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ABSTRACT
We propose a simple architecture based on multimode quantum memories for collective readout
of classical information keyed using a pair coherent states, exemplified by the well-known binary
phase shift keying format. Such a configuration enables demonstration of the superadditivity effect
in classical communication over quantum channels, where the transmission rate becomes enhanced
through joint detection applied tomultiple channel uses. The proposed scheme relies on the recently
introduced idea to prepare Hadamard sequences of input symbols that are mapped by a linear
optical transformation onto the pulse position modulation format [Guha, S. Phys. Rev. Lett. 2011,
106, 240502]. We analyze two versions of readout based on direct detection and an optional Dolinar
receiver which implements the minimum-error measurement for individual detection of a binary
coherent state alphabet.
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1. Introduction

One of the striking consequences of the quantum nature
of physical systems is the impossibility to discriminate
perfectly their states that are non-orthogonal in terms
of the scalar product between the corresponding state
vectors (1). This fact has profound implications for secret
communication in the form of quantum key distribution
protocols (2), but it also leads to non-trivial effects when
transmission of classical information is considered (3).
In optical communication, standard schemes to encode
a stream of bits employ a pair of coherent states, e.g.
the vacuum state and a coherent state with a non-zero
amplitude in the case of on–off keying (OOK), or two
coherent stateswith equal amplitudes but opposite phases
in binary phase shift keying (BPSK) (4). When an energy
constraint is imposed in the above schemes, the error
rate grows with the decreasing signal power, as the two
coherent states encoding the bit value become less and
less distinguishable in the quantum mechanical sense.
An intriguing strategy to boost throughput in such a
case is to employ collective detection of the received
signal, which for very weak signals can even qualita-
tively enhance the scaling of the attainable transmission
rate with the mean power. The fundamental reason be-
hind this enhancement is that a quantum measurement
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provides in general only partial knowledge about the state
of the measured system and collective detection of mul-
tiple elementary systems can be designed to reveal more
relevant information (5, 6).

An elegant scheme to achieve superadditivity for
binary phase shift keyed signals has been recently
described by Guha (7). The basic idea is to prepare
sequences of BPSK symbols that can be mapped using
a linear optical circuit onto the pulse position modula-
tion (PPM) format. This format can be read out using
direct detection. Moreover, with the right choice of the
sequence length (8–11) this strategy approaches in the
leading order the capacity of a narrowband bosonic chan-
nel for low signal powers (12). The purpose of the present
contribution is to propose an implementation of the lin-
ear circuit processing BPSK sequences in a multimode
quantummemory interface (13–15). The proposal is mo-
tivated by recent demonstrations of fully controllable
linear transformations between atomic spin coherences
and optical fields (16, 17). This approach would be well
suited to process sequences transmitted in a single spatial
mode and encompassing multiple time bins. The pre-
sented schemepoints to possible applications of quantum
memories not only in quantum information processing,
but also in future optical communication systems oper-
ated at the quantum limit.
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This paper is organized as follows. First, in Section
2 we review the principle of BPSK and the attainable
transmission rates in the low power regime. The strat-
egy to achieve superadditivity using sequences of BPSK
symbols is summarized in Section 3. The proposal for the
quantum memory interface to process BPSK sequences
is described in Section 4. For short sequence lengths, we
analyze in Section 5 possible gains from the application
of aminimum-error Dolinar receiver at one of the output
ports. Finally, Section 6 concludes the paper.

2. Binary phase shift keying

Any two coherent states can be mapped via a unitary
linear optical transformation onto a pair with the same
mean photon number but opposite phases. This trans-
formation can be realized using a beam splitter with
transmission approaching one and an auxiliary coherent
field (18). Moreover, if both the states are equiprobable
such a pair minimizes the mean energy for a fixed sepa-
ration between the complex amplitudes of the coherent
states, characterizing their distinguishability. Therefore
in the following we will restrict our attention to this
special case, commonly known in optical communica-
tion under the acronym BPSK. In simple terms, bits are
encoded in the sign of the complex amplitude ±α of
coherent pulses, prepared with the same mean photon
number n̄ = |α|2 in each use of the channel. For large
mean photon numbers n̄, the two coherent states |α〉
and | − α〉 describing the pulses are almost orthogonal
and the bit value can be read out with a negligible error
using e.g. homodyne detection. Readout becomes less
trivial in the regime of low mean photon numbers, when
n̄ � 1, as the quantum mechanical scalar product be-
tween the two coherent states used for communication
is then substantially nonzero, |〈α| − α〉| = e−2n̄, and
therefore they cannot be distinguished with certainty
(19).

The usefulness of a communication scheme for clas-
sical information transmission can be characterized with
mutual information, which describes the strength
of correlations between system preparations at the chan-
nel input and measurement results at the channel
output. Importantly, mutual information provides the
upper limit on the attainable transmission rate for a given
communication scheme (20). When two equiprobable
quantum states are used as preparations and the physi-
cal systems transmitted in consecutive channel uses are
measured individually, the optimal detection strategy is
to apply the minimum-error measurement described by
Helstrom (21, 22). From the information theoretic point
of view, such a scheme is described by a binary symmetric
channel with the error rate given by

ε(n̄) = 1
2

(
1 −

√
1 − |〈α| − α〉|2

)

= 1
2

(
1 −

√
1 − e−4n̄

)
. (1)

In the above expression we explicitly used the two
coherent states constituting the BPSK alphabet. For
a binary symmetric channel representing individual
detection mutual information reads:

Iind = 1 − H
(
ε(n̄)

) ≈ βn̄, (2)

where H(x) = −x log2 x − (1 − x) log2 (1 − x) is the
binary entropy measured in bits. The second approxi-
mate expression in Equation (2) results from expanding
mutual information up to the linear term in n̄ and is valid
in the regime n̄ � 1, with the proportionality constant
equal to β = 2/ ln 2 ≈ 2.885. In the case of two coherent
states, the minimum-error measurement has a feasible
implementation of the form of the Dolinar receiver (23,
24) comprising an auxiliary coherent reference beam,
linear optics, photon counting and fast feedback loop to
modulate the auxiliary beam.

For general measurement strategies on received
systems, including collective detection, an upper bound
on mutual information is given by the Holevo quan-
tity χ , which is defined mathematically as the difference
between the von Neumann entropy S( · ) of the average
state emerging from the channel and the average entropy
of individual output states (25). In the case of BPSK
modulation, because individual states remain pure after
transmission, the Holevo quantity is equal to the entropy
of the statistical mixture of the two coherent states:

χ = S
( 1
2 |α〉〈α| + 1

2 | − α〉〈−α|)
= H

( 1
2 (1 − |〈α| − α〉|)) ≈ n̄ log2

1
n̄
. (3)

The last expression, specifying the leading term in the ex-
pansion when n̄ � 1, shows that compared to individual
measurements, collective detection enables a qualitative
change in the scaling of attainable information with n̄.
Furthermore, the Holevo quantity calculated in Equation
(3) approaches asymptotically for n̄ → 0 in the lead-
ing order the classical capacity of a single-mode bosonic
channel (12). These results point to substantial benefits
of collective detection in the regime of low mean photon
number.

3. Hadamard sequences

Although general strategies to construct collective mea-
surements approaching the Holevo quantity have been
given theoretically (26), the challenge is to design joint
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Figure 1. An exemplary superadditive communication scheme using the BPSK format for the sequence length L = 8. The sender
prepares sequences of BPSK symbols with± signs defined by rows of a Hadamardmatrix. At the receiver side, the symbols are interfered
using a linear circuit described by a Hadamard matrix rescaled by 1/

√
L. This maps the BPSK sequences onto the pulse position format

where only one bin contains a pulse carrying the energy of the entire sequence. The position of the pulse identifies unambiguously the
received sequence.

detection schemes that could be implemented in practice
using viable components. For BPSK modulation, a very
elegant scalable scheme for sequence lengths L equal to
integer powers of two has been described by Guha (7).
The basic idea, shown schematically in Figure 1, is to
select from all 2L combinations of BPSK symbols only L
sequences that correspond to rows of a Hadamard ma-
trix of dimension L. Hadamard matrices are symmetric
with binary entries ±1, and their rows (or equivalently
columns) formmutually orthogonal vectors (27). Collec-
tive detection of suchHadamardwords is facilitated by an
observation that rescaling a Hadamard matrix by 1/

√
L

yields an orthogonal matrix which can be in principle
implemented as a linear optical circuit. Because of the
orthogonality property, each Hadamard word fed into
the circuit will generate a non-zero pulse only in one
output port of the circuit, different for each sequence,
while all other ports will remain dark.

The above scheme effectively converts Hadamard
BPSK words into the well known PPM format, in which
information is encoded in the position of a single pulse
in the total number of L otherwise empty bins. The most
obvious strategy to read out the position of the pulse is to
employ direct detection. Assuming ideal, unit-efficiency
photon counting detectors without dark counts, either
the position of the pulse is identified unambiguously, or
this information is erased if no count is generated for any
bin. From the information theoretic perspective such a
communication scheme corresponds to the well-known
erasure channel (20), for which mutual information per
one bin reads:

IPPM = p
L
log2 L. (4)

where p is the probability of detecting the position of
the pulse. In our case, because all L BPSK states interfere
constructively at one output port of theHadamard circuit
producing a pulse with the mean photon number Ln̄, the

probability p is given by

p = 1 − e−Ln̄. (5)

Expanding the above expression up to the first order
yields p ≈ Ln̄, which implies that

IPPM ≈ n̄ log2 L. (6)

This value is higher than theHelstrom limit for individual
detection Iind ≈ βn̄ when L > 2β ≈ 7.4. Therefore in the
case of very weak pulses superadditivity is obtained for
the minimum sequence length L = 8.

It is worth to emphasize that the simple formula in
Equation (6) is valid only for Ln̄ � 1, as for larger mean
photon numbers the probability p saturates at one. The
exact expression given in Equation (4) has a well defined
maximum as a function of L, which can be approximately
identified by expanding p up to the second order in Ln̄.
Mutual information IPPM evaluated at this maximum has
the expansion in n̄ � 1 of the form (8–11)

IPPM ≈ n̄ log2
1
n̄

− n̄ log2 ln
1
n̄
. (7)

On the other hand, the capacity of a narrowband
bosonic channel is given up to the second order as n̄ log2
(1/n̄) + n̄/ ln 2 for low signal powers and it coincides
with the Holevo quantity for BPSK modulation found in
Equation (3). It is seen that although the leading orders of
both expressions are the same, the first order corrections
exhibit different behaviour.

4. Quantummemory implementation

In many commonly used optical communication links,
e.g. fibres operating at telecom wavelengths, pulse
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Figure 2. A quantummemory interface for converting Hadamard sequences of BPSK symbols into the PPM format shown schematically
for L = 8 sequence length. The horizontal axis represents the time flow. Arriving pulses interact with initially unoccupied memory
modes depicted as horizontal lines. Black diagonal bars indicate beamsplitter-type interactions with the π phase shift introduced
for transmissions in both directions and reflections from upper-right sides. Horizontal and vertical bars are additional π phase shifts.
Fractions labellingbars indicate power reflection coefficients. Unlabeleddiagonal bars correspond toperfect reflections. At theoutput the
memorymodes are read out using direct detection. The case when one of the detectors is replaced by the Dolinar receiver is discussed in
Section 5.

sequences are transmitted in a single spatial mode. In this
case, collective measurements described in the preced-
ing section need to be implemented over multiple time
bins. This requires synchronization of individual incom-
ing pulses at the receiver while retaining mutual phase
relations. One possible solution would be to employ fast
optical switches and delay lines to equalize pulse arrival
times before the Hadamard circuit. An alternative is to
use quantum memories to transform coherently (28) the
incoming pulses into the PPM format. Within this ap-
proach the Hadamard circuit can be implemented piece-
wise with the incoming pulses using beamsplitter-type
operations between light pulses and quantum memory
modes (16, 17 , 29).

A natural decomposition of the Hadamard circuit in
this implementation is the triangular form of a general
linear optical transformationdiscussed byReck et al. (30).
Its explicit form is shown schematically in Figure 2 in the
case of L = 8 time bins. The first pulse is mapped onto a
quantummemorymode. The lth pulse, l = 2, . . . , L, goes
through l quantum memory modes, as symbolized by
vertical lines in Figure 2. In each memory mode a trans-
formation combining the incoming light with the already
stored excitation is driven by suitable control fields (16).
ThefinalLthmemory, empty so far, is driven so as to store
all incoming light. At the end, the L quantum memory

modes contain the received sequence converted into the
PPM format. Detection of the excitations stored in the
memories can be achieved for example by mapping their
contents back onto light and counting optical photons in
the standard manner.

5. Hybrid detection

Using Hadamard words constructed from BPSK sym-
bols as described in Section 3, superadditivity in mutual
information can be demonstrated for at least L = 8 time
bins. On the other hand, a very simple hybrid scheme has
been proposed for L = 2 bins, where two consecutive
pulses are interfered on a 50/50 beam splitter with output
ports monitored by a Dolinar receiver and a photon
counting detector (7). With the right choice of prob-
abilities of input sequences, the relative enhancement
in mutual information is nearly 2.5%, which is close
to the approximate value 2.8% found numerically by
optimizing joint two-systemmeasurements (31).We will
now discuss generalization of the hybrid scheme to more
than two pulses.

The basic idea is to supplement the set of Hadamard
words by a sequence−− . . .−. This sequence provides a
non-zero pulse at the same output port of the Hadamard
circuit as + + . . .+, but with the opposite phase. We
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will assume that this port is monitored by a Dolinar
receiver, and both sequences are prepared with equal
probabilities (1−λ)/2, where 0 ≤ λ ≤ 1. The remaining
Hadamard words are sent with identical probabilities
λ/(L − 1). The Hadamard circuit directs them to other
output ports, each monitored with a photon counting
detector. A click on a photon counting detector unam-
biguously identifies the input Hadamard word. If none of
the photon counting detectors clicks, information from
the Dolinar receiver is used. In this case, sequences + +
. . .+ and − − . . .− are identified with an error ε(Ln̄),
because the mean total photon number in the entire
sequence is Ln̄. Any other Hadamard word generates
either measurement result on the Dolinar receiver with
the same probability 1/2, i.e. no information is obtained.

Mutual information for the above communication
scheme can be cast in the following form:

I = 1
L
{(1 − λ)[1 − H(ε(Ln̄))] + λp log2 (L − 1)

+ H(λp) − λH(p)}. (8)

The overall multiplicative factor 1/L stems from rescal-
ing mutual information per one time bin. Within curly
brackets, three contributions can be identified. The first
one, given by 1 − H(ε(Ln̄)) is mutual information for
a binary symmetric channel with the error rate ε(Ln̄)
corresponding to a minimum-error measurement on se-
quences + + . . .+ and − − . . .−. This contribution
enters with the weight 1 − λ, which is the overall prob-
ability of preparing either sequence. The second term,
p log2 (L−1), specifiesmutual information for an (L−1)-
ary erasure channel with the non-erasure probability p.
This channel describes situation when any other
Hadamard sequence is used, which occurs with the over-
all probability λ. Finally, the combination of the last two
terms, H(λp) − λH(p), specifies mutual information for
the so-calledZ channelwith a binary set of input symbols,
when one symbol used with probability λ is identified
correctly with the probability p, whereas in the remaining
1 − p fraction of cases it gives the same result as the
second symbol, used with the probability 1−λ. In optical
communication, such a channel describes OOK where
either a pulse or an empty bin are sent in each channel
use, and an ideal photon counting detector without dark
counts is used at the output.

In our case the probability p of a detector click is
given by Equation (5). Assuming that p � 1 we can
approximate

H(λp) − λH(p) ≈ λp log2
1
λ
. (9)

It is worth noting that the formula on the right hand
side is formally equivalent to mutual information for the

Figure 3. The ratio I/Iind of mutual information per bin for
collective detection compared to the optimal individual detection
case evaluated in Equation (2). Solid lines depict asymptotic
results given in Equation (6) for direct detection (gray solid
line, red online) and in Equation (10) for hybrid detection (light
gray solid line, orange online), with L treated as a continuous
parameter. Numerical results based on the exact expressions for
the error probability in Equation (1) and the count probability in
Equation (5) are shown for n̄ = 2 × 10−4 (filled symbols) and
n̄ = 2 × 10−2 (empty symbols) in the case of direct detection
(squares) and hybrid detection (circles). The dashed lines serve
as guides to the eye. All sequence lengths L ≤ 32 for which
Hadamard matrices exist have been included in the calculations.

PPM format with 1/λ input words specified in Equation
(4). In order to simplify calculations, in Equation (8) we
will expand up to linear terms in n̄ the expressions for
p ≈ Ln̄ and 1 − H(ε(Ln̄)) ≈ βLn̄. After applying these
approximations it is easy to find the optimal value of
λ, which taking into account the constraint 0 ≤ λ ≤
1 gives the following asymptotic expression for mutual
information in the case of hybrid detection when n̄ � 1:

I =
⎧⎨
⎩
n̄

(
β + L − 1

e2β ln 2

)
, if L < e2β + 1

n̄ log2 (L − 1), if L ≥ e2β + 1
(10)

It is seen that for large L we recover the expression for
(L − 1)-ary PPM, as then the optimal strategy is not
to use words + + . . .+ and − − . . .− at all. In these
cases direct detection scheme yields higher mutual in-
formation. However, enhancement is possible for short
sequence lengths, as shown in Figure 3 depicting the ratio
I/Iind. In the plots, we used two values of themean photon
number: n̄ = 2 × 10−4 when the asymptotic expression
given in Equation (10) is hardly distinguishable within
the resolution of the graph from numerical results, and
n̄ = 2 × 10−2, which allows us to identify deviations
from the asymptotics with the increasing mean photon
number. It is seen that for larger n̄ the superadditivity
effect diminishes. In the case of direct detection one
can notice that mutual information IPPM approaches a
maximum with the increasing sequence length L, which
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is simply a result of the saturation of the count probability
p defined in Equation (5).

6. Conclusions

We described theoretically a construction of a collective
receiver for BPSK signal based on beam-splitter type
transformations between incoming light pulses and
quantum memory modes. Such a receiver can be used to
demonstrate the superadditivity effect in classical com-
munication over a quantum channel, with enhancement
most strongly pronounced in the low-power limit. An
interesting extension of the presented work may be to go
beyond a sequence of time bins and to consider mixed
time-frequency encodings within the available spectral
bandwidth which could also be handled by architectures
based on quantum memories (32).

Multimode interference underlying the superadditiv-
ity of the presented receiver relies on perfect phase and
amplitude matching between interfering pulses. A recent
study suggests that the collective BPSK detection scheme
based on Hadamard words may be robust against mod-
erate levels of phase noise (33). One should also take
into account unequal losses induced by beam splitter
operations and finite lifetime of excitations stored in
memory modes. The simplest strategy to mitigate this
would be to introduce additional attenuation in order to
ensure proper contributions from individual input pulses
to the output ports of the receiver. In this case, attainable
mutual information calculated in Equations (6) and (10)
would need to be multiplied by the overall power trans-
mission coefficient, which diminishes the superadditivity
effect.
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(33) Jarzyna, M.; Lipińska, V.; Klimek, A.; Banaszek, K.; Paris,
M.G.A. Opt. Express 2016, 24, 1693–1698.

http://dx.doi.org/10.1080/09500340.2015.1125538

	1. Introduction
	2. Binary phase shift keying
	3. Hadamard sequences
	4. Quantum memory implementation
	5. Hybrid detection
	6. Conclusions
	Acknowledgements
	Funding
	References



