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Abstract
Background and aim. Osteoarthritis (OA) is the most common joint condition 
and the leading cause of pain and disability in elderly patients. Currently, there is 
no biomarker available for the early diagnosis of OA, and limited data is available 
regarding the molecular basis of progression for OA. For this reason, this study aimed 
to	 identify	 the	metabolomic	profile	of	 early	 and	 late	OA	using	high-performance	
liquid chromatography coupled with untargeted mass spectrometry (LC-MS).
Methods. 31	 patients	 with	 knee	OA	 and	 joint	 effusion	were	 enrolled.	 Based	 on	
Kellgren/Laurence	scale,	12	patients	were	classified	as	early	OA	(eOA)	and	19	as	
late	OA	(lOA).	The	synovial	fluid	(SF)	was	collected	and	characterized	by	untargeted	
LC-MS.	Only	the	metabolites	identified	in	more	than	25%	of	each	group	were	kept	
for further analysis. Principal component analysis (PCA) enabled the unsupervised 
clustering	 of	 the	 eOA	 and	 lOA	 groups.	 Further,	 for	 classification,	 the	 best	 three	
principal components (PCs) were used as input for two machine learning algorithms 
(random forest and naïve Bayes), which were trained to discriminate between the 
eOA and lOA groups. 
Results. 43	metabolites	were	identified	in	both	eOA	and	lOA,	but	after	selecting	the	
metabolites	present	in	at	least	25%	of	the	patients	in	each	group,	the	metabolomics	
analysis yielded a panel of only nine metabolites: four metabolites related to 
phospholipids (phosphatidylcholine 20:0/18:2 and 18:0/20:2, sphingomyelin, and 
ceramide),	three	metabolites	belonging	to	purine	metabolites	(inosine	5’-phosphate,	
adenosine	thiamine	diphosphate,	and	diadenosine	5’,5’-diphosphate),	one	metabolite	
was a gonadal steroid hormone (estrone 3-sulfate), and one metabolite represented 
by heme, with all but ceramide (d18:1/20:0) being enriched in the lOA group. By 
using	as	features	the	best	three	PCs	(PC2,	PC8	and	PC9),	random	forest	and	naïve	
Bayes	machine	 learning	 algorithms	 yielded	 a	 classification	 accuracy	 of	 0.81	 and	
0.78, respectively.
Conclusion. Our LC-MS analysis of SF from patients with eOA and lOA indicates 
stage-dependent	differences,	lOA	being	associated	with	a	perturbed	metabolome	of	
phospholipids, purine metabolites, gonadal steroid hormones (estrone 3-sulfate) and 
a	heme	molecule.	Specific	questions	need	to	be	answered	regarding	the	biosynthesis	
and function of these metabolites in osteoarthritic joints, with the aim of developing 
new relevant biomarkers and therapeutic strategies.
Keywords: metabolomics,	 osteoarthritis,	 synovial	 fluid,	 liquid	 chromatography,	
mass spectrometry
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Background and aim
Osteoarthritis (OA) is the most common joint 

condition and the main cause of pain and disability in 
elderly	patients	[1].	Overall,	 it	 	 touches	up	to	10%	of	the	
population over the age of 60 years, the knee being one of 
the	most	affected	joints	[2].	

The diagnosis of OA is established on clinical 
basis,  with the clinical picture usually developing after the 
appearance of joint structural changes. The severity of the 
disease is determined through several imaging techniques 
[3] or by arthroscopy [4], but unfortunately, an early 
diagnosis	is	often	difficult	to	make	[5,6].	Therefore,	there	
has been a growing interest in identifying the metabolomic 
signature of OA. It is known by now that changes in the 
metabolomic	profile	of	the	joint	environment	occur	before	
the genomic or proteomic ones [7]. Consequently, the 
metabolomic analysis could allow an early diagnosis of OA. 
Also, a better understanding of the disease pathogenesis 
might	lead	to	the	identification	of	new	therapeutic	targets	
with potentially better outcomes [7,8]. To date, few studies 
have	 evaluated	 the	 metabolomic	 joint	 profile	 of	 patients	
with	OA	[9].	 In	addition,	 the	results	were	confounded	by	
differences	in	identification	techniques	(global	or	a	targeted	
metabolomic	profile),	study	design	and	the	type	of	analyzed	
biofluid	(urine,	serum,	synovial	fluid	etc).

Previous	metabolomic	studies	in	OA	have	analyzed	
urine [10,11] or serum [12,13], with most studies focusing 
on	 the	 synovial	 fluid	 (SF)	 [5,14–22].	 SF	 is	 a	 plasma	
ultrafiltrate	 and	 contains	 molecules	 produced	 by	 joint	
tissue	 cells	 [15],	 serving	 as	 a	 lubricant	 for	 joint	 surfaces	
and	as	a	diffusion	medium	for	nutrients.	SF	is	recognized	
as	 the	 most	 important	 biofluid	 for	 the	 evaluation	 of	 the	
metabolomic	 profile	 of	 OA	 [17],	 being	 in	 direct	 contact	
with	 the	 joint	 tissues	 and	 thus	 reflecting	 the	 biochemical	
status of the entire joint.

Up to date, the most commonly used analytical 
techniques	 for	 the	 evaluation	 of	 the	metabolomic	 profile	
are nuclear magnetic resonance spectroscopy  and mass 
spectrometry (MS). Both technologies provide important 
structural information on various classes of substances 
and	 show	 high	 analytical	 accuracy	 [23–25],	 although	
MS is more sensitive and exhibits a broader coverage of 
the metabolome. A fundamental principle of MS is the 
representation of metabolite features in any biological 
matrix by measurement of the spectrum of signals 
reflecting	the	mass	to	charge	ratios	(m/z)	of	their	ionization	
products. MS is usually coupled with chromatographic 
separation techniques such as gas chromatography or liquid 
chromatography (LC), with the latter being employed 
for	 biofluid	 analysis	with	 both	 positive	 and	 negative	 ion	
detection modes [24]. The studies that used LC-MS for SF 
evaluation in OA have conducted either a global or targeted 
metabolomic	profiling,	 in	 a	quest	 to	 identify	OA	specific	
biomarkers	 [22]	 and	 to	 better	 differentiate	 among	 OA	
subgroups	and	phenotypes	[15,26].	

In this study, we performed a untargeted 
metabolomic	 profiling	 of	 SF	 in	 patients	 with	 knee	 OA	
using LC-MS, with the aim of identifying metabolomic 
signatures associated with early forms of OA.

Methods
Inclusion and exclusion criteria
The SF was collected from consecutive adult patients 

with	knee	effusions	that	attended	the	2nd Internal Medicine 
Department,	 Cluj-Napoca,	 from	 March	 2019	 till	 March	
2020. All the patients were diagnosed with knee OA based 
on EULAR criteria [27]. The exclusion criteria were the 
following: history of joint trauma or surgical interventions 
in the last three months, intraarticular treatment with 
corticoids or hyaluronic acid in the previous six weeks, 
other	 coexistent	 inflammatory	 arthritis,	 and	 diabetes.	All	
patients underwent clinical examination by an experienced 
rheumatologist. Demographic data (history, age, gender, 
body mass index) and clinical outcomes measures such as 
the visual analog scale for pain (VAS), and Western Ontario 
and McMaster University OA Index (WOMAC) scores 
were collected. 

Knee ultrasound (US) was performed for all patients 
(Samsung RS80). The presence of clinically suspected 
joint	effusion	was	confirmed	using	the	US.	An	US-guided	
arthrocentesis was performed. The SF samples were stored 
at -80°C until the metabolomic analysis.

The radiologic severity of OA was assessed based 
on the Kellgren/Lawrence scale (K/L), and the patients 
were divided into two groups: early OA (eOA) (K/L=1 or 
2) and late OA (lOA) (K/L=3 or 4) [3]. 

The present study was approved by the Faculty of 
Medicine’s	 Ethical	 Review	 Committee	 (Iuliu	 Hatieganu	
University of Medicine and Pharmacy Cluj-Napoca). All 
patients provided written informed consent. 

Sample processing 
The SF pH was measured before sample processing, 

using a pH dipstick (Whatman pH Indicator paper, Cyntia).
From	 each	 SF	 sample,	 0.6	 mL	 was	 filtered	 and	

mixed with 1.4 mL mixture of methanol: acetonitrile (1:1) 
to precipitate proteins. The mixture was vortexed for 20 s 
and kept at a temperature of -20°C for 24 h. After thawing, 
the	vials	were	centrifuged	at	12.500	g	for	10	min,	and	the	
supernatant	was	 collected,	filtered	 through	0.2	µm	PTFE	
filters,	and	transferred	to	autosampler	vials	for	metabolomic	
analysis. 

LC-MS analysis
The MS analysis was performed with a Bruker 

Daltonics MaXis Impact spectroscope (Bruker GmbH, 
Bremen,	Germany)	coupled	to	a	Thermo	Scientific	HPLC	
UltiMate 3000 system on a C18 reverse-phase column 
(Acquity,	UPLC	C18	BEH)	(5µm,	2.1	x	75	mm)	operated	
at	 25°C	 and	 at	 a	 flow	 rate	 of	 0.3	mL/min.	The	 injection	
volume	was	5	mL.	The	mobile	phase	was	represented	by	
a	gradient	of	eluent	A	(water	containing	0.1%	formic	acid)	
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and	eluent	B	(methanol:	acetonitrile	(1:1)	containing	0.1%	
formic	acid).	The	gradient	system	consisted	of	99%	A	(min	
0),	70%	A	(min	1),	40%	A	(min	2),	20%	A	(min	6),	100%	
B	 (min	 9-10)	 followed	 by	 5	min	with	 99%	A.	The	 total	
running	time	was	15	min.			

The LC-MS parameters were set for a mass range 
between	50-1000	Da.	The	 fragmentation	was	 done	using	
a positive impact (ESI+),	 the	nebulizing	gas	pressure	was	
set	at	2.8	Ba	and	the	drying	gas	flow	was	set	to	12	L/min	
at 300°C. Before each chromatographic run, a calibration 
with sodium formate was done. The instrument control and 
data	processing	were	performed	using	the	specific	software	
provided by Bruker Daltonics, namely Chromeleon, 
TofControl 3.2, Hystar 3.2, and Data Analysis 4.2. 

Statistics 
The	demographic	and	clinical	data	were	analyzed	

in terms of mean and standard deviation. Student t-test 
for	 parametric	 data	 and	 Wilcoxon-Mann-Whitney’s	 U	
test	for	nonparametric	data	were	performed	using	Prism	9	
software (GraphPad La Jolla California USA).

Metabolomic data were preprocessed using Data 
Analysis 4.2. First, the individual total ion chromatograms 
were registered, transformed to base peak chromatograms 
and	 then	 analyzed	 using	 the	 find	 molecular	 features	
function, yielding a table containing the retention time, 
the peak areas and intensities, the signal/noise ratio for 
each component together with its mass-to-charge ratio 
(m/z).	The	mean	of	intensity	values	and	standard	deviation	
for	 each	 m/z	 value	 were	 used	 for	 the	 identification	 of	
metabolites based on the Human Metabolome and Lipid 
Maps Databases [28].

Next,	only	the	metabolites	identified	in	at	least	25%	
of the patients in each group were kept for further analysis. 
Principal component analysis (PCA) was performed with 
the remaining metabolites to reduce the dimensionality of 

the	dataset	and	allow	the	visualization	of	the	unsupervised	
clustering of the eOA and lOA groups. To select relevant 
principal components (PCs) that allowed the discrimination 
between the eOA and lOA groups, Student t-test was 
employed. The best 3 PC in terms of p values were used for 
further analysis. The selected PCs were then used as inputs 
for two machine learning algorithms (random forest and 
naïve Bayes), which were trained to discriminate between 
the eOA and lOA groups. The machine learning algorithms 
were validated using leave-one-out cross-validation. 

The statistical analysis was performed using 
Quasar-Orange software, Orange-Spectroscopy library 
(Bioinformatics Laboratory of the University of Ljubljana, 
Slovenia). 

Results
Demographic and clinical data 
In this study, SF was collected from 31 patients with 

knee OA. Based on K/L criteria, a number of 12 patients 
were	diagnosed	with	eOA,	and	19	with	 lOA.	There	were	
significant	 differences	 between	 the	 two	 groups	 in	 terms	
of age and body mass index, the lOA patients being 
significantly	older	and	with	higher	body	mass	index	(Table	
I).	 There	 were	 no	 statistically	 significant	 differences	 in	
VAS and WOMAC scores between the two groups (Table 
I). The mean SF pH values were 8.3±0.4 for patients with 
eOA	and	8.2±0.5	for	lOA,	respectively,	with	no	statistically	
significant	 differences	 between	 the	 two	 groups	 (Student	
t-test, p=0.71).

LC-MS identification of metabolites in the SF of 
eOA and lOA groups

The results of the LC-MS analysis of SF yielded 
43	metabolites,	(Table	II),	which	were	identified	based	on	
using the Human Metabolome and Lipid Maps Databases 
[28]. 

                     Table I. Demographic and clinical data of early and late osteoarthritis groups.

Parameter eOA
 n=12 (39%)

lOA 
n=19 (61%) Significance

RX Stage 1: n=3	(10%)
Stage 2: n=9	(29%)

Stage 3: n=13	(42%)
Stage 4: n=6	(19%)

Gender Male
	n=9	(75%)

Female
n=3	(25%)

Male
				n=7	(37%)

Female
n=12	(63%)

Age (years) 62±11 70±7 Student t test, p=0.01 

BMI (kg/m²) 27.5±5.6 32.1±1.42 Mann-Whitney U 
test, p=0.02

VAS 6.2±1.9 6.4±1.5 Mann-Whitney U 
test, p=0.8 

WOMAC 21.1±5.5 24.4±6.1 Student t test, p=0.2
The	results	are	expressed	as	number	(%)	or	mean	± standard deviation.
Abbreviations: RX - radiological OA stage, BMI - Body Mass Index, VAS - the visual analog scale for pain, WOMAC - Western Ontario 
and McMaster University Osteoarthritis Index, eOA - patient group with early osteoarthritis, lOA - patient group with late osteoarthritis.
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Table II.	The	m/z	values	of	metabolites	from	SF	for	the	early	and	
late osteoarthritis groups. 

m/z Metabolite
239.1694 Pentadecynoic	acid	(C15:4)
245.0862 1,5-Anhydroglucitol-6-phosphate
247.1380 5,6-Dihydrouridine
271.1964 Heptadecanoic acid
301.1512 Andrenosterone (cortisol metabolite)
349.0022 Inosine	5’-phosphate
350.9995 Estrone 3-sulfate
352.9969 N-Acetyl-7-O-acetylneuraminic acid
353.279 Prostaglandin E2
381.3124 Mycolipenic	acid	(C25)
455.3544 Lysophosphatidic acid 18:0
496.364 Lysophosphatidylcholine 16:0
499.3724 Oleanolic acid acetate 
518.3484 Lysophosphatidylcholine 18:3
520.3662 Lysophosphatidylcholine 18:2
522.382 Lysophosphatidylcholine 18:1
524.3981 Lysophosphatidylcholine 18:0
527.3501 Triradyglycerol (10:0/10:0/8:0)
534.3233 Ceramide (d14:2/20:1)
542.3509 Lysophosphatidylcholine	20:5
544.3689 Lysophosphatidylcholine 20:4
546.3897 Lysophosphatidylcholine 20:3
560.484 Glucosylceramide (d14:1/10:0)
565.3668 Dichloran Glycerol (18:2/14:0/0:0)
566.4596 Ceramide (d18:0/18:1)
572.4038 Ceramide (t18:0/16:0(2OH))
575.4128 Glucosyl	25-hydroxyhexacosanoate

578.512 Ceramide (d16:2/20:1(2OH)) or 
Ceramide-phosphate (d18:0/13:0)

579.3265 Dichloran Glycerol (33:2)
586.5126 Ceramide (t18:0/17:0(2OH))
587.4087 Behenyl linolenate C40H72O2
588.4993 C8 beta-D-glucosyl N-acyl sphingosine
594.5095 Ceramide (d18:1/20:0)
616.2157 Heme 
675.0371 Adenosine thiamine diphosphate
677.0342 Diadenosine	5’,5’-diphosphate
679.0318 Ceramide (d18:1/26:0)
679.5549 Cholesterol ester (20:1)
681.03 Ceramide (d18:0/26:0)
701.5544 Sphingomyelin (d18:1/16:1)
782.6255 2,5-Anhydroglucitol
798.6162 PC (P-18:0/20:2)/ PC (P-20:0/18:2)
814.6475 Phosphatidylcholine (20:0/18:2)

Multivariate analysis
After keeping only the metabolites present in at 

least	25%	of	the	patients	in	each	group,	the	metabolomics	

analysis	yielded	a	panel	of	9	metabolites	 (Table	 III).	The	
violin	 plots	 of	mean	 intensities	 for	 the	 9	metabolites	 are	
presented	in	figure	1.	In	total,	8	metabolites	were	enriched	
in the lOA group, while one of them was enriched in the 
eOA group.

Next,	 PCA	 was	 performed	 on	 the	 panel	 of	 9	
metabolites and PCs were ranked using the p value of 
Student t testing between the eOA and lOA groups, with 
PC2,	PC8,	and	PC9	selected	for	further	analysis.

The score plot for PC2 and PC8 showed a clear 
tendency of clustering of the two groups (Figure 2A). 
The	 loading	 plots	 of	 PC2,	 PC8,	 and	 PC9	 highlight	 the	
contribution of the metabolites to eOA and lOA clustering 
(Figure	2B).	By	correlating	the	scatter	plot	with	the	afferent	
loading	plots,	the	metabolic	differences	between	eOA	and	
lOA are assessed. PC2 shows the positive correlation 
of	 Sphingomyelin	 (d18:1/16:1),	 Inosine	 5’-phosphate,	
Phosphatidylcholine (20:0/18:2) and Diadenosine 
5’,5’-diphosphate,	metabolites	 that	 show	higher	 levels	 in	
lOA patients compared to eOA (Figure 2A). PC8 shows 
the negative correlation between Phosphatidylcholine 
(18:0/20:2) and Heme. As observed in the scatter plot, 
eOA patients are grouped in the negative region of PC8, 
meaning	 that	 they	 are	 characterized	 by	 a	 higher	 level	 of	
Heme and a lower level of Phosphatidylcholine (18:0/20:2) 
when	 compared	 to	 lOA	 patients.	 Finally,	 PC9	 highlights	
the negative correlated contribution from Estrone 3-sulfate 
and Adenosine thiamine diphosphate in eOA and lOA 
clustering.

To	test	 the	performance	of	 the	PC2,	PC8	and	PC9	
in discriminating between the eOA and lOA groups, two 
machine learning algorithms were used (random forest, and 
naïve Bayes). Thus, the three previously selected PCs were 
employed as input for the machine learning algorithms, 
yielding an AUC of 0.81 for random forest, and 0.78 for 
Naïve Bayes (Figure 2C). The performance metrics of the 
two	classification	algorithms	cross-validated	by	leave-one-
out cross-validation technique are presented in Table IV.

Figure 1. Violin	plot	of	the	selected	9	metabolites.	Abbreviations: 
HEME	 –	 Heme	 molecule;	 PC	 –	 Phosphatidylcholine;	 SPH	 –	
Sphingomyelin;	CER	–	Ceramide;	 IPH	–	 Inosine	5’-phosphate;	
E1S	 –	 Estrone	 3-sulfate;	 AThDP	 –	 Adenosine	 thiamine	
diphosphate;	Ap2A	–	Diadenosine	5’,5’-diphosphate.
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Figure 2. A) The score plots of PC2 and PC8, which were used to assess the clustering of the early and late osteoarthritis groups (eOA 
vs	 lOA).	B)	The	 loading	plots	corresponding	 to	PC2,	8,	and	9.	C)	Head-to-head	comparison	of	 the	receiver	operating	characteristic	
(ROC) curves yielded by random forest and naïve Bayes for the discrimination between the eOA and lOA based on PC2, PC8, and 
PC9.	Abbreviations:	HEME	–	Heme	molecule;	PC	–	Phosphatidylcholine;	SPH	–	Sphingomyelin;	CER	–	Ceramide;	IPH	–	Inosine	
5’-phosphate;	E1S	–	Estrone	3-sulfate;	AThDP	–	Adenosine	thiamine	diphosphate;	Ap2A	–	Diadenosine	5’,5’-diphosphate.

Table III.	The	m/z	of	the	metabolites	from	synovial	fluid	used	for	discriminating	between	early	and	late	osteoarthritis.
Student’s t-test

m/z Metabolite p value Adjusted p value
616.2157 Heme 0.188 0.618
814.64755 Phosphatidylcholine (20:0/18:2) 0.224 0.618
701.5544 Sphingomyelin (d18:1/16:1) 0.314 0.647
798.6162 Phosphatidylcholine (18:0/20:2) 0.352 0.647
349.0022 Inosine	5’-phosphate 0.867 0.995
677.0342 Diadenosine	5’,5’-diphosphate 0.878 0.995
350.9995 Estrone 3-sulfate 0.878 0.995
594.5095 Ceramide (d18:1/20:0) 0.975 0.995
675.0371 Adenosine thiamine diphosphate 0.995 0.995

Table IV. The performance metrics for the discrimination between early and late osteoarthritis by random forest and naïve Bayes.
Machine learning model AUC CA F1 Precision Recall
Random forest 0.81 0.80 0.80 0.80 0.80
Naïve Bayes 0.78 0.64 0.64 0.68 0.64

Abbreviations:	AUC-area	under	the	curve;	CA-	classification	accuracy;	F1-score	represents	the	harmonic	mean	of	precision	and	recall;	
Precision-	positive	predicted	values;	Recall-sensitivity.
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Discussion
In this study, we employed LC-MS for performing 

a	untargeted	metabolomic	profiling	of	SF	from	31	patients	
with OA. The results showed that lOA patients were 
significantly	 older	 and	 with	 higher	 body	 mass	 index	
than eOA patients (Table I), in line with previous reports 
demonstrating that age and obesity are risk factors for OA 
[29].	 Indeed,	 Deshpande	 et	 al.	 reported	 the	 prevalence	
of symptomatic knee OA increases with every decade of 
life [30] and a meta-analysis found that the odds ratio for 
having OA in obese or overweight patients compared with 
normal-weight	individuals	was	2.96	[31].	

The	results	of	the	metabolomic	profiling	of	31	OA	
patients	 yielded	 43	metabolites	which	were	 identified	 by	
comparison with the Human Metabolome and Lipid Maps 
Databases	[28]	(Table	II),	of	which	only	9	were	present	in	at	
least	25%	of	the	patients.	Among	the	9	metabolites,	4	were	
pertaining to phospholipids (Phosphatidylcholine 20:0/18:2 
and 18:0/20:2, Sphingomyelin, and Ceramide), 3 were 
represented	 by	 purine	metabolites	 (Inosine	 5’-phosphate,	
Adenosine thiamine diphosphate, and Diadenosine 
5’,5’-diphosphate),	 one	metabolite	was	 a	 gonadal	 steroid	
hormone (Estrone 3-sulfate) and one metabolite was 
represented by Heme, with all but Ceramide (d18:1/20:0) 
being enriched in the lOA group.

Next,	 we	 performed	 PCA	 on	 the	 9	 metabolites,	
and	 selected	 PC2,	 PC8	 and	 PC9	 for	 further	 analysis.	
PC2 and PC8 showed Sphingomyelin (d18:1/16:1), 
Inosine	 5’-phosphate,	 Phosphatidylcholine	 (20:0/18:2)	
Diadenosine	 5’,5’-diphosphate	 and	 Phosphatidylcholine	
(18:0/20:2) have higher levels in lOA compared to eOA, 
while Heme has  a higher level in eOA compared to lOA. 
Based on score values of PC2 and PC8, the eOA and lOA 
exhibited a good unsupervised clustering, demonstrating 
the distinct metabolomic landscape of these two groups 
(Figure 2A). 

Using	 the	 score	 values	 of	 PC2,	 PC8	 and	 PC9	 as	
features for machine learning algorithms, eOA and lOA 
groups	 are	 classified	 with	 an	 AUC	 of	 0.81	 for	 random	
forest, and 0.78 for Naïve Bayes (Figure 2C). 

Membrane phospholipid species contribute to 
boundary lubrication that is provided by SF. Altered levels 
of lubricants can be associated with increased friction, 
leading	 to	 articular	 cartilage	 damage	 [19].	 The	 higher	
concentration of phospholipids in the SF of lOA patients was 
noted	for	the	first	time	by	Kosinska	et	al.,	who	performed	a	
comparative	lipidomic	analysis	of	synovial	fluid	in	human	
and canine osteoarthritis [32]. In line with our results, the 
lOA group showed an increase of the median concentration 
of phospholipids by 4.8 fold compared to the control group, 
while eOA showed an increase of only 2.8 fold. In another 
study, the same group reported a higher concentration 
of phosphatidylcholine and sphingomyelin in the lOA, 
suggesting that the mechanisms that drive these alterations 
are	 related	 to	fibroblast-like	synoviocytes,	which	mediate	

the synthesis and release of phospholipids, increasing 
their production to protect cartilage from friction-induced 
mechanical	damage	[19].

Diadenosine	5’,5’-diphosphate	(Ap2A)	is	a	member	
of the diadenosine polyphosphates family, which are 
ubiquitous natural compounds found in a wide variety of 
prokaryotic and eukaryotic cells that are believed to act as 
extracellular signaling molecules and regulators of cellular 
functions [33]. In humans,  few data are available regarding 
its biological function. Pliyev et al., found that Ap2A 
delays neutrophil apoptosis via the adenosine A2A receptor 
and cAMP/PKA pathway [34], while in platelets it has a 
negative	modulation	effect	on	aggregation	[35].	It	is	worth	
mentioning that mice lacking adenosine A2A receptors 
develop spontaneous OA by 16 weeks of age [36], but there 
is no data regarding Ap2A function in OA disease.

Inosine	 5’-phosphate	 is	 a	 precursor	 of	 inosine,	 a	
product of adenosine breakdown [37]. Previous studies 
demonstrated that the nucleoside adenosine and its 
metabolite	 inosine	 exert	 anti-inflammatory	 effects	 in	
different	 tissues	 in	 the	 human	 body,	 such	 as	 the	 lung,	
liver,	 kidney	 and	 joints,	 after	 binding	 to	 specific	 G	
protein-coupled adenosine receptors (like adenosine A2A 
receptors) [38]. Traditionally OA has been considered to be 
caused by mechanical cartilage breakdown. However, it is 
now	well-accepted	that	inflammation	plays	a	critical	role	in	
the disease progression in cartilage and the synovium, as 
OA	displays	a	 low-grade	chronic	 inflammation,	primarily	
mediated	by	innate	immunity	[39].	The	role	of	adenosine/
inosine	 as	 an	 intrinsic	 anti-inflammatory	 mechanism	 in	
joint	 inflammation	 is	 not	 clear,	 and	 further	 studies	 are	
required [38].

Estrone 3-sulfate (E1S) is an endogenous steroid 
and an estrogen ester that can be transformed into estrone 
and estrogen. Estrogen levels regulate changes in OA by 
inhibiting degradation of the extracellular matrix, estrogen 
deficiency	resulting	in	resorption	of	subchondral	bone	and	
degeneration of articular cartilage [40]. E1S is a major 
source of local bioactive estrogen formation, the osteoblast 
being	equipped	with	steroid	sulfatase	enzymes	(STS)	that	
can convert E1S into estrone and estradiol [41]. Limited 
data regarding STS activity and the role of E1S in bones 
are available, but Dias et al. reported an insightful study 
regarding the role of STS and E1S in stimulating cell 
proliferation and growth of osteoblastic cells in cultures 
[42]. Whether our results pointing to high levels of E1S 
are a sign of compensatory activity of osteoblast, or an 
accumulation of estrogen substrate because of low STS 
activity is unknown, and further studies are required.

Heme is a ubiquitous molecule composed of 
an atom of iron coordinated by the four-pyrrole ring 
of protoporphyrin IX, and is also the precursor and 
degradation product of hemoglobin [43]. Heme has a variety 
of roles like co-factor for cytochromes involved in the 
mitochondrial electron transport chain, oxygen transporters 
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(e.g. hemoglobin, neuroglobin), heme-using peroxidases 
(e.g. catalase), and nitric oxide synthases and is associated 
with oxidative stress and degenerative processes [43,44]. 
Heme	 is	 endogenously	 synthesized	 in	 the	 mitochondria	
from succinyl-CoA and glycine and is degraded by Heme 
oxygenase-1 (HO-1). This is of particular interest because 
the HO-1 expression decreases with aging in articular 
cartilages and menisci of mouse knees [44], and might 
explain why the lOA group had higher levels of Heme 
since	 lOA	group	was	significantly	older	 than	eOA	(Table	
I). Further studies evaluating this hypothesis are needed. 

An important limitation of this study is represented 
by the relatively small number of patients and the lack of 
the validation of the metabolites by quantitative MS. From 
a translational point of view, it would also be interesting 
to	 assess	 whether	 the	 findings	 from	 the	 SF	 can	 also	 be	
extrapolated	 to	 other	 biofluids	 that	 are	 more	 readily	
available, such as urine, saliva or serum. Future studies 
concerned	with	 the	metabolomic	profiling	of	OA	patients	
should also complement metabolomics by mechanistic 
studies, which might lead to novel insights regarding the 
roles of metabolome in the onset and development of OA, 
with the ultimate goal of pinpointing druggable targets that 
can be modulated pharmacologically by disease-modifying 
agents. Also, other joint seats should be investigated, given 
that our study focused solely on knee OA.

Conclusion
The results of this metabolomic study concerned 

with the SF showed that lOA is associated with a perturbed 
metabolome in terms of phospholipids (Phosphatidylcholine 
20:0/18:2 and 18:0/20:2, Sphingomyelin, and Ceramide), 
purine	 metabolites	 (Inosine	 5’-phosphate,	 Adenosine	
thiamine	diphosphate,	and	Diadenosine	5’,5’-diphosphate),	
gonadal steroid hormone (Estrone 3-sulfate) and Heme, 
with all but Ceramide (d18:1/20:0) being enriched in 
the lOA group. More studies delineating the molecular 
mechanisms underlying these observations are needed in 
order	 to	 translate	 these	 findings	 into	 clinically	 relevant	
biomarkers and therapeutic strategies. 
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