean state time courses into its LSTM. Taken together with the fact 

hat we do not factorise the posteriors of [ θm , θ c ] over time, this 

eans that the trained discriminator will help drive the prior and 

osterior state time courses to have similar characteristics not just 

ver short, but also over long, time scales. 
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.3.3. How it works 

We trained this model as a three-player game played between 

he generator (i.e., the generative model with parameters [ S p , D q , 

 r , θm , θ c , ω 

m 

g , ω 

c 
g , λ

m 

g , λ
c 
g ]), encoder (with parameters [ ω 

m 

e , ω 

c 
e ,

m 

e , λ
c 
e ]), and discriminator (with parameters [ ω 

m 

d 
, ω 

c 
d 
, λm 

d 
, λc 

d 
]). The

iscriminator model is trained to distinguish prior mean estimates 

f [ θm , θ c ] from their posterior mean estimates. The discrimina- 

or is then used to enforce closeness between the posterior and 

rior of those parameters (while also honouring the reconstruction 

ikelihood) when training the encoder and generator. In this game, 

hen the discriminator successfully identifies the prior from pos- 

erior, it is rewarded; whereas both encoder and generator models 

re penalized. In contrast, when the combined effort s of the en- 

oder and generator models fools the discriminator, the discrimi- 

ator is penalized. Note, that at the same time the encoder and 

enerator models must also look to maximise the reconstruction 

ikelihood. 

This three-player game is played with two main loss functions 

hat are listed below: 

1. Reconstruction (Likelihood) loss: The first loss corresponds to 

the likelihood - this tells us how well we are explaining our 

data according to the current estimate of the generative model, 

and is given by: 

L = 

T ∑ 

t=1 

log p(Y t | θm 

t = μm,θ
t , θ c 

t = μc,θ
t ) (14) 

2. Regularization (Prior) Loss: The second loss regularises the es- 

timate of the latent, time-varying parameters [ θm , θ c ] using an 

adaptive prior - this penalises when the posterior estimates of 

[ θm , θ c ] deviate from the prior: 

R = 

T ∑ 

t=1 

[ CrossEntropy (μm,θ
t || ̂  μm,θ

t ) + CrossEntropy (μc,θ
t || ̂  μc,θ

t )] 

(15) 

This corresponds to the cross-entropy between the prior and 

the posterior of the latent, time-varying parameters [ θm , θ c ]. 

The total loss is the summation of these two terms: 

 = 
L + 

1 − 


2 

R (16) 

here we attribute a certain weight to each term using 
. The 

xpression in Eq. (16) can be thought of as an approximation of 

he variational free energy, but where the KL term is replaced by 

egularisation loss in Eq. (15) . The complete derivation for the reg- 

larisation loss in Eq. (15) is given in Section S1.5. We trained the 

arameters (i.e., S p , D q , E r , θm , θ c , ω 

m 

g , ω 

c 
g , ω 

m 

e , ω 

c 
e , ω 

m 

d 
, ω 

c 
d 
, λm 

g ,
c 
g , λ

m 

e , λ
c 
e , λ

m 

d 
, λc 

d 
) using these losses in two phases - the recon-

truction phase and the regularization phase - which are explained 

elow: 

• Reconstruction Phase: In the reconstruction phase ( Eq. (14) ), 

the generator model (with parameters [ S p , D q , E r , θm , θ c , ω 

m 

g ,

ω 

c 
g , λ

m 

g , λ
c 
g ]) and encoder model (with parameters [ ω 

m 

e , ω 

c 
e , λ

m 

e ,

λc 
e ]) are updated to minimize the reconstruction loss. We kept 

the discriminator model (with parameters [ ω 

m 

d 
, ω 

c 
d 
, λm 

d 
, λc 

d 
]) 

constant during this phase, otherwise the generator and en- 

coder would be trying to hit a moving target and might never 

converge. 
• Regularization Phase: In the regularization phase ( Eq. (15) ), 

the discriminator model (with parameters [ ω 

m 

d 
, ω 

c 
d 
, λm 

d 
, λc 

d 
]) is 

first updated to distinguish prior and posterior mean estimates 

of [ θm , θ c ]. Then, the parameters of the generator model and 
encoder model are updated to confuse the discriminator model. o

6 
.3.4. Single-dynamic adversarial generator-Encoder (SAGE) 

There is variant of the proposed model, SAGE, that assumes the 

ime courses αt p , γtr and βtq are the same. In this regard it is the 

ame as the HMM. However, SAGE maintains the long-range tem- 

oral modelling and the partial volume modelling of the network 

tate dynamics that are not part of the standard HMM. Through- 

ut this paper, we will compare MAGE with SAGE to highlight the 

enefits of the multi-dynamic modelling. SAGE is explained in Sec- 

ion S1.1 and is illustrated in Figure S1. 

.4. Dual-Estimation of the group-level MAGE 

We performed a process of dual-estimation (analogous to dual- 

egression following group-ICA) ( Beckmann et al., 2009 ) to infer 

he subject-level state versions of the group-level MAGE. This al- 

ows us to obtain a subject-specific description of time-varying 

oorelation and time-varying mean. To achieve this, we used the 

rained parameters inferred from the group-level MAGE ( αt p , βtq , 

 p , D q and E r ). Then we re-estimated the C t and m t for each sub-

ect by holding constant the α and β parameters, and only retrain- 

ng S p , D q and E r . 

.5. Hyper-parameters tuning and cross-validation 

The hyper-parameters for MAGE were chosen using extensive 

rial and error by monitoring the validation loss. Some of the 

yper-parameters are detailed as follows: 1) The sequence/window 

ength, W, (number of data time-points) was set to 100 and batch- 

ize, B, (number of grouped sequences) was set to 32 - this im- 

lies that each batch has a dimension of B 

∗W 

∗N. 2) a small learn-

ng rate of 0.0 0 01 was used with large momentum value of 0.9. 

) Nesterov-accelerated Adaptive Moment Estimation (NAdam) op- 

imizer was applied for training the data. 4) the number of units 

the dimension of the inner cells in LSTM) for each LSTM layer was 

et between 8 to 64 (depending on the number of subjects). 5) 

was optimised depending on the data-set (mostly constrained 

etween 0.85 to 0.95 Higgins et al. (2016) ). MAGE is an unsuper- 

ised algorithm, still, we were rigorous with the performance val- 

dation - we trained MAGE using the training/validation split with 

0% data in the training subset and 20% data in the validation sub- 

et during any experiment. 

To ensure that the reported MAGE results are reproducible, we 

erformed cross-validations on different non-overlapping sets of 

ubjects. We calculated the similarity of the MAGE estimated state- 

pecific FC correlation and mean activity estimates across these 

ifferent runs to highlight that the MAGE estimated states are 

eplicable. For statistical testing conducted in this paper, we have 

erformed paired t -test to determine whether there is statistical 

vidence that the mean difference between paired observations on 

 particular outcome is significantly different from zero. We have 

sed symbols to report the test results; ∗ when P ≤ 0 . 05 , ∗∗ when

 ≤ 0 . 01 and 

∗∗∗ when P ≤ 0 . 001 . 

. Results 

.1. MAGE can infer dynamic linear mixtures of FC states 

We start by considering the performance of our proposed 

ethod, MAGE, when we set aside the proposed multi-dynamic 

odelling. This version of MAGE models single-dynamics (where 

he state time courses for the mean activity and the correlations 

re the same, i.e., αt p = βtq ) and is referred to as SAGE. SAGE oth- 

rwise maintains all of the other features of MAGE, including the 

ong-range temporal modelling and the partial volume modelling 

f the state dynamics. 



U. Pervaiz, D. Vidaurre, C. Gohil et al. Medical Image Analysis 77 (2022) 102366 

Fig. 3. Comparison of the performance of the single-dynamic approach SAGE versus HMM, using simulations of dynamic linear mixtures of FC states (i.e., partial volume) 

and single-dynamics dynamics (i.e., where the state dynamics of the means and correlations are tied together). [A] Two illustrative partial volume examples, comparing 

SAGE performance with HMM. In scenario x, two states can be simultaneously active, whereas, in scenario y, up to three states can be simultaneously active. Note that these 

state-time courses were common to both the time-varying mean and correlations (i.e., instantaneous FC). The bottom row of [A] shows the Riemannian distance between 

the inferred and simulated covariances for both HMM and SAGE. [B-C] Comparison of the performance of SAGE with HMM on a number of partial volume simulations. Each 

box plot shows the distribution of prediction performance results over 50 different simulations. Riemannian distance between inferred and simulated covariances was used 

as a measure of success in [B] , and prediction correlation between the inferred and simulated state time-courses in [C] . 
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We first demonstrate SAGE’s ability to infer state time courses 

hat are dynamic linear mixtures (i.e., partial volume mixtures) 

ith more than one underlying state active at each time point, t. 

ote that this is in contrast to categorical simulations (i.e., HMM 

ssumptions), where the ground-truth state time-courses, α are ei- 

her 1 or 0 (see Figure S3 for simulations demonstrating M/SAGE’s 

erformance on categorical data). In the partial volume simula- 

ions, the ground-truth state time-courses, α could be any contin- 

ous number from 0 to 1 for any state, but where the sum of α
or all states, α jt at any time-point, t, should be 1. 

Figure 3 [A], shows illustrative examples where the number of 

imulated states is two and three respectively. Either one, two, or 

hree can be active at any time point. The simulated ground-truth 
7 
n Fig. 3 [A] is single-dynamic and the simulated state time courses 

demonstrated in Fig. 3 [A]) are common to both the time-varying 

ean and correlations. We compared SAGE with the HMM to see 

ow they recover the underlying simulated state time courses and 

he observation model parameters. The HMM failed to infer these 

tate time courses accurately, as HMM is built around the assump- 

ion that only one state is active at any time point. On the other 

and, SAGE does a good job of inferring these partial volume state 

ime courses. To quantitatively assess the performance of these 

odels, we calculated the Riemannian distance between the simu- 

ated covariances and the inferred covariances for each time point. 

he lower the Riemannian distance between the inferred and sim- 

lated covariance, the better the performance of the model. We 
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an see that SAGE can accurately infer the underlying time-varying 

ovariance, but this is not the case for the HMM. 

Figure 3 [B,C] shows the performance of the approaches across 

any partial volume scenarios. We varied the number of overlap- 

ing states (either 2, 3, or 4), and then compared the performance 

f SAGE against the HMM. For each overlapping state configuration, 

e generated 50 different simulations in which we varied the state 

ime courses (% of overlap), and the observation model itself. We 

llustrated the Riemannian distance between the inferred and sim- 

lated covariances. We also showed the prediction correlation (not 

ccuracy, as state time courses, are no longer categorical) between 

he inferred and the simulated state time courses. 

Lastly, we demonstrate the performance of MAGE for scenarios 

here the ground-truth is such that FC is static (i.e., no fluctua- 

ions in edges of the FC matrix over time). We show that MAGE 

oes not infer time-varying correlations when we infer more than 

ne state for such simulations (see Figure S4). This highlights that 

AGE only infers time-varying FC when the underlying FC is time- 

arying. 

.2. Failing to model distinct mean activity dynamics can result in 

omogeneous estimation of FC over time 

Commonly-used SWC and HMM approaches are what we refer 

o as single-dynamic models, as they tend to tie the dynamics of 

he correlations (i.e., the FC) to be the same as the dynamics of 

he means of the brain activity. However, if the underlying truth is 

hat the dynamics of the means and correlations are actually dis- 

inct from each other, then using single-dynamic approaches to in- 

er TVFC can have negative consequences. This is because forcing 

t p to be the same as βtq , when the ground truth is that they are

ot the same, causes the dynamics used for estimating the state- 

pecific FC to be incorrect. This then leads to a smearing of the FC 

stimation over time, making it look more homogeneous than it 

eally is. 

We illustrate the mechanism of the multi-dynamic approach us- 

ng a simple scenario in Fig. 1 [A]. Furthermore, in Fig. 1 [B], we

emonstrate the potential benefits of the multi-dynamic approach 

n a simulation 

2 in which the ground truth is such that the cor- 

elation dynamics and the mean activity dynamics are not tied to- 

ether. Specifically, Fig. 1 [B] shows the instantaneous FC estimated 

sing SAGE or MAGE when we simulate using Eqs. (1) –(5) with αt p 

ot equal to βtq . 

When we infer TVFC using SAGE, the single-dynamic version 

f MAGE (with αt p set to be the same as βtq ), there are substan- 

ially reduced fluctuations in the inferred instantaneous FC over 

ime (i.e., FC is mapped as being near-homogeneous/static) as is 

ften observed in TVFC estimates in real fMRI data. In contrast, the 

ulti-dynamic version of MAGE (with αt p free to be not equal to 

tq ) is better able to capture the true fluctuations in instantaneous 

C over time. 

.3. MAGE can infer dynamics in the FC that are distinct from 

ynamics in the means of brain activity 

We next sought to see if MAGE could identify multi-dynamics 

n a range of scenarios. For this, we simulated distinct dynamics 

i.e., multi-dynamics) for the mean and correlations (i.e., the FC) by 

imulating two different state time courses, αt p and βtq , using two 

ifferent hidden semi-Markov model chains, whose state lifetime 

alues were sampled from two different gamma distributions such 
2 For this particular simulation, the number of channels in the data is 20, the 

umber of modelled states (P = Q = R) is 12, and multi-dynamics state time courses 

or the means and the correlations are simulated using two different hidden semi- 

arkov model chains. 

t

F

a

w

m

8 
hat αt p was not equal to βtq . These state time courses were then 

sed in Eqs. (1) –(5) to simulate the data. 

We compared the performance of the multi-dynamic approach 

MAGE) with the single-dynamic approach (SAGE) in Fig. 4 [A,B]. As 

llustrated in Fig. 4 [A], the lifetimes of both the mean and cor- 

elation states in the simulation were sampled from the gamma 

istribution. However, we fixed the distribution of lifetimes of the 

orrelation state time courses by setting the gamma distribution 

arameter to k = 30, whereas, for the mean state time courses, we 

aried k from 5 to 80, so that the mean state time courses spanned

 variety of timescales in different scenarios. In Fig. 4 [B], it is the

ther way around, where we fixed the lifetime distribution of the 

ean state time courses (k = 30), but varied the lifetime distribu- 

ion for the correlation state time-courses (again from k = 5 to 80). 

n Fig. 4 [A,B], we have plotted the prediction accuracy for the state 

ime courses of correlation and mean. MAGE does a better job in 

redicting the underlying simulated labels for state time-courses 

s compared to SAGE. Note that we did not draw any compari- 

on with the HMM here, as the HMM is also a single-dynamic ap- 

roach, and the HMM is not able to infer the mean and correlation 

n such a multi-dynamic fashion (and hence the results would be 

xpected to be closest to SAGE). 

.4. MAGE learns network state dynamics that show appropriate task 

ependencies 

In order to help validate the different dynamics that MAGE is 

nferring, we applied it to task fMRI data. The idea is to train MAGE 

ith no knowledge of the task timings (i.e., unsupervised), allow- 

ng us to see if the state dynamics being inferred by MAGE are 

eaningful in the sense that they exhibit dynamics that link to the 

ask. Furthermore, we wanted to compare how the FC varies across 

he task conditions using the MAGE approach (and judge whether 

he inferred spatial maps are meaningful). 

Task fMRI data used was collected as part of a previous 

tudy from 15 healthy volunteers (7 females, 8 males, age = 

7.3 ±4.4yr, all right-handed) without any previous neurological 

isorders ( Kieliba et al., 2019; Duff et al., 2018 ). Participants per- 

ormed four different tasks: rest, motor only, visual only, and si- 

ultaneous (but independent) visual and motor tasks, and each 

ask was repeated four different times. The motor task involved 

ontinuous finger-tapping against the thumb using the right hand. 

he vision task consisted of videos of colourful abstract shapes 

n motion. During the combined motor-visual task, participants 

erformed the finger-tapping task while simultaneously watching 

he videos. We applied a framework used for identifying large- 

cale probabilistic functional modes (PROFUMO) ( Harrison et al., 

015; 2020 ), to identify parcels that are allowed to be correlated 

ith each other in space and/or time, and which explicitly models 

etween-subject variability in the parcels. We applied PROFUMO 

n this data with a dimensionality of 30, which outputs 30 parcel 

ime-courses. These then correspond to the N = 30 channels of data 

hat are fed into MAGE. 

Temporal Dynamics In the main results shown in Fig. 5 , we 

odelled four states using MAGE, so that the number of states 

s matched to the number of task conditions. In Fig. 5 [A], we 

ave plotted the task-evoked occupancy, which is the average 

f the MAGE inferred state time courses across the four re- 

eated runs (as each experimental condition is repeated four 

imes). The task-evoked occupancy shows clearly that the inferred 

tates switch at the same time as the experimental task condi- 

ion changes. It is worth noting from Fig. 5 [A] that the estimated 

C-driven state-time courses, βtq , performed better than the mean 

ctivity/variance-driven time-courses, αt p . Moreover, in Figure S7, 

e have illustrated the results of task decoding when we modelled 

ore than 4 states. In Figure S7[A], we have modelled 8 states and 
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Fig. 4. Comparison of the performance of the multi-dynamic approach (MAGE) and the single-dynamics approach (SAGE) on multi-dynamic simulations where multi- 

dynamics are the ground truth (i.e., where the state dynamics of the means and correlations are free to fluctuate independently). [A,B] The prediction performance of 

multi-dynamic and single-dynamic approaches are compared across a range of simulations. The x-axis shows the lifetime parameter (sampled from a gamma distribution) 

for the mean and correlation state time-courses, whereas the y-axis shows the prediction accuracy of the inferred state time-courses. Specifically, in [A] , we fixed the lifetime 

distribution of the correlation state time-courses (k = 30, as shown by the shaded bar) but varied the lifetime distribution for the mean state time-courses (from k = 5 to 

80), and it is the other way around in [B] . 
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n Figure S7[B], we have modelled 16 states, and we plotted the 

elative fractional occupancy (time spent in each state) distribu- 

ion for each of the modelled states. It is evident that even with 

he increased number of states, we can still see dynamics that are 

ask dependent and can identify task-specific states (as highlighted 

y the paired t -test values on the respective states). 

Spatial Dynamics 

In Fig. 5 [B], we show the state-specific FC spatial maps (cor- 

esponding to the first eigenvector of the state-specific correlation 

atrices) and mean activity spatial maps for each of the four in- 

erred states. The variance spatial maps are not illustrated as there 

as no between-state variability in the inferred variance states 

lack of time-varying content in variance). The maps are labelled 

ccording to the task conditions that their state time courses most 

orrespond to. The state-specific FC maps for MAGE identifies ap- 

ropriate active regions during each of the tasks. It can be seen 

uring the motor task that the somatomotor area of the brain is 

ctive, and during the visual task that the visual cortex is active. 

uring the rest task, the Default Mode Network (DMN) is active, 

nd during the visual-motor task, both the motor and visual cortex 

re active. The mean activity level maps appear fairly similar and 

ook appropriate with regards to the relevant task condition. Dur- 

ng the visual task, the visual cortex of the brain is active, and dur- 

ng the motor task, the motor cortex is active for both approaches. 

uring the rest task, DMN is active, and during the visual-motor 

ask, only the visual cortex is active for the MAGE approach. 
9 
.5. Multi-dynamic approach reveals stronger changes in FC over 

ime in resting fMRI 

The simulations shown in Fig. 1 suggest that multi-dynamic ap- 

roaches may be better able to identify TVFC than single-dynamic 

pproaches, which may erroneously infer FC as being too homo- 

eneous over time. We looked to test this idea by applying the 

ingle-dynamic (SAGE) and multi-dynamic (MAGE) approaches to 

esting-state fMRI data. In particular, we can analyse how the tem- 

oral dynamics of mean activity levels and FC differ (i.e., αt p , βtq ) 

hen modelled independently and see if this has any effect on the 

nferred state-specific FC maps. Lastly, we compared MAGE results 

ith the HMM and SWC approaches, to further substantiate our 

ndings. 

We used rfMRI data from 13,301 subjects from the UK Biobank 

UKB) ( Miller et al., 2016 ) and 1003 subjects from the Human Con- 

ectome Project (HCP) ( Van Essen et al., 2013 ). The pre-processing 

ipelines for UKB and HCP main steps can be summarized as (1) 

otion correction, (2) removal of structural artifacts with ICA (In- 

ependent Component Analysis and FMRIB’s ICA-based X-noisefier 

FIX). The length of the scanning session for UKB is 6 min, and for 

CP is 1 h (4 sessions of 15 mins each). For UKB, we have 490

ime-points and for HCP, we used data from all 4 sessions which 

ave us 4800 time points in total (1200 time points in each ses- 

ion). Lastly, we applied a popular data-driven parcellation scheme 

alled spatial Group Independent Component Analysis (group-ICA) 
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Fig. 5. [task fMRI data] Validation of the performance of MAGE on a on a real task fMRI data-set. [A] There are four different tasks performed by the participants (rest, 

visual, motor, and visual-motor). Task-evoked occupancy plots of the state time courses from MAGE (learnt with no knowledge of the task timings) across the four tasks, 

where the x-axis represents the number of time points and the y-axis corresponds to the average activation value for that state. Specifically, the task-evoked plot curves 

show the mean and standard deviation across four repeated runs of each experimental condition for all 15 subjects. [B] The state-specific spatial maps for the functional 

connectivity (FC) and mean activity, which are labelled according to the task conditions that their state time courses most correspond to. The state-specific spatial maps for 

variance are not illustrated as there is no between-state variability in the inferred variance states. For the mean activity maps, the average amplitude of each node/channel 

is shown. The negative mean activity (e.g., deactivation of the visual network during the motor task) refers to decreases in signal change compared to the baseline. For the 

FC maps, rank-one decompositions (first Eigenvector) of the estimated state-specific FC correlation matrices are shown. The magnitude of the values of the state-specific FC 

spatial maps (colorbars) correspond to the degree of connectedness of each region with the rest of brain. 

(  

(

n

p

A

d

 Pervaiz et al., 2020 ) 3 to our data to identify the parcels/channels

N) that form the data to be input into MAGE 4 
3 For HCP data, we use the minimally-preprocessed released data, in gray ordi- 

ates (cortical surface vertices and subcortical voxels). For UKB data, we used the 

reprocessed released data in standard volumetric space. 
4 To apply group-ICA, we first generated the group-PCA (Principal Component 

nalysis) output using MIGP (MELODICs Incremental group-PCA) ( Smith et al., 2014 ) 

H

u

w

p

g

10 
Temporal and Spatial Dynamics We first compare the single- 

ynamic (SAGE) and multi-dynamic (MAGE) approaches using the 

CP data, where the only difference between the two methods is 
sing data from all subjects. This comprises the top few thousands (10 0 0–50 0 0) 

eighted spatial eigenvectors from a group-averaged PCA, which is a very close ap- 

roximation to the original data (fully concatenating all subjects’ time-series. Lastly, 

roup-ICA is run on the output of group-PCA. 
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t

hether or not we model independent state dynamics for the state 

eans and FC (i.e., correlations). In Fig. 6 [A], we show the state- 

pecific mean activity and FC correlation maps for SAGE and MAGE 

pproaches for the HCP data. In total, we modelled P = Q = R = 12

tates, but we have only displayed the observation model for four 

f the 12 states for ease of visualisation (the results for all 12 

tates are illustrated in Figure S9, Figure S10, Figure S11 and Fig- 

re S12). As described earlier, MAGE also models time-varying vari- 

nces, whose dynamics are tied to be the same as the mean. How- 

ver, we have not displayed the state-specific spatial maps for vari- 

nce as MAGE infers that there was little between-state variability 

n the state-specific variances (i.e., the variances remained static 

cross states). 

Figure 6 [A] shows that the state-specific mean activity maps 

ary reasonably well across states using both SAGE and MAGE. 

owever, with SAGE, it can be seen that the state-specific FC maps 

the rank-one decomposition of the estimated state-specific corre- 

ation maps are shown to make these 2D FC maps easier to view) 

f all the states are predominantly similar, always resembling a 

omatomotor state. We also attempted another modelling option 

ith SAGE in which we explicitly forced the mean activity to be 

ero 5 (i.e., m t = 0 in Eq. (1) ). This approach also resulted in ho-

ogeneous state-specific FCs as shown in Figure S13. In contrast, 

or the MAGE approach, we can see that the state-specific FC maps 

orrespond to distinct brain networks, with the state-specific FCs 

ooking more distinct from each other than in the SAGE results. 

o illustrate this quantitatively, we show the pairwise between- 

tate Riemannian distance in Fig. 6 [B]. Specifically, we calculated 

hese pairwise distances over the actual 2D correlation matrices 

i.e., FCs). It is clear that these between-state pairwise distances 

re higher for the state-specific FC maps when inferred using the 

ulti-dynamic MAGE approach, revealing stronger changes in FC 

ver time. 

In Fig. 6 [D], we compare summary measures of the state dy- 

amics. Since MAGE models a linear mixture (i.e., a partial vol- 

me) at each time point, it is not straightforward to compute sum- 

ary statistics normally used on binary state time courses. In or- 

er to allow us to do this we threshold the continuous partial vol- 

me state time courses ( αt p and βtq ) at 0.3. Firstly, we show the 

tate switching rate for both models, which is a measure of the 

requency of state fluctuation for each subject, and it can be seen 

hat FC-driven state time-courses, βtq , have the lowest switching 

ate. Then, we show the state lifetimes for both models, which cor- 

espond to the number of seconds per state visit. We can see that 

he FC-driven state time-courses have the highest values for state 

ifetimes (2 to 5 s) as compare to lifetimes of mean state time- 

ourses (2 to 3 s). In Fig. 6 [E], we show an example segment of

he state time course (of a randomly chosen subject) showing the 

ature of the mixing of the inferred 12 states and the degree of 

verlap between the mean activity and the FC state time-courses. 

urthermore, in Fig. 6 [C], we quantitatively compare the extent of 

imilarity between the mean activity and the FC state time courses. 

e plot the mean activity and the FC state time courses correla- 

ion matrices as histograms for the null and the HCP dataset. There 

s a significant non-zero correlation as compared to the equivalent 

ull scenario, but there is clearly still a distinct difference between 

hem (and hence the difference in the performance of SAGE vs 

AGE). In short, the means and FCs have some shared dynamics 

ut also some unique/independent dynamics. 

It has been previously proposed that the observed estimates of 

VFC must be compared against “static” null hypotheses to estab- 

ish claims of non-stationary ( Lurie et al., 2020 ). Considering that, 
5 For other such examples, see Vidaurre et al. (2021) for modelling only the co- 

ariance and Charquero-Ballester et al. (2020) for modelling only the mean activity. 

a

F

11 
e generated null data using autoregressive randomization (ARR) 

ollowing ( Liegeois et al., 2017 ). Specifically, a 10th order Gaussian 

utoregressive (AR) model was applied to generate null data. For 

ach participant and each pair of brain regions, we compared the 

bserved between-timepoint variances of the instantaneous FCs in- 

erred by MAGE, which can be calculated from the FC state dy- 

amics and state-specific FCs, from the real HCP data against the 

ull data. This analysis resulted in one p-value for each edge of the 

C matrix. On average, across HCP participants (compared against 

ull data), 95% of edges were significant ( p ≤ 0 . 001 ). Furthermore, 

n Figure S5, we show the histogram of null variance values com- 

ared with the real HCP data variance values (this highlights that 

etween-brain region variability over time is significantly higher in 

he real HCP data as compared to null data). 

We find that we get similar results to the HCP dataset when we 

se MAGE on the resting fMRI data from the UKB dataset. Here, 

e also compare the performance of MAGE with other established 

ethods (HMM and SWC) on the UKB data-set. Figure 7 shows the 

tate-specific FC maps from MAGE, HMM and SWC, with the HMM 

nd SWC approaches showing similar behaviour to that of SAGE in 

ig. 6 . It is also clear that there are smaller between-state differ- 

nces in FC across time for both the HMM and SWC approaches 

ompared to MAGE (as reflected by the between-state Riemannian 

istance plots in Fig. 7 [D]), consistent again with the idea that 

AGE reveals stronger changes in FC over time due to its ability 

o model multi-dynamics. 

To ensure that the MAGE estimated FC and mean activity 

tates are reproducible, we ran MAGE six times on different non- 

verlapping subsets of UKB data (2k subjects for each run). In 

ig. 8 [A,B], we compare the similarity between MAGE estimated 

tate-specific spatial maps across the six runs. Specifically, in 

ig. 8 [A], we show the average correlation plot for the state- 

pecific FC estimates across repeated runs, and in Fig. 8 [B] for the 

tate-specific mean activity estimates, both for a fixed number of 

tates (P = Q = 12). This shows that the state-specific FCs are very 

eproducible and that the state-specific mean activity estimates 

re moderately reproducible but not to the same extent. We then 

eplicated these reproducibility findings for a wide range of num- 

ers of states (1 to 24) for the FC and mean activity, as shown in

ig. 8 [C], also demonstrating that P does not have to be equal to Q.

e show in Fig. 8 [C] that the FC are mostly highly and mean activ-

ty are mostly moderately reproducible independent of the number 

f modelled states. Specifically, mean activity and functional con- 

ectivity states are more reproducible if the number of modelled 

tates is more than approximately six. 

It has been previously reported in Vidaurre et al. (2017) that the 

rain network activity is organized into a hierarchy of two distinct 

eta-states, with one meta-state representing hisgher-order cog- 

ition, and the other representing the sensorimotor systems. We 

ave taken a similar approach as Vidaurre et al. (2017) , and com- 

uted [P x d] or [Q x d] matrices containing the fractional occu- 

ancy (time spent in each state) for each subject, where d is the 

umber of subjects. We then use these to compute the [P x P] 

r [Q x Q] correlation matrices over subjects, which are shown in 

ig. 8 [D]. As in Vidaurre et al. (2017) , Fig. 8 [D] shows that a hi-

rarchical meta-state structure is present. Here, it is apparent in 

oth in the functional connectivity and the mean activity driven 

tate time-courses, although it is more apparent in the mean ac- 

ivity state time-courses. 

.6. Multi-dynamic TVFC predicts behavioural variability better than 

he single-dynamic approaches 

We next used the UKB data to see if the multi-dynamic MAGE 

pproach provides spatial network features (i.e., the state-specific 

Cs) that can be used to predict individual behavioural traits, and 
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Fig. 6. [HCP data] [A-B] The multi-dynamic (MAGE) approach reveals stronger changes in state-specific FC maps compared to the single-dynamic (SAGE) approach. Using 

the HCP data, it is evident that qualitatively and quantitatively, MAGE-derived FC shows stronger changes over time. [A] State-specific mean activity and FC correlation maps 

for four of the modelled states for both approaches are shown. For the state-specific mean activity maps, the average amplitude of each node/channel is shown and for 

the state-specific FC maps, rank-one decomposition (first Eigenvector) of the estimated FC correlation maps are shown. [B] The pair-wise Riemannian distance of the state- 

specific FC correlation matrices between 12 FC states is shown for both MAGE and SAGE (with and without modelling the mean activity, see Vidaurre et al. (2021) as another 

example of modelling only the correlation, i.e., m t = 0 in Eq. (1) ). The stars referred to paired t -test values. [C] Correlations between the mean-derived state time-courses 

and the FC-derived state time-courses plotted as histogram over all pairs of states (and equivalent null scenario). The non-zero correlations indicate that the mean activity 

and FC have some shared dynamics but also have unique temporal dynamics. [D] Summary measures of the state dynamics for both approaches. It can be seen that FC state 

dynamics show the lowest switching rate (in Hertz) and the highest lifetimes values (in seconds) as compared to other approaches. (E) Example segment of a state time 

course of a randomly chosen subject is shown to qualitatively highlight the extent of similarity (and dissimilarity) between the mean activity and the FC state time courses. 

These also show how states in MAGE can overlap in time. 
12 
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Fig. 7. [UKB data] Demonstration that the between-state spatial variability in state-specific FC maps is significantly higher when modelled using the MAGE approach on UKB 

data compared with the HMM or SWC approaches. [A-C] The pair-wise Riemannian distance of the state-specific FC correlation matrices between 12 FC states is shown for 

MAGE, HMM and SWC, alongside the FC correlation maps for 5 of the identified states. The state-specific FC maps are shown as rank-one decomposition (first Eigenvector) of 

the estimated state-specific FC correlation matrices. The channels with positive values (red regions) show they are positively correlated with other regions, whereas channels 

with negative values (blue regions) show they are negatively correlated with other regions. The state-specific FC maps for all 12 states using SWC, HMM and MAGE are 

illustrated in Figure S14, Figure S15, and Figure S16 respectively. [D] The between-state Riemannian distance for the modelled 12 states, shown for MAGE, SWC and HMM. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

13 
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Fig. 8. [UKB data] MAGE estimated FC and mean activity spatial maps are reproducible across various runs on different non-overlapping sets of subjects. [A] shows the 

average correlation between the state-specific FCs across six repeated runs. Moreover, for runs 1 and 2, FC correlation maps are shown for 4 of the identified states (out of 

the 12 inferred states), demonstrating that the FC states are consistent across repeated runs. On the other hand, [B] shows the average correlation plot for the state-specific 

mean activity estimates across six repeated runs, alongside the mean activity spatial maps (for runs 1 and 2 only). The analysis in [A] and [B] is performed for a fixed 

number of states (P = Q = 12), whereas, in [C] , we evaluated the reproducibility of state-specific FC and mean activity estimates by varying the total number of modelled 

states (P, Q). Specifically, [C] shows the correlation plots for the state-specific FCs and state-specific mean activity estimates, where we varied the total number of inferred 

states (P and Q) from 1 to 24. These results suggest that inferred states for the FC are highly and mean activity are moderately reproducible independent of the number 

of modelled states (Note the difference in the ranges of the colormaps). [D] We replicated the original findings of ( Vidaurre et al., 2017 ) and illustrate that hierarchical 

meta-state structure exists both in the functional connectivity and the mean activity states, but is more well-defined in the mean activity states (matrices computed as υυ ′ , 
where υ is the [number of states by number of subjects] fractional occupancy matrix). 

14 
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e compare its performance to the HMM and SWC approaches. 

longside the task fMRI results, this would provide further evi- 

ence that the state dynamics being inferred by MAGE are cog- 

itively meaningful. 

We applied the dual-estimation method to obtain subject-level 

stimates of TVFC. This means that for each subject, we can obtain 

 set of state-specific FC maps (Q 

∗ N 

∗ N), where Q is the number

f correlation (FC) states and N is the number of channels/brain 

egions. Then, we can use these subject-level, state-specific FC 

stimates to predict selected behavioural variables. The classi- 

er/predictor we employed is Elastic Net ( Zou and Hastie, 2005 ), 

hich is a regularized regression method that combines the penal- 

ies of lasso (L 1 ) and ridge (L 2 ) methods ( Vidaurre et al., 2013 ).

he data matrix fed into the classifier is d 

∗[Q 

∗f], where d is the

umber of subjects, Q is the number of states and f is the num- 

er of features. The state-specific FC matrices are symmetric and 

nly values above the diagonal need to be retained and vectorized, 

nd hence f = N(N-1)/2. Lastly, we concatenated the state-by-state 

ubject-level, state-specific FC estimates, resulting in Q 

∗f features 

or each subject. We performed this prediction analysis for UKB 

ata with d = 13301, Q = 12, and N = 25. 

We used four non-imaging variables to compare the perfor- 

ance of multi-dynamic (MAGE) approach with HMM and SWC. 

he details for the SWC and HMM approaches are explained in the 

ection S1.3 and Section S1.4 respectively. These variables are age, 

ex, fluid intelligence score, and neuroticism score. In Fig. 9 [A], we 

isplay the prediction results (nested 10-fold cross-validated) from 

he subject-level FC estimates. We can see that the FC obtained us- 

ng the MAGE approach is a more accurate predictor of behaviour 

s compared to the other approaches 

.7. Static FC is worse than multi-dynamic TVFC at predicting 

ehaviour 

Time-averaged FC (static) can be considered as an average of 

ll state-specific FC states (and the time varying means) and is 

onventionally estimated simply by taking a full (Pearson) corre- 

ation between brain parcels over the whole scanning time. Unlike 

VFC in the form of the state-specific FCs, time-averaged FC is a 

ingle FC estimate per subject and is already an established pre- 

ictor of behavioural traits ( Pervaiz et al., 2020 ). In Fig. 9 [B], we

ompare the combined power of the state-specific FCs with the 

ime-averaged FC. This shows that for the mental health variables, 

redictive performance is improved by using the state-specific FCs 

n comparison to time-averaged FC. We employed Elastic Net for 

his comparison and the reported results are nested 10-fold cross- 

alidated. 

. Discussion 

We have proposed a novel algorithm, MAGE, that reliably infers 

he time-point by time-point estimates of FC. Notably, MAGE frees 

p the dynamics of the FC to fluctuate independently from the dy- 

amics of the means and variances of the brain activity. We found 

hat this multi-dynamic approach reveals much stronger changes 

n FC over time than existing single-dynamic approaches (e.g., 

MM, SWC), and is a better predictor of individual behavioural 

ariability. This provides a potential explanation and solution as to 

hy time-varying FC has appeared to look so stable in resting fMRI 

ata in previous work ( Hindriks et al., 2016; Liegeois et al., 2017 ). 

MAGE inferred multi-dynamic linear mixtures of FC states. 

e assessed the performance of MAGE on simulations where there 

an be more than one underlying state active at each time point 

 Fig. 3 ). We demonstrated that categorical models, such as the 

MM, under-performed as expected when applied to such sim- 

lations. In contrast, MAGE remained accurate across a range of 
15 
hese simulations. MAGE also shows improved performance in 

imulations designed to be suitable for categorical models (e.g., 

MM), i.e., by having only one state active at each time point 

mutual exclusivity) (Figure S3). This suggests that MAGE perfor- 

ance remained stable when the state time-courses have long- 

ange temporal dependencies (i.e., violate the HMM Markovian as- 

umption) (Figure S3[D]). Lastly, we assessed the performance on 

he multi-dynamic simulations and demonstrated that MAGE ac- 

urately identified unique dynamics of the correlations when the 

round truth was that the correlations and mean activity dynam- 

cs were distinct from each other ( Fig. 4 ). 

MAGE learned network state dynamics that showed appro- 

riate task dependencies. Following rigorous performance eval- 

ation of MAGE on more than a thousand simulations, we ap- 

lied it to a task fMRI dataset. The rationale was that task fMRI 

ives an opportunity to assess the specific state dynamics that 

AGE infers, by comparing them to the known task timings. In 

ig. 5 , we demonstrated that the FC-driven time courses performed 

ell in terms of displaying task-dependencies as compared to the 

ean-driven state time courses when using MAGE. Moreover, we 

howed in Fig. 5 [B] that plausible time-varying representations of 

C and mean activity spatial maps were inferred using the MAGE 

pproach. This suggests that the inferred TVFC is powerful enough 

o capture the dynamics in cognitive tasks, and is not static during 

hese task experiments. 

Why do we model the mean of the brain activity separately 

rom the functional connectivity? Our assumption in Eq. (1) is 

hat the mean and the FC (i.e., the correlation matrix) continuously 

ary over time. From that perspective, there is no imperative to as- 

ume that the dynamics of those two entities are the same as each 

ther. As such, MAGE is designed to explore what happens when 

e do not tie the dynamics together. By allowing the state dynam- 

cs of the mean and FC to be independent of each other, MAGE also 

llows them to potentially operate on different time scales. How- 

ver, in real fMRI data, we found that the dynamics of the mean 

tates and the FC states ended up on fairly similar time-scales (be- 

ween 2 to 5 s for FC states and 2 to 3 s for mean activity states,

s shown in Fig. 6 ). It is also interesting to consider the extent 

o which the state dynamics of the mean and FC get inferred as 

eing coupled together, despite being free to be inferred as com- 

letely independent. Figure 6 [C] demonstrated that there was in- 

eed some significant non-zero correlation between the two types 

f dynamics. However, this correspondence between the dynamics 

f the mean and the dynamics of the FC was not absolute. In other 

ords, the fluctuations in the FC clearly have some unique tempo- 

al structure that is not shared with the fluctuations in the mean 

f the activity. Indeed, the benefit of capturing these unique fluc- 

uations was demonstrated by the improved performance of MAGE 

versus SAGE) in inferring stronger fluctuations in FC over time and 

n predicting behavioural traits. 

Why does MAGE reveal stronger functional connectivity dy- 

amics in resting-state fMRI? Our results demonstrated that 

AGE revealed stronger changes in FC over time than single- 

ynamic approaches, where changes in FC over time correspond 

o between-state differences in the state-specific FCs (e.g., HMM, 

WC, SAGE, see Figs. 6 and 7 ). The lack of change in FC over

ime in single-dynamic approaches has been observed in other, re- 

ent studies ( Laumann et al., 2017; Hindriks et al., 2016; Leonardi 

nd Van De Ville, 2015 ). Indeed, in some cases, it has been ob- 

erved that the reported variability in the FC from one state to 

nother state (or against null models) is statistically insignificant 

 Liegeois et al., 2017 ). So why does MAGE show comparatively 

tronger changes in FC over time? We can gain insight into the 

ulti-dynamic model being used in MAGE, by considering a dy- 

amic version of structural equation modelling (SEM), as explained 

n Appendix A . This shows that if the underlying truth is that there
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Fig. 9. Multi-dynamic (MAGE) derived state-specific FCs are used to predict non-imaging variables in the UKB data. [A] The prediction performance of MAGE-derived 

state-specific FCs compared with the HMM and SWC approaches. The prediction accuracy/correlation is estimated using the combined features by concatenating the state- 

specific FC estimates from all states. Y-axis shows the prediction correlation (age, fluid intelligence, neuroticism) and prediction accuracy (sex), and the x-axis shows the 

predicted variable. To draw the confidence intervals on the prediction accuracies for sex variable (discrete output), we performed the Wilson test (suitable for the binomial 

distribution). Lastly, to generate confidence intervals on the prediction correlations (i.e., continuous outputs e.g., age, fluid intelligence and neuroticism), we computed the 

Fisher transformation ( Pervaiz et al., 2020 ). [B] Comparison of the prediction performance of MAGE-derived state-specific FCs with the time-averaged FC. The bars in red 

colour show the prediction correlation/accuracy using time-averaged FC estimates, whereas bars in green show the increased/decreased prediction correlation/accuracy using 

state-specific FC estimates. The numbers in red bars represent the percentage in the change of performance using the state-specific FCs as compared to time-averaged FC. 

(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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re distinct dynamics for the external driving inputs and connec- 

ivity, then distinct dynamics are needed for the mean activity and 

C modelled by MAGE. If we were to ignore this, and use a single

ynamic approach (e.g., HMM, SAGE, SWC) then we will infer com- 

on state dynamics that are a compromise. In turn, use of these 

ncorrect state dynamics will tend to cause the inferred FC patterns 

o be temporally smeared versions of the true FC patterns, caus- 

ng them to look more homogeneous over time. We demonstrated 

his phenomenon with a simple example ( Fig. 1 [B]), in which we 

imulated a ground truth where the FC dynamics and the mean 
16 
ctivity dynamics were not tied together. Using SAGE on this data 

ubstantially reduced the inferred change in instantaneous FC over 

ime, whereas MAGE better captured the true variability in instan- 

aneous FC across time. This work provides a potential explana- 

ion as to why FC in resting fMRI has previously appeared to look 

o homogeneous over time ( Laumann et al., 2017; Hindriks et al., 

016; Liegeois et al., 2017 ). 

Reproducibility of MAGE states. The presented results in 

ig. 8 demonstrated that the MAGE estimated FC states are highly 

nd mean activity states are moderately reproducible across re- 



U. Pervaiz, D. Vidaurre, C. Gohil et al. Medical Image Analysis 77 (2022) 102366 

r

a

p

t

n

s

w

t

o

t

w

a

h

t

d

F

t

S

a

u

T

f

a

h

d

s

a

r

a

p

a

t

u

i

c

c

f

s

m

v

A

i

t

w

s

t

t

H

o

H

s

c

E

i

F

i

t

v

t

o

d

t

i

t

t

a

a  

b

v

w

a

i

s

(

s

d

o

h

i

s

m

t

d

d

w

g

m

v

L

h

m

D

c

i

C

W

r

G

S

i

M

V

A

(

f

D

t

p

g

U

e

W

t

1

s

M

s

uns on non-overlapping subsets of the data (shown quantitatively 

nd qualitatively in Fig. 8 [A,B]). Also, as is typical with other unsu- 

ervised learning methods (e.g., ICA, HMM), the number of states 

o be modelled is an empirical parameter in our method and it 

eeds to be chosen before running the model. In most of our pre- 

ented work, we modelled anywhere from 4 to 16 states, though 

e had experimented with up-to 64 states in the resting-state and 

ask data (and the results remained sensible). In Fig. 8 [C], we found 

ut the estimated states are more consistent across re-runs when 

he number of modelled states is more than six. Considering that, 

e suggest that the number of modelled states to be more than 

pproximately six for such dynamic modelling (though we do not 

ave a strong recommendation for an exact number of states). 

Multi-dynamic TVFC predicted behavioural variability better 

han existing methods. We evaluated whether the inter-individual 

ifferences inf erred by MAGE are meaningful. We demonstrated in 

ig. 9 [A] that the MAGE-estimated, state-specific FCs did a bet- 

er job at predicting these non-imaging variables as compared to 

WC and HMM approaches. For example, age was predicted with 

n average correlation of 0.50 using MAGE as compared to 0.46 

sing HMM, and 0.36 using SWC. This provides evidence that the 

VFC estimated using the MAGE is a more accurate and meaning- 

ul representation of underlying functional networks and is indeed 

 powerful biomarker for cognitive traits. 

Static FC is worse than Multi-dynamic TVFC at predicting be- 

aviour. In Fig. 9 [B], we compared the predictive power of MAGE- 

erived, state-specific FCs versus time-averaged FC, and demon- 

trated the prediction performance on mental-health related vari- 

bles in UKB data. We have demonstrated that the prediction accu- 

acy of these behavioural variables increased when TVFC was used, 

s compared to time-averaged FC e.g., for work/job satisfaction, 

rediction accuracy was improved by 20.2% and for depressed for 

 week, accuracy was improved by 19.5%, etc. This highlights that 

here are some aspects of behaviour that can be best explained 

sing TVFC estimates. The better performance of time-varying FC 

n terms of behavioural variability might be because it should not 

ontain as much potential confounding anatomical information as 

ompared to time-averaged FC ( Vidaurre et al., 2021 ); however, 

urther detailed work is require to understand and address this is- 

ue. 

What do we mean by TVFC? We can gain insight into the 

ulti-dynamic model being proposed, by considering a dynamic 

ersion of structural equation modelling (SEM) as explained in 

ppendix A . The SEM perspective ( Appendix A ) suggests that the 

nstantaneous FC is the closest representation that we have to the 

ime-varying connectivity in a dynamic SEM ( Eq. (19) ). In MAGE, 

e have assumed that the instantaneous FC, C t , is the TVFC mea- 

ure of most interest. MAGE provides a regularised estimate of 

he instantaneous FC, and so in this paper we have represented 

he instantaneous FC parsimoniously using the state-specific FCs. 

ence, in this work we have focussed on the state-specific FCs as 

ur main measure of TVFC, e.g., for predicting behavioural traits. 

owever, a more complete representation of TVFC includes the FC 

tate time courses alongside the state-specific FCs (after all, we 

ombine the state-specific FCs with the FC state time courses via 

q. (4) to get the instantaneous FC). As such, prediction may be 

mproved further in the future by including features describing the 

C state dynamics. For example, we can already show that inter- 

ndividual differences for the time spent in each FC state are linked 

o behavioural traits, as illustrated in Figure S8. MAGE also pro- 

ides other potential features for use in prediction, for example, 

he mean-activity FC (i.e., correlations of the mean activity, m t , 

ver all time) or the state-specific mean activity and the mean- 

erived dynamics. In this paper, we have not looked into the de- 

ails of mean-activity FC but mean-activity FC has been assessed 

n the literature. For example, Miller et al. (2015) highlights that 
17 
he spatiotemporal organization of brain activity correlates with 

he presence of diagnosed schizophrenia, as well as with gender 

nd age. 

Variance of the brain activity. We found through resting-state 

nd task data-sets results ( Figs. 6 and 7 ) that there was not much

etween-state variability in the variance of the activity, and the 

ariance remained static over the scanning session. Nevertheless, 

e explored another configuration where dynamics of the vari- 

nce of the activity was modelled with independent state dynam- 

cs from the mean activity and the FC, but that also did not re- 

ult in any meaningful variability in the variance of the activity 

though it is computationally more expensive to learn the variance 

tate time courses separately). We also attempted to model state 

ynamics of the variance of the activity tied to the state dynamics 

f the FC fluctuations, but independently from the mean activity; 

owever, this resulted in comparatively less between-state variabil- 

ty in the FC. In summary, we found out there was little between- 

tate variability in the state-specific variances irrespective of the 

odelling choice. 

In summary, we proposed a multi-dynamic approach (MAGE) 

hat models temporal fluctuations in functional connectivity in- 

ependently from fluctuations in the mean of the activity. Multi- 

ynamic modelling provided an explanation and a solution as to 

hy resting fMRI FC has previously looked so stable and homo- 

eneous. We found out that that separating fluctuations in the 

ean activity levels from those in the functional connectivity re- 

eals much stronger changes in functional connectivity over time. 

astly, MAGE estimated time-varying FC is a better predictor of be- 

avioural variability in the resting-state fMRI data than established 

ethods. 
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ppendix A. Dynamic structural equation modelling (SEM) 

erspective 

We can gain insight into the multi-dynamic model being 

roposed, by considering a dynamic version of structural equa- 

ion modelling (SEM) Penny et al. (2004) : 

 t = A t Y t + Hμt + e t (17) 

here A t is an N 

∗N dimensional matrix containing the connectiv- 

ty information, where A i j denotes a connection from region j to 

egion i and A ii = 0 for all regions (in SEM, A t is referred to as the

ath coefficient matrix, M). μt is an Qx1 vector of Q structured, 

xternal inputs that are independent such that μt μ
ᵀ 
t = I, and H is 

n NxQ dimensional mixing matrix describing how much of each 

xternal input is contributing to each region. Finally, e t is a ran- 

om variable modelling the noise in Y t using a Gaussian distribu- 

ion with zero mean and an NxN diagonal covariance matrix, i.e., 

 t ∼ N (0 , �) . Note that the idea is that μt would be identifiable

hrough its non-Gaussian, spatio-temporal structure, which is what 

akes it distinct to e t . Note that typically in SEM, only the noise,

 t , is modelled and an external input, μt , is not (i.e. μt = 0 ). How-

ver, other variants of SEM have previously considered modelling 

tructured, external inputs Shimizu et al. (2006) . 

It is straightforward 

6 to then show that Y t is Gaussian dis- 

ributed, with a time-varying mean and covariance with the same 

orm as in Eqs. (3) , (4) , where 

 t = (1 − A t ) 
−1 

H μt (18) 

 t = (1 − A t ) 
−1 

(� + H H T

 ) ( (1 − A t ) 
−1 

) 
ᵀ 

(19) 

In other words, if we assume that in the dynamic SEM the ex- 

ernal inputs, μt , and the dynamic connectivity, A t , fluctuate dis- 

inctly from each other; then correspondingly m t and F t can also 

uctuate distinctly from each other (see Eq. (18) , (19) ) also need 

o fluctuate distinctly from each other. This is what we are assum- 

ng in the multi-dynamic approach. 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.media.2022.102366 . 
6 Such investigations to establish the relationship between SEM and FC has been 

reviously conducted in detailed by Marrelec and Benali (2009) . 
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