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Abstract
Background and aim. Osteoarthritis (OA) is the most common joint condition 
and the leading cause of pain and disability in elderly patients. Currently, there is 
no biomarker available for the early diagnosis of OA, and limited data is available 
regarding the molecular basis of progression for OA. For this reason, this study aimed 
to identify the metabolomic profile of early and late OA using high-performance 
liquid chromatography coupled with untargeted mass spectrometry (LC-MS).
Methods. 31 patients with knee OA and joint effusion were enrolled. Based on 
Kellgren/Laurence scale, 12 patients were classified as early OA (eOA) and 19 as 
late OA (lOA). The synovial fluid (SF) was collected and characterized by untargeted 
LC-MS. Only the metabolites identified in more than 25% of each group were kept 
for further analysis. Principal component analysis (PCA) enabled the unsupervised 
clustering of the eOA and lOA groups. Further, for classification, the best three 
principal components (PCs) were used as input for two machine learning algorithms 
(random forest and naïve Bayes), which were trained to discriminate between the 
eOA and lOA groups. 
Results. 43 metabolites were identified in both eOA and lOA, but after selecting the 
metabolites present in at least 25% of the patients in each group, the metabolomics 
analysis yielded a panel of only nine metabolites: four metabolites related to 
phospholipids (phosphatidylcholine 20:0/18:2 and 18:0/20:2, sphingomyelin, and 
ceramide), three metabolites belonging to purine metabolites (inosine 5’-phosphate, 
adenosine thiamine diphosphate, and diadenosine 5’,5’-diphosphate), one metabolite 
was a gonadal steroid hormone (estrone 3-sulfate), and one metabolite represented 
by heme, with all but ceramide (d18:1/20:0) being enriched in the lOA group. By 
using as features the best three PCs (PC2, PC8 and PC9), random forest and naïve 
Bayes machine learning algorithms yielded a classification accuracy of 0.81 and 
0.78, respectively.
Conclusion. Our LC-MS analysis of SF from patients with eOA and lOA indicates 
stage-dependent differences, lOA being associated with a perturbed metabolome of 
phospholipids, purine metabolites, gonadal steroid hormones (estrone 3-sulfate) and 
a heme molecule. Specific questions need to be answered regarding the biosynthesis 
and function of these metabolites in osteoarthritic joints, with the aim of developing 
new relevant biomarkers and therapeutic strategies.
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Background and aim
Osteoarthritis (OA) is the most common joint 

condition and the main cause of pain and disability in 
elderly patients [1]. Overall, it   touches up to 10% of the 
population over the age of 60 years, the knee being one of 
the most affected joints [2]. 

The diagnosis of OA is established on clinical 
basis,  with the clinical picture usually developing after the 
appearance of joint structural changes. The severity of the 
disease is determined through several imaging techniques 
[3] or by arthroscopy [4], but unfortunately, an early 
diagnosis is often difficult to make [5,6]. Therefore, there 
has been a growing interest in identifying the metabolomic 
signature of OA. It is known by now that changes in the 
metabolomic profile of the joint environment occur before 
the genomic or proteomic ones [7]. Consequently, the 
metabolomic analysis could allow an early diagnosis of OA. 
Also, a better understanding of the disease pathogenesis 
might lead to the identification of new therapeutic targets 
with potentially better outcomes [7,8]. To date, few studies 
have evaluated the metabolomic joint profile of patients 
with OA [9]. In addition, the results were confounded by 
differences in identification techniques (global or a targeted 
metabolomic profile), study design and the type of analyzed 
biofluid (urine, serum, synovial fluid etc).

Previous metabolomic studies in OA have analyzed 
urine [10,11] or serum [12,13], with most studies focusing 
on the synovial fluid (SF) [5,14–22]. SF is a plasma 
ultrafiltrate and contains molecules produced by joint 
tissue cells [15], serving as a lubricant for joint surfaces 
and as a diffusion medium for nutrients. SF is recognized 
as the most important biofluid for the evaluation of the 
metabolomic profile of OA [17], being in direct contact 
with the joint tissues and thus reflecting the biochemical 
status of the entire joint.

Up to date, the most commonly used analytical 
techniques for the evaluation of the metabolomic profile 
are nuclear magnetic resonance spectroscopy  and mass 
spectrometry (MS). Both technologies provide important 
structural information on various classes of substances 
and show high analytical accuracy [23–25], although 
MS is more sensitive and exhibits a broader coverage of 
the metabolome. A fundamental principle of MS is the 
representation of metabolite features in any biological 
matrix by measurement of the spectrum of signals 
reflecting the mass to charge ratios (m/z) of their ionization 
products. MS is usually coupled with chromatographic 
separation techniques such as gas chromatography or liquid 
chromatography (LC), with the latter being employed 
for biofluid analysis with both positive and negative ion 
detection modes [24]. The studies that used LC-MS for SF 
evaluation in OA have conducted either a global or targeted 
metabolomic profiling, in a quest to identify OA specific 
biomarkers [22] and to better differentiate among OA 
subgroups and phenotypes [15,26]. 

In this study, we performed a untargeted 
metabolomic profiling of SF in patients with knee OA 
using LC-MS, with the aim of identifying metabolomic 
signatures associated with early forms of OA.

Methods
Inclusion and exclusion criteria
The SF was collected from consecutive adult patients 

with knee effusions that attended the 2nd Internal Medicine 
Department, Cluj-Napoca, from March 2019 till March 
2020. All the patients were diagnosed with knee OA based 
on EULAR criteria [27]. The exclusion criteria were the 
following: history of joint trauma or surgical interventions 
in the last three months, intraarticular treatment with 
corticoids or hyaluronic acid in the previous six weeks, 
other coexistent inflammatory arthritis, and diabetes. All 
patients underwent clinical examination by an experienced 
rheumatologist. Demographic data (history, age, gender, 
body mass index) and clinical outcomes measures such as 
the visual analog scale for pain (VAS), and Western Ontario 
and McMaster University OA Index (WOMAC) scores 
were collected. 

Knee ultrasound (US) was performed for all patients 
(Samsung RS80). The presence of clinically suspected 
joint effusion was confirmed using the US. An US-guided 
arthrocentesis was performed. The SF samples were stored 
at -80°C until the metabolomic analysis.

The radiologic severity of OA was assessed based 
on the Kellgren/Lawrence scale (K/L), and the patients 
were divided into two groups: early OA (eOA) (K/L=1 or 
2) and late OA (lOA) (K/L=3 or 4) [3]. 

The present study was approved by the Faculty of 
Medicine’s Ethical Review Committee (Iuliu Hatieganu 
University of Medicine and Pharmacy Cluj-Napoca). All 
patients provided written informed consent. 

Sample processing 
The SF pH was measured before sample processing, 

using a pH dipstick (Whatman pH Indicator paper, Cyntia).
From each SF sample, 0.6 mL was filtered and 

mixed with 1.4 mL mixture of methanol: acetonitrile (1:1) 
to precipitate proteins. The mixture was vortexed for 20 s 
and kept at a temperature of -20°C for 24 h. After thawing, 
the vials were centrifuged at 12.500 g for 10 min, and the 
supernatant was collected, filtered through 0.2 µm PTFE 
filters, and transferred to autosampler vials for metabolomic 
analysis. 

LC-MS analysis
The MS analysis was performed with a Bruker 

Daltonics MaXis Impact spectroscope (Bruker GmbH, 
Bremen, Germany) coupled to a Thermo Scientific HPLC 
UltiMate 3000 system on a C18 reverse-phase column 
(Acquity, UPLC C18 BEH) (5µm, 2.1 x 75 mm) operated 
at 25°C and at a flow rate of 0.3 mL/min. The injection 
volume was 5 mL. The mobile phase was represented by 
a gradient of eluent A (water containing 0.1% formic acid) 
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and eluent B (methanol: acetonitrile (1:1) containing 0.1% 
formic acid). The gradient system consisted of 99% A (min 
0), 70% A (min 1), 40% A (min 2), 20% A (min 6), 100% 
B (min 9-10) followed by 5 min with 99% A. The total 
running time was 15 min.   

The LC-MS parameters were set for a mass range 
between 50-1000 Da. The fragmentation was done using 
a positive impact (ESI+), the nebulizing gas pressure was 
set at 2.8 Ba and the drying gas flow was set to 12 L/min 
at 300°C. Before each chromatographic run, a calibration 
with sodium formate was done. The instrument control and 
data processing were performed using the specific software 
provided by Bruker Daltonics, namely Chromeleon, 
TofControl 3.2, Hystar 3.2, and Data Analysis 4.2. 

Statistics 
The demographic and clinical data were analyzed 

in terms of mean and standard deviation. Student t-test 
for parametric data and Wilcoxon-Mann-Whitney’s U 
test for nonparametric data were performed using Prism 9 
software (GraphPad La Jolla California USA).

Metabolomic data were preprocessed using Data 
Analysis 4.2. First, the individual total ion chromatograms 
were registered, transformed to base peak chromatograms 
and then analyzed using the find molecular features 
function, yielding a table containing the retention time, 
the peak areas and intensities, the signal/noise ratio for 
each component together with its mass-to-charge ratio 
(m/z). The mean of intensity values and standard deviation 
for each m/z value were used for the identification of 
metabolites based on the Human Metabolome and Lipid 
Maps Databases [28].

Next, only the metabolites identified in at least 25% 
of the patients in each group were kept for further analysis. 
Principal component analysis (PCA) was performed with 
the remaining metabolites to reduce the dimensionality of 

the dataset and allow the visualization of the unsupervised 
clustering of the eOA and lOA groups. To select relevant 
principal components (PCs) that allowed the discrimination 
between the eOA and lOA groups, Student t-test was 
employed. The best 3 PC in terms of p values were used for 
further analysis. The selected PCs were then used as inputs 
for two machine learning algorithms (random forest and 
naïve Bayes), which were trained to discriminate between 
the eOA and lOA groups. The machine learning algorithms 
were validated using leave-one-out cross-validation. 

The statistical analysis was performed using 
Quasar-Orange software, Orange-Spectroscopy library 
(Bioinformatics Laboratory of the University of Ljubljana, 
Slovenia). 

Results
Demographic and clinical data 
In this study, SF was collected from 31 patients with 

knee OA. Based on K/L criteria, a number of 12 patients 
were diagnosed with eOA, and 19 with lOA. There were 
significant differences between the two groups in terms 
of age and body mass index, the lOA patients being 
significantly older and with higher body mass index (Table 
I). There were no statistically significant differences in 
VAS and WOMAC scores between the two groups (Table 
I). The mean SF pH values were 8.3±0.4 for patients with 
eOA and 8.2±0.5 for lOA, respectively, with no statistically 
significant differences between the two groups (Student 
t-test, p=0.71).

LC-MS identification of metabolites in the SF of 
eOA and lOA groups

The results of the LC-MS analysis of SF yielded 
43 metabolites, (Table II), which were identified based on 
using the Human Metabolome and Lipid Maps Databases 
[28]. 

                     Table I. Demographic and clinical data of early and late osteoarthritis groups.

Parameter eOA
 n=12 (39%)

lOA 
n=19 (61%) Significance

RX Stage 1: n=3 (10%)
Stage 2: n=9 (29%)

Stage 3: n=13 (42%)
Stage 4: n=6 (19%)

Gender Male
 n=9 (75%)

Female
n=3 (25%)

Male
    n=7 (37%)

Female
n=12 (63%)

Age (years) 62±11 70±7 Student t test, p=0.01 

BMI (kg/m²) 27.5±5.6 32.1±1.42 Mann-Whitney U 
test, p=0.02

VAS 6.2±1.9 6.4±1.5 Mann-Whitney U 
test, p=0.8 

WOMAC 21.1±5.5 24.4±6.1 Student t test, p=0.2
The results are expressed as number (%) or mean ± standard deviation.
Abbreviations: RX - radiological OA stage, BMI - Body Mass Index, VAS - the visual analog scale for pain, WOMAC - Western Ontario 
and McMaster University Osteoarthritis Index, eOA - patient group with early osteoarthritis, lOA - patient group with late osteoarthritis.
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Table II. The m/z values of metabolites from SF for the early and 
late osteoarthritis groups. 

m/z Metabolite
239.1694 Pentadecynoic acid (C15:4)
245.0862 1,5-Anhydroglucitol-6-phosphate
247.1380 5,6-Dihydrouridine
271.1964 Heptadecanoic acid
301.1512 Andrenosterone (cortisol metabolite)
349.0022 Inosine 5’-phosphate
350.9995 Estrone 3-sulfate
352.9969 N-Acetyl-7-O-acetylneuraminic acid
353.279 Prostaglandin E2
381.3124 Mycolipenic acid (C25)
455.3544 Lysophosphatidic acid 18:0
496.364 Lysophosphatidylcholine 16:0
499.3724 Oleanolic acid acetate 
518.3484 Lysophosphatidylcholine 18:3
520.3662 Lysophosphatidylcholine 18:2
522.382 Lysophosphatidylcholine 18:1
524.3981 Lysophosphatidylcholine 18:0
527.3501 Triradyglycerol (10:0/10:0/8:0)
534.3233 Ceramide (d14:2/20:1)
542.3509 Lysophosphatidylcholine 20:5
544.3689 Lysophosphatidylcholine 20:4
546.3897 Lysophosphatidylcholine 20:3
560.484 Glucosylceramide (d14:1/10:0)
565.3668 Dichloran Glycerol (18:2/14:0/0:0)
566.4596 Ceramide (d18:0/18:1)
572.4038 Ceramide (t18:0/16:0(2OH))
575.4128 Glucosyl 25-hydroxyhexacosanoate

578.512 Ceramide (d16:2/20:1(2OH)) or 
Ceramide-phosphate (d18:0/13:0)

579.3265 Dichloran Glycerol (33:2)
586.5126 Ceramide (t18:0/17:0(2OH))
587.4087 Behenyl linolenate C40H72O2
588.4993 C8 beta-D-glucosyl N-acyl sphingosine
594.5095 Ceramide (d18:1/20:0)
616.2157 Heme 
675.0371 Adenosine thiamine diphosphate
677.0342 Diadenosine 5’,5’-diphosphate
679.0318 Ceramide (d18:1/26:0)
679.5549 Cholesterol ester (20:1)
681.03 Ceramide (d18:0/26:0)
701.5544 Sphingomyelin (d18:1/16:1)
782.6255 2,5-Anhydroglucitol
798.6162 PC (P-18:0/20:2)/ PC (P-20:0/18:2)
814.6475 Phosphatidylcholine (20:0/18:2)

Multivariate analysis
After keeping only the metabolites present in at 

least 25% of the patients in each group, the metabolomics 

analysis yielded a panel of 9 metabolites (Table III). The 
violin plots of mean intensities for the 9 metabolites are 
presented in figure 1. In total, 8 metabolites were enriched 
in the lOA group, while one of them was enriched in the 
eOA group.

Next, PCA was performed on the panel of 9 
metabolites and PCs were ranked using the p value of 
Student t testing between the eOA and lOA groups, with 
PC2, PC8, and PC9 selected for further analysis.

The score plot for PC2 and PC8 showed a clear 
tendency of clustering of the two groups (Figure 2A). 
The loading plots of PC2, PC8, and PC9 highlight the 
contribution of the metabolites to eOA and lOA clustering 
(Figure 2B). By correlating the scatter plot with the afferent 
loading plots, the metabolic differences between eOA and 
lOA are assessed. PC2 shows the positive correlation 
of Sphingomyelin (d18:1/16:1), Inosine 5’-phosphate, 
Phosphatidylcholine (20:0/18:2) and Diadenosine 
5’,5’-diphosphate, metabolites that show higher levels in 
lOA patients compared to eOA (Figure 2A). PC8 shows 
the negative correlation between Phosphatidylcholine 
(18:0/20:2) and Heme. As observed in the scatter plot, 
eOA patients are grouped in the negative region of PC8, 
meaning that they are characterized by a higher level of 
Heme and a lower level of Phosphatidylcholine (18:0/20:2) 
when compared to lOA patients. Finally, PC9 highlights 
the negative correlated contribution from Estrone 3-sulfate 
and Adenosine thiamine diphosphate in eOA and lOA 
clustering.

To test the performance of the PC2, PC8 and PC9 
in discriminating between the eOA and lOA groups, two 
machine learning algorithms were used (random forest, and 
naïve Bayes). Thus, the three previously selected PCs were 
employed as input for the machine learning algorithms, 
yielding an AUC of 0.81 for random forest, and 0.78 for 
Naïve Bayes (Figure 2C). The performance metrics of the 
two classification algorithms cross-validated by leave-one-
out cross-validation technique are presented in Table IV.

Figure 1. Violin plot of the selected 9 metabolites. Abbreviations: 
HEME – Heme molecule; PC – Phosphatidylcholine; SPH – 
Sphingomyelin; CER – Ceramide; IPH – Inosine 5’-phosphate; 
E1S – Estrone 3-sulfate; AThDP – Adenosine thiamine 
diphosphate; Ap2A – Diadenosine 5’,5’-diphosphate.
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Figure 2. A) The score plots of PC2 and PC8, which were used to assess the clustering of the early and late osteoarthritis groups (eOA 
vs lOA). B) The loading plots corresponding to PC2, 8, and 9. C) Head-to-head comparison of the receiver operating characteristic 
(ROC) curves yielded by random forest and naïve Bayes for the discrimination between the eOA and lOA based on PC2, PC8, and 
PC9. Abbreviations: HEME – Heme molecule; PC – Phosphatidylcholine; SPH – Sphingomyelin; CER – Ceramide; IPH – Inosine 
5’-phosphate; E1S – Estrone 3-sulfate; AThDP – Adenosine thiamine diphosphate; Ap2A – Diadenosine 5’,5’-diphosphate.

Table III. The m/z of the metabolites from synovial fluid used for discriminating between early and late osteoarthritis.
Student’s t-test

m/z Metabolite p value Adjusted p value
616.2157 Heme 0.188 0.618
814.64755 Phosphatidylcholine (20:0/18:2) 0.224 0.618
701.5544 Sphingomyelin (d18:1/16:1) 0.314 0.647
798.6162 Phosphatidylcholine (18:0/20:2) 0.352 0.647
349.0022 Inosine 5’-phosphate 0.867 0.995
677.0342 Diadenosine 5’,5’-diphosphate 0.878 0.995
350.9995 Estrone 3-sulfate 0.878 0.995
594.5095 Ceramide (d18:1/20:0) 0.975 0.995
675.0371 Adenosine thiamine diphosphate 0.995 0.995

Table IV. The performance metrics for the discrimination between early and late osteoarthritis by random forest and naïve Bayes.
Machine learning model AUC CA F1 Precision Recall
Random forest 0.81 0.80 0.80 0.80 0.80
Naïve Bayes 0.78 0.64 0.64 0.68 0.64

Abbreviations: AUC-area under the curve; CA- classification accuracy; F1-score represents the harmonic mean of precision and recall; 
Precision- positive predicted values; Recall-sensitivity.
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Discussion
In this study, we employed LC-MS for performing 

a untargeted metabolomic profiling of SF from 31 patients 
with OA. The results showed that lOA patients were 
significantly older and with higher body mass index 
than eOA patients (Table I), in line with previous reports 
demonstrating that age and obesity are risk factors for OA 
[29]. Indeed, Deshpande et al. reported the prevalence 
of symptomatic knee OA increases with every decade of 
life [30] and a meta-analysis found that the odds ratio for 
having OA in obese or overweight patients compared with 
normal-weight individuals was 2.96 [31]. 

The results of the metabolomic profiling of 31 OA 
patients yielded 43 metabolites which were identified by 
comparison with the Human Metabolome and Lipid Maps 
Databases [28] (Table II), of which only 9 were present in at 
least 25% of the patients. Among the 9 metabolites, 4 were 
pertaining to phospholipids (Phosphatidylcholine 20:0/18:2 
and 18:0/20:2, Sphingomyelin, and Ceramide), 3 were 
represented by purine metabolites (Inosine 5’-phosphate, 
Adenosine thiamine diphosphate, and Diadenosine 
5’,5’-diphosphate), one metabolite was a gonadal steroid 
hormone (Estrone 3-sulfate) and one metabolite was 
represented by Heme, with all but Ceramide (d18:1/20:0) 
being enriched in the lOA group.

Next, we performed PCA on the 9 metabolites, 
and selected PC2, PC8 and PC9 for further analysis. 
PC2 and PC8 showed Sphingomyelin (d18:1/16:1), 
Inosine 5’-phosphate, Phosphatidylcholine (20:0/18:2) 
Diadenosine 5’,5’-diphosphate and Phosphatidylcholine 
(18:0/20:2) have higher levels in lOA compared to eOA, 
while Heme has  a higher level in eOA compared to lOA. 
Based on score values of PC2 and PC8, the eOA and lOA 
exhibited a good unsupervised clustering, demonstrating 
the distinct metabolomic landscape of these two groups 
(Figure 2A). 

Using the score values of PC2, PC8 and PC9 as 
features for machine learning algorithms, eOA and lOA 
groups are classified with an AUC of 0.81 for random 
forest, and 0.78 for Naïve Bayes (Figure 2C). 

Membrane phospholipid species contribute to 
boundary lubrication that is provided by SF. Altered levels 
of lubricants can be associated with increased friction, 
leading to articular cartilage damage [19]. The higher 
concentration of phospholipids in the SF of lOA patients was 
noted for the first time by Kosinska et al., who performed a 
comparative lipidomic analysis of synovial fluid in human 
and canine osteoarthritis [32]. In line with our results, the 
lOA group showed an increase of the median concentration 
of phospholipids by 4.8 fold compared to the control group, 
while eOA showed an increase of only 2.8 fold. In another 
study, the same group reported a higher concentration 
of phosphatidylcholine and sphingomyelin in the lOA, 
suggesting that the mechanisms that drive these alterations 
are related to fibroblast-like synoviocytes, which mediate 

the synthesis and release of phospholipids, increasing 
their production to protect cartilage from friction-induced 
mechanical damage [19].

Diadenosine 5’,5’-diphosphate (Ap2A) is a member 
of the diadenosine polyphosphates family, which are 
ubiquitous natural compounds found in a wide variety of 
prokaryotic and eukaryotic cells that are believed to act as 
extracellular signaling molecules and regulators of cellular 
functions [33]. In humans,  few data are available regarding 
its biological function. Pliyev et al., found that Ap2A 
delays neutrophil apoptosis via the adenosine A2A receptor 
and cAMP/PKA pathway [34], while in platelets it has a 
negative modulation effect on aggregation [35]. It is worth 
mentioning that mice lacking adenosine A2A receptors 
develop spontaneous OA by 16 weeks of age [36], but there 
is no data regarding Ap2A function in OA disease.

Inosine 5’-phosphate is a precursor of inosine, a 
product of adenosine breakdown [37]. Previous studies 
demonstrated that the nucleoside adenosine and its 
metabolite inosine exert anti-inflammatory effects in 
different tissues in the human body, such as the lung, 
liver, kidney and joints, after binding to specific G 
protein-coupled adenosine receptors (like adenosine A2A 
receptors) [38]. Traditionally OA has been considered to be 
caused by mechanical cartilage breakdown. However, it is 
now well-accepted that inflammation plays a critical role in 
the disease progression in cartilage and the synovium, as 
OA displays a low-grade chronic inflammation, primarily 
mediated by innate immunity [39]. The role of adenosine/
inosine as an intrinsic anti-inflammatory mechanism in 
joint inflammation is not clear, and further studies are 
required [38].

Estrone 3-sulfate (E1S) is an endogenous steroid 
and an estrogen ester that can be transformed into estrone 
and estrogen. Estrogen levels regulate changes in OA by 
inhibiting degradation of the extracellular matrix, estrogen 
deficiency resulting in resorption of subchondral bone and 
degeneration of articular cartilage [40]. E1S is a major 
source of local bioactive estrogen formation, the osteoblast 
being equipped with steroid sulfatase enzymes (STS) that 
can convert E1S into estrone and estradiol [41]. Limited 
data regarding STS activity and the role of E1S in bones 
are available, but Dias et al. reported an insightful study 
regarding the role of STS and E1S in stimulating cell 
proliferation and growth of osteoblastic cells in cultures 
[42]. Whether our results pointing to high levels of E1S 
are a sign of compensatory activity of osteoblast, or an 
accumulation of estrogen substrate because of low STS 
activity is unknown, and further studies are required.

Heme is a ubiquitous molecule composed of 
an atom of iron coordinated by the four-pyrrole ring 
of protoporphyrin IX, and is also the precursor and 
degradation product of hemoglobin [43]. Heme has a variety 
of roles like co-factor for cytochromes involved in the 
mitochondrial electron transport chain, oxygen transporters 
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(e.g. hemoglobin, neuroglobin), heme-using peroxidases 
(e.g. catalase), and nitric oxide synthases and is associated 
with oxidative stress and degenerative processes [43,44]. 
Heme is endogenously synthesized in the mitochondria 
from succinyl-CoA and glycine and is degraded by Heme 
oxygenase-1 (HO-1). This is of particular interest because 
the HO-1 expression decreases with aging in articular 
cartilages and menisci of mouse knees [44], and might 
explain why the lOA group had higher levels of Heme 
since lOA group was significantly older than eOA (Table 
I). Further studies evaluating this hypothesis are needed. 

An important limitation of this study is represented 
by the relatively small number of patients and the lack of 
the validation of the metabolites by quantitative MS. From 
a translational point of view, it would also be interesting 
to assess whether the findings from the SF can also be 
extrapolated to other biofluids that are more readily 
available, such as urine, saliva or serum. Future studies 
concerned with the metabolomic profiling of OA patients 
should also complement metabolomics by mechanistic 
studies, which might lead to novel insights regarding the 
roles of metabolome in the onset and development of OA, 
with the ultimate goal of pinpointing druggable targets that 
can be modulated pharmacologically by disease-modifying 
agents. Also, other joint seats should be investigated, given 
that our study focused solely on knee OA.

Conclusion
The results of this metabolomic study concerned 

with the SF showed that lOA is associated with a perturbed 
metabolome in terms of phospholipids (Phosphatidylcholine 
20:0/18:2 and 18:0/20:2, Sphingomyelin, and Ceramide), 
purine metabolites (Inosine 5’-phosphate, Adenosine 
thiamine diphosphate, and Diadenosine 5’,5’-diphosphate), 
gonadal steroid hormone (Estrone 3-sulfate) and Heme, 
with all but Ceramide (d18:1/20:0) being enriched in 
the lOA group. More studies delineating the molecular 
mechanisms underlying these observations are needed in 
order to translate these findings into clinically relevant 
biomarkers and therapeutic strategies. 

Acknowledgements
N.L. and SDI highly acknowledge support from 

the Romanian Ministry of Research and Innovation, 
CCCDI-UEFISCDI, project number PN-III-P2-2.1-
PED-2019-3268.

References 
1. 	 Neogi T. The epidemiology and impact of pain in 

osteoarthritis. Osteoarthritis Cartilage. 2013;21:1145–1153. 
2. 	 Panikkar M, Attia E, Dardak S. Osteoarthritis: A Review of 

Novel Treatments and Drug Targets. Cureus. 2021;13:e20026. 
3. 	 Kellgren JH, Lawrence JS. Radiological assessment of 

osteo-arthrosis. Ann Rheum Dis. 1957;16:494–502. 
4. 	 Slattery C, Kweon CY. Classifications in Brief: Outerbridge 

Classification of Chondral Lesions. Clin Orthop Relat Res. 
2018;476:2101–2104. 

5. 	 Carlson AK, Rawle RA, Adams E, Greenwood MC, Bothner 
B, June RK. Application of global metabolomic profiling 
of synovial fluid for osteoarthritis biomarkers. Biochem 
Biophys Res Commun. 2018;499:182–188. 

6. 	 Mobasheri A. Osteoarthritis year 2012 in review: biomarkers. 
Osteoarthritis Cartilage. 2012;20:1451–1464. 

7. 	 Adams SB Jr, Setton LA, Kensicki E, Bolognesi MP, 
Toth AP, Nettles DL. Global metabolic profiling of 
human osteoarthritic synovium. Osteoarthritis Cartilage. 
2012;20:64–67. 

8. 	 Li JT, Zeng N, Yan ZP, Liao T, Ni GX. A review of 
applications of metabolomics in osteoarthritis. Clin 
Rheumatol. 2021;40:2569–2579. 

9. 	 Ruiz-Romero C, Rego-Perez I, Blanco FJ. What did we learn 
from “omics” studies in osteoarthritis. Curr Opin Rheumatol. 
2018;30:114–120.

10. 	 Abdelrazig S, Ortori CA, Doherty M, Valdes AM, Chapman 
V, Barrett DA. Metabolic signatures of osteoarthritis in urine 
using liquid chromatography‐high resolution tandem mass 
spectrometry. Metabolomics. 2021;17:29. 

11. 	 Lamers RJ, van Nesselrooij JH, Kraus VB, Jordan JM, 
Renner JB, Dragomir AD, et al. Identification of an 
urinary metabolite profile associated with osteoarthritis. 
Osteoarthritis Cartilage. 2005;13:762–768.

12. 	 Zhang W, Sun G, Likhodii S, Liu M, Aref-Eshghi E, Harper 
PE, et al. Metabolomic analysis of human plasma reveals 
that arginine is depleted in knee osteoarthritis patients. 
Osteoarthritis Cartilage. 2016;24:827–834. 

13. 	 Xu B, Su H, Wang R, Wang Y, Zhang W. Metabolic networks 
of plasma and joint fluid base on differential correlation. 
PLoS One. 2021;16:e0247191. 

14. 	 Akhbari P, Jaggard MK, Boulangé CL, Vaghela U, Graça G, 
Bhattacharya R, et al. Differences in the composition of hip 
and knee synovial fluid in osteoarthritis: a nuclear magnetic 
resonance (NMR) spectroscopy study of metabolic profiles. 
Osteoarthritis Cartilage. 2019;27:1768–1777. 

15. 	 Carlson AK, Rawle RA, Wallace CW, Brooks EG, Adams 
E, Greenwood MC, et al. Characterization of synovial fluid 
metabolomic phenotypes of cartilage morphological changes 
associated with osteoarthritis. Osteoarthritis Cartilage. 
2019;27:1174–1184. 

16. 	 Hügle T, Kovacs H, Heijnen IA, Daikeler T, Baisch U, 
Hicks JM, et al. Synovial fluid metabolomics in different 
forms of arthritis assessed by nuclear magnetic resonance 
spectroscopy. Clin Exp Rheumatol. 2012;30:240–245. 

17. 	 Kim S, Hwang J, Kim J, Ahn JK, Cha HS, Kim KH. 
Metabolite profiles of synovial fluid change with the 
radiographic severity of knee osteoarthritis. Joint Bone 
Spine. 2017;84:605–610. 

18. 	 Kosinska MK, Liebisch G, Lochnit G, Wilhelm J, Klein H, 
Kaesser U, et al. Sphingolipids in human synovial fluid - a 
lipidomic study. PLoS One. 2014;9:e91769. 



Original Research

MEDICINE AND PHARMACY REPORTS Vol. 95 / No. 4 / 2022: 438 - 445   445

19. 	 Kosinska MK, Liebisch G, Lochnit G, Wilhelm J, Klein H, 
Kaesser U, et al. A lipidomic study of phospholipid classes 
and species in human synovial fluid. Arthritis Rheum. 
2013;65:2323–2333.

20. 	 Mickiewicz B, Heard BJ, Chau JK, Chung M, Hart DA, 
Shrive NG, et al. Metabolic profiling of synovial fluid 
in a unilateral ovine model of anterior cruciate ligament 
reconstruction of the knee suggests biomarkers for early 
osteoarthritis. J Orthop Res. 2015;33:71–77. 

21. 	 Mickiewicz B, Kelly JJ, Ludwig TE, Weljie AM, Wiley JP, 
Schmidt TA, et al. Metabolic analysis of knee synovial fluid 
as a potential diagnostic approach for osteoarthritis. J Orthop 
Res. 2015;33:1631–1638.

22. 	 Zheng K, Shen N, Chen H, Ni S, Zhang T, Hu M, et al. 
Global and targeted metabolomics of synovial fluid discovers 
special osteoarthritis metabolites. J Orthop Res. 2017 Sep 
1;35(9):1973–81. 

23. 	 Lindon JC, Nicholson JK. Spectroscopic and statistical 
techniques for information recovery in metabonomics and 
metabolomics. Annu Rev Anal Chem (Palo Alto Calif). 
2008;1:45–69. 

24. 	 Akhbari P, Karamchandani U, Jaggard MKJ, Graça G, 
Bhattacharya R, Lindon JC, et al. Can joint fluid metabolic 
profiling (or “metabonomics”) reveal biomarkers for 
osteoarthritis and inflammatory joint disease? Bone Joint 
Res. 2020;9:108–119. 

25. 	 Lu W, Su X, Klein MS, Lewis IA, Fiehn O, Rabinowitz JD. 
Metabolite Measurement: Pitfalls to Avoid and Practices to 
Follow. Annu Rev Biochem. 2017;86:277–304. 

26. 	 Zhang W, Likhodii S, Zhang Y, Aref-Eshghi E, Harper PE, 
Randell E, et al. Classification of osteoarthritis phenotypes 
by metabolomics analysis. BMJ Open. 2014;4:e006286. 

27. 	 Zhang W, Doherty M, Peat G, Bierma-Zeinstra MA, 
Arden NK, Bresnihan B, et al. EULAR evidence-based 
recommendations for the diagnosis of knee osteoarthritis. 
Ann Rheum Dis. 2010;69:483–489.

28. 	 Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, 
et al. HMDB: a knowledgebase for the human metabolome. 
Nucleic Acids Res. 2009;37(Database issue):D603-D610. 

29. 	 Musumeci G, Aiello FC, Szychlinska MA, Di Rosa M, 
Castrogiovanni P, Mobasheri A. Osteoarthritis in the XXIst 
century: risk factors and behaviours that influence disease 
onset and progression. Int J Mol Sci. 2015;16:6093–6112. 

30. 	 Deshpande BR, Katz JN, Solomon DH, Yelin EH, Hunter 
DJ, Messier SP, et al. Number of Persons with Symptomatic 
Knee Osteoarthritis in the US: Impact of Race and Ethnicity, 
Age, Sex, and Obesity. Arthritis Care Res (Hoboken). 
2016;68:1743-1750. 

31. 	 Blagojevic M, Jinks C, Jeffery A, Jordan KP. Risk factors 
for onset of osteoarthritis of the knee in older adults: 

a systematic review and meta-analysis. Osteoarthritis 
Cartilage. 2010;18:24–33. 

32. 	 Kosinska MK, Mastbergen SC, Liebisch G, Wilhelm J, 
Dettmeyer RB, Ishaque B, et al. Comparative lipidomic 
analysis of synovial fluid in human and canine osteoarthritis. 
Osteoarthritis Cartilage. 2016;24:1470–1478. 

33. 	 Park HS, Hourani SM. Differential effects of adenine 
nucleotide analogues on shape change and aggregation 
induced by adnosine 5-diphosphate (ADP) in human 
platelets. Br J Pharmacol. 1999;127:1359–1366. 

34. 	 Pliyev BK, Dimitrieva TV, Savchenko VG. Diadenosine 
diphosphate (Ap₂A) delays neutrophil apoptosis via the 
adenosine A2A receptor and cAMP/PKA pathway. Biochem 
Cell Biol. 2014;92:420–424. 

35. 	 Magnone M, Basile G, Bruzzese D, Guida L, Signorello MG, 
Chothi MP, et al. Adenylic dinucleotides produced by CD38 
are negative endogenous modulators of platelet aggregation. 
J Biol Chem. 2008;283:24460–24468. 

36. 	 Castro CM, Corciulo C, Friedman B, Li Z, Jacob S, 
Fenyo D, et al. Adenosine A2A receptor null chondrocyte 
transcriptome resembles that of human osteoarthritic 
chondrocytes. Purinergic Signal. 2021;17:439–448. 

37. 	 Yin J, Ren W, Huang X, Deng J, Li T, Yin Y. Potential 
Mechanisms Connecting Purine Metabolism and Cancer 
Therapy. Front Immunol. 2018;9:1697. 

38. 	 Sohn R, Junker M, Meurer A, Zaucke F, Straub RH, Jenei‐
Lanzl Z. Anti-Inflammatory Effects of Endogenously 
Released Adenosine in Synovial Cells of Osteoarthritis and 
Rheumatoid Arthritis Patients. Int J Mol Sci. 2021;22:8956.

39. 	 Gratal P, Lamuedra A, Medina JP, Bermejo-Álvarez I, Largo 
R, Herrero-Beaumont G, et al. Purinergic System Signaling 
in Metainflammation-Associated Osteoarthritis. Front Med 
(Lausanne). 2020;7:506. 

40. 	 Xu X, Li X, Liang Y, Ou Y, Huang J, Xiong J, et al. Estrogen 
Modulates Cartilage and Subchondral Bone Remodeling 
in an Ovariectomized Rat Model of Postmenopausal 
Osteoarthritis. Med Sci Monit. 2019;25:3146–3153.

41. 	 Muir M, Romalo G, Wolf L, Elger W, Schweikert HU. Estrone 
sulfate is a major source of local estrogen formation in human 
bone. J Clin Endocrinol Metab. 2004;89:4685-4692. 

42. 	 Dias NJ, Selcer KW. Steroid sulfatase mediated growth Sof 
human MG-63 pre-osteoblastic cells. Steroids. 2014;88:77-
82. 

43. 	 Chiabrando D, Fiorito V, Petrillo S, Bertino F, Tolosano 
E. HEME: a neglected player in nociception? Neurosci 
Biobehav Rev. 2021;124:124–136.

44. 	 Takada T, Miyaki S, Ishitobi H, Hirai Y, Nakasa T, Igarashi 
K, et al. Bach1 deficiency reduces severity of osteoarthritis 
through upregulation of heme oxygenase-1. Arthritis Res 
Ther. 2015;17:285.


