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Background: With the global popularity of communication devices such as mobile

phones, there are increasing concerns regarding the effect of radiofrequency

electromagnetic radiation (RF-EMR) on the brain, one of the most important organs

sensitive to RF-EMR exposure at 1,800 MHz. However, the effects of RF-EMR exposure

on neuronal cells are unclear. Neurite outgrowth plays a critical role in brain development,

therefore, determining the effects of 1,800 MHz RF-EMR exposure on neurite outgrowth

is important for exploring its effects on brain development.

Objectives: We aimed to investigate the effects of 1,800 MHz RF-EMR exposure for

48 h on neurite outgrowth in neuronal cells and to explore the associated role of the Rap1

signaling pathway.

Material and Methods: Primary hippocampal neurons from C57BL/6 mice and

Neuro2a cells were exposed to 1,800 MHz RF-EMR at a specific absorption rate

(SAR) value of 4 W/kg for 48 h. CCK-8 assays were used to determine the cell

viability after 24, 48, and 72 h of irradiation. Neurite outgrowth of primary hippocampal

neurons (DIV 2) and Neuro2a cells was observed with a 20× optical microscope and

recognized by ImageJ software. Rap1a and Rap1b gene expressions were detected

by real-time quantitative PCR. Rap1, Rap1a, Rap1b, Rap1GAP, and p-MEK1/2 protein

expressions were detected by western blot. Rap1-GTP expression was detected by

immunoprecipitation. The role of Rap1-GTPwas assessed by transfecting a constitutively

active mutant plasmid (Rap1-Gly_Val-GFP) into Neuro2a cells.

Results: Exposure to 1,800 MHz RF-EMR for 24, 48, and 72 h at 4 W/kg

did not influence cell viability. The neurite length, primary and secondary

neurite numbers, and branch points of primary mouse hippocampal neurons

were significantly impaired by 48-h RF-EMR exposure. The neurite-bearing cell

percentage and neurite length of Neuro2a cells were also inhibited by 48-h
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RF-EMR exposure. Rap1 activity was inhibited by 48-h RF-EMR with no detectable

alteration in either gene or protein expression of Rap1. The protein expression of

Rap1GAP increased after 48-h RF-EMR exposure, while the expression of p-MEK1/2

protein decreased. Overexpression of constitutively active Rap1 reversed the decrease

in Rap1-GTP and the neurite outgrowth impairment in Neuro2a cells induced by 1,800

MHz RF-EMR exposure for 48 h.

Conclusion: Rap1 activity and related signaling pathways are involved in the

disturbance of neurite outgrowth induced by 48-h 1,800 MHz RF-EMR exposure. The

effects of RF-EMR exposure on neuronal development in infants and children deserve

greater focus.

Keywords: radiofrequency electromagnetic radiation, neurite outgrowth, Rap1, Rap1-GTP, Neuro2a cell, primary

mouse hippocampal neurons

INTRODUCTION

The increasing demand for communication technology in
modern society has led to an increased use of radiofrequency
electromagnetic radiation (RF-EMR) (1). The popularity of
mobile phone communication is expanding rapidly. The
proportion of 13-year-old teenagers using mobile phones has
reached 90% in Korea (2–4). With the use of radio equipment for
monitoring and receiving information in neonatal intensive care
units, infants are also becoming increasingly exposed to RF-EMR.
Thus, the impact of radio frequency devices on infants, children,
and adolescents has attracted global attention.

The brain is known to be one of the most sensitive organs
to RF-EMR exposure. Neuronal and cognitive functions are
found to be influenced by RF-EMR exposure. Studies have
indicated that teenagers using mobile phones and thus receiving
RF-EMR exposure may experience memory and attention loss,
learning and cognitive impairment, increased irritability, sleep
problems, increased sensitivity to stress, and increased risk of
seizures (5). The use of mobile phones by teenagers has been
shown to be related to emotional and behavioral disorders, while
reducing mobile phone use can improve children’s cognitive
ability (6). Our previous epidemiological studies also showed that
inattention and fatigue were associated with mobile phone use
in children and adolescents (7, 8), Hippocampal tissues relates
to learning and memory, is one of the sensitive targets of RF-
EMR. Primary hippocampal neurons are classical model cells to
evaluate neurite outgrowth. The assessments of average neurite
length, number of primary and secondary branches of primary
hippocampal neurons were applied in many other studies (9, 10).

As an important functional executor in brain, neuronal
cells have attracted the greatest attention in the study of the
effects and mechanism of RF-EMR exposure. Delivery of RF-
EMR exposure for 24 h can cause marked cell death in rat
cortical neurons (11). There is also evidence that the electrical
activity of cultured cortical neurons decreases during RF-EMR
exposure (12). Furthermore, RF-EMR exposure inhibits the
length and number of axon branches of cortical neurons (13). The
activity and density of mature spines in primary hippocampal

neurons decrease significantly when exposed to 2.4 W/kg RF-
EMR, and the average length of dendrites per neuron is also
reduced (14). We also showed that RF-EMR exposure impairs
neurite outgrowth in neural stem cell-derived neurons (15, 16).
However, a study using a pulsed radiofrequency electromagnetic
field reported that it can potentiate neurite outgrowth in
the dopaminergic MN9D cell line (17). The influence of RF-
EMR exposure on neuronal cells remains controversial, but
it is generally agreed that neuronal cells, specifically neurite
outgrowth, are sensitive to RF-EMR exposure (18, 19). Therefore,
it is important to elucidate the effect of RF-EMR exposure on
neurite outgrowth.

Rap1 protein, a member of the RAS family, interacts
with cAMP, calcium and other second messengers, turning
extracellular stimulation into intracellular signals (20). The Rap1
protein acts as a molecular switch by cycling between two states
(an inactive GDP-binding form and active GTP-binding form).
These modifications are strictly controlled by guanine nucleotide
exchange factors (GEFs) and GTPase activating proteins (GAPs)
(21). Recent research further confirmed that Rap1 can affect
the rearrangement of the cytoskeleton and promote neurite
outgrowth and dendritic spine formation in the brain (22).
Genetic interaction analysis showed that the repulsive guidance
function mediated by the Sema-1a/PlexA signaling pathway,
which contributes to axon growth and guidance, was regulated by
Rap1 (23). In newborn neurons, Rap1 is a critical regulator in the
formation of axons, leading andmaintaining the radial migration
of neuronal processes (24). Rap1-GTP, the active form of Rap1, is
considered to affect the growth and differentiation of neuronal
cells (25, 26). Rap1GAP, hydrolyzing the active form of Rap1, is
degraded by the ubiquitin proteasome system (27). In the process
of angiotensin II-stimulated neurite outgrowth in NG108-15
cells, the Rap1/B-Raf signal cascade activates Mitogen-Activated
Protein Kinase Kinase (MEK) and induces sustained activation of
p42/p44 Mitogen-Activated Protein Kinase (MAPK) and finally
neurite outgrowth (28, 29). Although the role of Rap1 in neurite
outgrowth has been widely studied, whether Rap1 is involved in
neurite outgrowth regulation when neuronal cells are exposed to
RF-EMR remains unclear.
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FIGURE 1 | Effects of RF-EMR exposure on neuronal cell viability. Cell viability was determined using a CCK-8 assay in primary mouse hippocampal neurons from

C57BL/6 mice (A–C) and Neuro2a cells (D–F) irradiated by 24-, 48-, and 72-h 1,800 MHz RF-EMR at 4 W/kg. Data are represented as fold changes relative to sham

from three independent experiments. The values are presented as the means ± SEM. Student’s t-test was performed to compare groups.

The purpose of this study was to investigate the effect of 1,800
MHz RF-EMR exposure on neurite outgrowth in primary mouse
hippocampal neurons and Neuro2a cells and to further explore
the role of Rap1 in this process.

RESULTS

48-H 1,800 MHz RF-EMR Exposure Impairs
Neurite Outgrowth in Neuronal Cells
Cell viability was unaffected by 24- to 72-h exposure to 1,800
MHz RF-EMR at 4W/kg in either primary cultured hippocampal
neurons or Neuro2a cells (Figure 1). In primary hippocampal
neurons, the total neurite length per cell and the number
of primary and secondary branches decreased after 48 h of
1,800 MHz RF-EMR exposure. The average number of branch
points of each primary hippocampal neuron decreased after
irradiation. The number of neurons with an average total neurite
length between 0 and 100µm increased, while the number of
neurons with an average total neurite length between 100 and
200µm and >200µm decreased (Figures 2A–F). Similarly, the

average total neurite length and neurite-bearing cell percentage
of Neuro2a cells stimulated by retinoic acid (RA) decreased
after 48 h of 1,800 MHz RF-EMR exposure at 4 W/kg. However,
there was no significant difference in the average number
of neurites among neurite-bearing Neuro2a cells between the
sham and RF-EMR exposure groups (Figures 2G–J). In primary
hippocampal neurons, BDNF treatment (positive control) can
increase the average neurites length of each neuron by 50%
compared with the sham group, and can increase the primary
neurites number per neurons. However, PD98059 treatment
(negative control) can inhibit the total neurites length of
each cell by about 60%, and can decrease the number of
primary, secondary neurites and branch points per neuron
(Supplementary Figures 1B–F).

Rap1 Activity Is Decreased After 48-H
1,800 MHz RF-EMR Exposure Without
Expression Alteration
The gene expression of Rap1a and Rap1b and the protein
expression of Rap1, Rap1a, and Rap1b were not significantly
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FIGURE 2 | Effects of RF-EMR exposure on neurite outgrowth in neuronal cells. Primary hippocampal neurons (A–F) and Neuro2a cells (G–J) were exposed to 1,800

MHz RF-EMR at 4 W/kg for 48 h. Morphological parameters were identified according to the description in the methods. Representative images of primary

hippocampal neurons (A) and Neuro2a cells (G) were taken under a (20×) Leica microscope, and pictures were analyzed with ImageJ software. (B) shows the total

neurite length per primary hippocampal neuron, (C) shows the number of cells in the groups with a total neurite length per primary hippocampal neuron larger than

100µm, (D,E) shows the primary and secondary neurite numbers per primary hippocampal neuron, (F) shows the branch point number per primary hippocampal

neuron, (H) shows the neurite-bearing cell percentage in Neuro2a cells, (I) shows the total neurite length per Neuro2a cell, and (J) shows neurite number of

neurite-bearing Neuro2a cells after RF-EMR exposure. *P < 0.05, **P < 0.01, Student’s t-test. Scale bar: 50µm.

altered after 48 h of 1,800 MHz RF-EMR exposure at 4
W/kg in neuronal cells (Figures 3, 4). Immunoprecipitation
was used to detect the expression of the active Rap1 form,

Rap1-GTP. Rap1-GTP decreased after RF-EMR exposure in
both primary cultured hippocampal neurons and Neuro2a cells
(Figure 5).
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FIGURE 3 | Effects of RF-EMR exposure on the gene expression of Rap1a

and Rap1b in neuronal cells. Neuronal cells were exposed to 1,800 MHz

RF-EMR for 48 h at 4 W/kg. Gene expression was analyzed using real-time

quantitative PCR. The Rap1 gene expression in primary hippocampal neurons

(A,B) and Neuro2a cells (C,D) after RF-EMR exposure.

48-H 1,800 MHz RF-EMR Exposure
Enhances the Protein Expression of
Rap1GAP and Decreases the Protein
Expression of p-MEK1/2 in Neuronal Cells
Rap1-GTP is a molecular switch that can be activated by GEFs
and inactivated by GTPase activating proteins (Rap1GAPs).
Rap1GAPs are representative molecules inactivating Rap1-
GTPase (30). MEK1/2, a downstream molecule of Rap1,
is a key molecule in the cascade reaction of the MAPK
signaling pathway. When phosphorylated, MEK1/2 can activate
downstream MAPK. Rap1-MEK-MAPK signaling can impact
neuronal development, plasticity, and survival, especially by
regulating neurite outgrowth (31). We found that the protein
expression of Rap1GAP was enhanced while that of p-MEK1/2
decreased after 48 h of RF-EMR exposure in neuronal cells
(Figure 6).

Overexpression of Constitutively Active
Rap1 Reverses the Neurite Outgrowth
Impairment Induced by 48-H RF-EMR
Exposure in Neuro2a Cells
To further verify the role of Rap1-GTP in the impairment
of neurite outgrowth induced by RF-EMR exposure, we

FIGURE 4 | Effects of RF-EMR exposure on the protein expression of Rap1,

Rap1a, and Rap1b in neuronal cells. Neuronal cells were exposed to 4 W/kg

RF-EMR for 48 h. Protein expression was analyzed using western blot

analysis. The protein expression levels of Rap1, Rap1a, and Rap1b in primary

hippocampal neurons (A–F) and Neuro2a cells (G–L) after RF-EMR exposure.

overexpressed Rap1-GTP by transfecting a constitutively active
mutant Rap1 plasmid (Rap1-Gly_Val-GFP) into Neuro2a cells.
Changing the 12th amino acid of the mutant plasmid
from glycine to valine constitutively activates Rap1 (32, 33).
After transfection of the constitutively active Rap1, its gene
and protein expression levels increased in Neuro2a cells
(Supplementary Figure 2). After transfection of the mutant
plasmid, the expression of Rap1-GTP increased after 48 h of
irradiation (Figure 7). Overexpression of Rap1-GTP reversed the
disturbance of neurite outgrowth induced by 48 h of RF-EMR
exposure (Figure 8).
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FIGURE 5 | Effects of RF-EMR exposure on Rap1-GTP protein expression in neuronal cells. Neuronal cells were exposed to 4 W/kg RF-EMR for 48 h. The protein

expression of Rap1-GTP protein in primary hippocampal neurons (A–C) and Neuro2a cells (D–F) is shown. Protein expression was analyzed by immunoprecipitation

and western blot analysis. *P < 0.05, **P < 0.01, Student’s t-test.

DISCUSSION

Neurite outgrowth is an important process of morphological
change in neuronal differentiation and development, which
is tightly controlled and regulated by several interior and
exterior signals. Disturbance of neurite outgrowth will
cause defective neural development and neuronal diseases.
In our study, we found that 48-h 1,800 MHz RF-EMR
exposure interrupted neurite outgrowth in primary cultured
hippocampal neurons and Neuro2a cells. Rap1, which plays
a critical role in controlling neurite outgrowth and dendrite
spine morphology, was inactivated by RF-EMR exposure,
while overexpression of constitutively active Rap1-GTP
reversed the impairment of neurite outgrowth induced by
RF-EMR exposure.

The brain is one of the most sensitive organs to the
biological effects of RF-EMR. The results from epidemiological
investigations showed that the use of mobile phones can lead
to the perceived health impairment in adolescents (34). Another
study indicated that mobile phone usage induces anxiety,
depression, and stress (35). Animal experiments also showed that
RF-EMR exposure causes abnormal neural behavior and impacts
dendritic arborization patterns (36). As the brains and skulls of
infants and young children are still in developing state, the same
electromagnetic background may cause their brains to absorb

more electromagnetic energy than adult individuals. The specific
absorption by brain tissue in children is 60–125% higher than that
in adults (37).

Neurite outgrowth plays a key role in the formation of neural
networks during neural development and nerve regeneration
after trauma or disease. Neurite outgrowth is regulated by
precise signal networks that control processes from sprouting
and extending to the formation of axons and dendrites (38,
39). Abnormal neurite outgrowth may cause aberrant polarity,
abnormal synaptic plasticity of neuronal cells, and damage to
axons and dendrites. Unusual neurodevelopment can induce
autism, hyperactivity disorder, dyslexia and so on (40). Deformed
neuronal cell morphology may also cause neurodegenerative
diseases such as Alzheimer’s disease and Parkinson’s disease.

In this study, we found that 48-h 1,800 MHz RF-EMR
exposure could interfere with neurite outgrowth in hippocampal
neurons, including decreasing neurite length and the number of
neurite branches. Additionally, neuronal differentiation induced
by RA was inhibited by RF-EMR exposure in Neuro2a cells.
Kim et al. reported that the total number of dendritic spines
was significantly decreased in hippocampal neurons after RF-
EMR exposure at 4 W/kg for 4 weeks (9). Our previous
studies also showed that 72 h of 1,800 MHz RF-EMR exposure
significantly inhibited neurite outgrowth in embryonic neural
stem cells (eNSCs) at 4 W/kg, in which the BHLH gene and
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FIGURE 6 | Effects of RF-EMR exposure on the protein expression of Rap1GAP and p-MEK1/2 in neuronal cells. Neuronal cells were exposed to 4 W/kg RF-EMR for

48 h. The protein expression of Rap1GAP in primary hippocampal neurons (A–E) and Neuro2a cells (F–J) were detected by western blot. (A,B) shows protein

expression of Rap1GAP in primary hippocampal neurons, and (F,G) in Neuro2a cells. The expression levels of MEK1/2 and p-MEK1/2 after RF-EMR exposure for 48 h

were detected by western blot analysis in primary hippocampal neurons (C–E) and Neuro2a cells (H–J). *P < 0.05, Student’s t-test.

the EPHA5 signaling pathway were involved (15, 16). The
mechanisms underlying the effects of RF-EMR exposure on
neurite outgrowth or synaptic plasticity are thought to include
changes in calcium ion channels, the myelin sheath, oxidative
stress and the glutamate receptor signaling pathway (36, 41, 42).
However, additional evidence and further study are required to
confirm these hypotheses. This study confirmed that 1,800 MHz

RF-EMR exposure affects neurite outgrowth, neurite length, and
the number of branch points in each cell, which is consistent with
previous studies.

The International Commission on Non-Ionizing
Radiation Protection (ICNIRP) sets the limit of local
head exposure in the general population at 2 and 10
W/kg for the occupational population (43). The SAR
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FIGURE 7 | The transfection of constitutively active Rap1 can reverse the decrease in Rap1-GTP induced by 1,800 MHz RF-EMR exposure in Neuro2a cells. Neuro2a

cells were transfected by Rap1 constitutively active mutant plasmid (Rap1-Gly_Val-GFP) for 24 h. Transfected Neuro2a cells were exposed to RF-EMR for 48 h at 4

W/kg. The expression of Rap1-GTP was detected by immunoprecipitation. (A) is the representative bands of Rap1-GTP, Rap1, and β-actin in each group in Neuro2a

cells, (B) is the statistical graph made from the data identified according to the gray value and area from the bands. (C) is the ratio of protein expression of Rap1 to

β-actin in Neuro2a cells. *P < 0.05, **P < 0.01, one-way ANOVA followed by Bonferroni post hoc test.

FIGURE 8 | Effects of 1,800 MHz RF-EMR exposure on neurite outgrowth after constitutively active Rap1 transfection in Neuro2a cells. Neuro2a cells were

transfected by Rap1 constitutively active mutant plasmid (Rap1-Gly_Val-GFP) for 24 h. The neurite outgrowth of transfected Neuro2a cells induced by RF-EMR

exposure for 48 h was assessed by ImageJ software as mentioned before. (A) shows representative pictures of transfected Neuro2a cells with or without irradiation.

(B) shows Neurite-bearing cell ratio, (C) shows neurite length per cell, and (D) shows neurite number of neurite-bearing cells. *P < 0.05, **P < 0.01, one-way ANOVA

followed by Bonferroni post hoc test.

dose of 4 W/kg was usually used to explore the possible
biological effects of RF-EMR. Several previous studies have
observed the effects of RF-EMR on neuronal cells at SAR

value of 4 W/kg, showing the confirmed effect of RF-
EMR exposure on dendritic development, cell cycle, etc.
(9, 44–46).
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Rap1, a member in a small family of monomer GTP-
binding proteins, plays a key role in cell proliferation,
differentiation, survival, adhesion, and migration (28). Rap1
signaling mediates the role of Semas-Plexins in neuropolarity
generation, neurogenesis, axonal growth cone formation, and
guidance (47). Rap1-GTP can affect morphological changes in
neuronal cells without changing the gene and protein expression
of Rap1 (26). In this study, the active form of Rap1, but
not its gene and protein expression levels, was decreased
after RF-EMR exposure. Altered Rap1-GTP levels were found
in the prefrontal cortex of depressed individuals who had
committed suicide and in the frontal cortex of patients with
schizophrenia and severe depressive disorders (48). Transfection
of a constitutively active Rap1 (F64A) plasmid reversed the
inhibitory effect ofMyelin-associated glycoprotein (MAG) on the
neurite growth of dorsal root ganglion (DRG) neurons, possibly
by decreasing the expression of Rap1-GTP, limiting neurite
outgrowth (25). Rap1 activity is impaired by SynGAP-β, which
leads to affected synaptic plasticity and dendrite development
in the hippocampus (49). To further verify the role of Rap1-
GTP in RF-EMR exposure, we transfected Rap1 mutant plasmid
(Rap1-Gly_Val-GFP) to reverse the damage to neurite growth.
Compared with indirect Rap1 agonist or inhibitor Rap1, the
mutant active Rap1 plasmid can better verify the effect of Rap1
activity. By comparing neurite outgrowth after transfection of
the negative control plasmid and constitutively active Rap1
plasmids, we showed that transfection of the constitutively active
Rap1 plasmid effectively promoted neurite outgrowth without
considering RF-EMR exposure, and transfection of the mutant
plasmid also reversed the neurite outgrowth restriction caused
by irradiation. Although the neuronal cells transfected with
mutant plasmid were irradiated, the neurites still grew well and
grew better than the negative control plasmid group without
irradiation. The increase in Rap1-GTP could promote neurite
outgrowth. This is consistent with the result that transfection of
a constitutively active Rap1 plasmid can contribute to neurite
complexity (50).

Rap1 links extracellular signals to intracellular signals through
second messengers. Rap1 may affect the growth of neurites
through a variety of mechanisms. When Rap1 is activated by
Ca2+ and diacylglycerol-activated guanine nucleotide exchange
factors (CalDAG-GEFs), it becomes a downstream molecule of
Ca2+ signaling pathway. When activated by cAMP-dependent
GEF, Rap1 can regulate the concentration of cytoplasmic Ca2+

and become its upstream molecule (51). The calcium signaling
pathway promotes the growth of neurites, possibly by increasing
the activity of calcium binding protein, which reduces the
concentration of calcium (52). The interaction between Rap1
and Ca2+ also provides a theoretical basis for the regulation of
neurite outgrowth of neuronal cells by Rap1. RA-RhoGAP is a
direct downstream target of Rap1 in the neurite growth process
that possesses a lipid-bound (PH) domain. Inactivity of Rap1 can
weaken the GAP activity of Rho, and finally affect nerve axon
extension (53). RF-EMR exposure may also reduce the binding
of phosphatidylic acid to this PH domain by reducing the activity
of Rap1. Rap1-GTP activates PSD-95/discs large/ZO-1 (PDZ)-
GEF1 through a positive feedback mechanism (54). So the effect

of irradiation on the interaction between Rap1 and PDZ-GEF1
may exist.

Although the above mechanisms regulating Rap1 cannot
be ruled out, in this experiment, the expression of Rap1GAP
increased after irradiation. Therefore, we consider that the active
form of Rap1 may be weakened by Rap1GAP. The active
form of Rap1 hydrolyzed by Rap1GAP in non-electromagnetic
environment has been reported. Higher level of active Rap1-
GTP was found in the brain of Go2 α defective mutant mice,
indicating that Go2 α may increase Rap1GAP activity and affect
Rap1 activation/inactivation cycle. Go2 α deficient mutant mice
developed more branches than those of wild-type mice (27).
In striatum medium polyspinous neurons, following activation
of the D1 dopamine receptor, Ser441 and Ser499 of Rap1GAP
can be phosphorylated by PKA. This inhibits GAP activity
and increases Rap1 activity, resulting in better dendritic spine
growth (55).

In this study, the expression of phosphorylated form of
MEK1/2 decreased after irradiation. We consider that RF-EMR
exposure may damage the neurite outgrowth through MEK,
the downstream of Rap1 active form. It has been reported
that the Rap1-MEK-MAPK signaling pathway promotes the
growth of neurites in NG108-15 cells (56). Previous studies
have shown that an increase in endogenous β-amyloid peptide
leads to an increase in the expression of cAMP response
element-related genes and finally promotes synaptic plasticity
through the Rap1-MEK signaling pathway in PC12 cells (57).
Nerve growth factor also continuously activates ERK through
the Rap1-MEK pathway (58). Therefore, RF-EMR exposure
may reduce the activity of Rap1 through Rap1GAP and
then cause a decrease in p-MEK1/2, resulting in impaired
neurite outgrowth.

Despite our findings from this study, more researches need
to be done regarding the irradiation-induced decrease in Rap1
activity and how this leads to impaired neurite outgrowth.
According to the previous reports, the effect of the transfection
of wild-type Rap1 on neurite outgrowth is very limited, so in this
study we applied a constitutively active Rap1 plasmid to verify the
role of Rap1-GTP in neurite outgrowth impairment induced by
RF-EMR exposure (59).

Rap1 is activated by a specific GEF, the role of which
in RF-EMR exposure-impaired neurite outgrowth needs to
be investigated by further researches, as does the specific
regulation of Rap1GAP after irradiation. As Rap1 activity is
influenced by RF-EMR exposure and the constitutively active
Rap1 can rescue neurite outgrowth impairment induced
by RF-EMR, Rap1 may be a potential new candidate
for interfering the disruption of developing brain by
RF-EMR exposure.

CONCLUSION

We found that Rap1 is involved in the disturbance of neurite
outgrowth induced by 1,800 MHz RF-EMR exposure in neuronal
cells. Due to the developmental sensitivity of infants and
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adolescents, the neuronal impairment induced by 1,800MHz RF-
EMR exposure can interrupt programmatic neural development
and cause abnormal neuronal behavior and diseases. Rap1
activity and related signaling pathways may be critical targets
in the neuronal effects induced by RF-EMR exposure. The
influence of RF-EMR exposure on the developing brain requires
greater attention.

MATERIALS AND METHODS

Cell Culture
A mouse neuroblastoma cell line (Neuro2a) (Chunmai, China)
was maintained at 37.0± 0.2◦C and 5% CO2. Neuro2a cells were
cultured in high-glucose Dulbecco’s modified Eagle’s medium
(DMEM; Sigma, USA) with 10% fetal bovine serum (FBS;
Biological Industries, ISR) and 50 mg/ml penicillin-streptomycin
(Sigma, USA). Cells were subcultured every 2 days. Neuro2a
cells were seeded in 35mm plastic dishes (Thermo Scientific,
USA) for 12 h before exposure to RF-EMR exposure. Neuro2a
cells induced by retinoic acid were used. This model has been
proved to be efficient in several studies (22, 60). The culture
medium was changed to differentiation medium immediately
before irradiation. The differentiation medium was composed of
99% DMEM, 1% FBS, and 10µM retinoic acid (Sigma, USA).
FBS and retinoic acid concentration were slightly regulated to
obtain optimized differentiation effects according to different cell
density. The seeding densities of Neuro2a cells were 3 × 104

cells/35mm dish for cell viability assay, 2 × 105 cells/35mm
dish for neurite outgrowth analysis, 5× 105 cells/35mm dish for
RNA, protein extraction and transfection.

Primary hippocampal neurons were prepared from newborn
C57/BL mice within 1–3 days of birth. Dissociated neurons were
plated in 35-mm dishes with the seeding medium containing
79% DMEM/F12 (Sigma, USA), 20% fetal bovine serum (FBS;
Biological Industries, ISR), and 1% penicillin-streptomycin (50
mg/ml) (Sigma, USA). After 12 h of seeding, the culture medium
was changed to the maintenance medium consisted of 95%
Neurobasal-A Medium (Gibco, USA), 2% B-27 plus supplement
(Gibco, USA), 1% culture one supplement (Gibco, USA), 1%
Glutamax (Gibco, USA), and 1% penicillin-streptomycin (Gibco,
USA). The seeding densities of primary hippocampal neurons
were 2× 105 cells/35mmdish for neurite outgrowth analysis, 106

cells/35mm dish for cell viability, RNA and protein extraction.
The animal study was reviewed and approved by Laboratory

AnimalWelfare and Ethics Committee of ThirdMilitary Medical
University (AMUWEC20210443).

Radiofrequency Electromagnetic
Irradiation (RF-EMR) at 1,800 MHz
Primary mouse hippocampal neurons and Neuro2a cells were
irradiated in an sXc-1800 exposure system (IT’IS Foundation,
Zurich, Switzerland) using the irradiation method introduced
in previous studies (15, 16). RF-EMR exposure system is
mainly composed of the following four parts: narrowband
amplifier, arbitrary function generator, RF generator, and two
waveguide. Each chamber is equipped with a plastic holder
hosting 6 dishes arranged in two stacks. A total of 6 dishes

were exposed, 6 dishes in the other chamber served as the
sham group. The metal housing of the two chambers ensures
that radiation exists only indoors and does not interfere with
the outdoors. The operation of fans in chambers can avoid
the thermal effect caused by irradiation (61). The sensors and
fans in the exposure system were connected to a computer
that monitored the SAR value during exposure and maintained
a constant temperature and environment for the waveguides
(37◦C, 5% CO2, 95% atmospheric air). 35mm dishes were
placed in the H-field maxima and exposed to a polarized
E-field (an electric field perpendicular to the H-field). To
perform double-blind experiments, the computer randomly
determines which of the two waveguides was exposed in
each trial. Experiments were also conducted in blind modality
where the researchers who performed biological assays did
not know which of the two chambers was active, and which
acted as sham. RF-EMR exposure was delivered using the
GSM talk signal mode at an exposure interval of 5min
irradiation field on and 10min irradiation field off and an SAR
value of 4 W/kg.

Cell Viability Assay
Cell viability was evaluated by a CCK-8 (Dojindo, Japan)
assay following the manufacturer’s instructions. Briefly,
after 24-, 48-, and 72- h irradiation, 10% CCK-8 solution
was added to the medium and incubated at 37◦C for
3 h. The absorbance at 450 nm was read by a microplate
reader (Tecan, Austria).

Neurite Outgrowth Analysis
Neurite outgrowth analysis was performed as previously
described (15). Briefly, primary hippocampal neurons and
Neuro2a cells were cultured in 35-mm dishes, exposed to RF-
EMR for 48 h. Neurite outgrowth of primary hippocampal
neurons (DIV 2) and Neuro2a cells was observed with a Leica
microscope (20×). Forty nanogram per milliliter BDNF (MCE,
USA) was used as positive control and 50µM MEK1/2 inhibitor
PD98059 (SIGMA, USA) was used as negative control (62, 63).
BDNF and PD98059 were added into the maintenance medium
and incubated with the neurons for 48 h, respectively. ImageJ
software was used to evaluate neurite outgrowth. Thirty cells per
group were identified among the primary hippocampal neurons,
and 100 cells per group were counted among the Neuro2a
cells. The total length of the neurites in each neuronal cell
was measured from the cell center to the end of the neurite.
The primary neurite was identified as the directly separated
process from the cell body, the secondary neurite was the process
separated from the primary neurite, and the remaining branches
were the branch points. Neuro2a cells with arbitrary neurite
lengths greater than the cell body diameter were recognized as
neurite-bearing cells. Neurites whose length was greater than
the cell body diameter were counted as neurites of neurite-
bearing cells.

Real-Time Quantitative PCR
TRIzol reagent (Takara, JPN) was used to extract total RNA
from neuronal cells after exposure to RF-EMR for 48 h. cDNA
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was obtained by RT-qPCR performed on a CFX96TM real-
time system (Bio-Rad, USA) using TB green (Takara, JPN).
The Rap1a and Rap1b gene-specific primers used are shown in
Supplementary Table 1. The gene expression fold change was
calculated and normalized to the gene expression of endogenous
β-actin. Then, the relative gene expression level was calculated
with reference to the sham.

Western Blot Analysis
After RF-EMR exposure for 48 h, protein samples were obtained
using RIPA buffer (Beyotime, China) containing protease and
phosphatase inhibitors (Roche, USA). Twelve percent SDS-
PAGE (Genscript, USA), PVDF membranes (Bio-Rad, USA),
Quick Block Blocking Buffer (Beyotime, China), TBST solution
(Thermo Fisher, USA), and primary and secondary antibodies
(details in Supplementary Table 2) were used for western blot
analysis. The PVDF membrane was scanned on a chemiDoc
XRS+ machine (Bio-Rad, USA) by using ECL luminescent
solution (Thermo Fisher, USA).

Rap1 Activity Assay
The activity of Rap1 was measured by immunoprecipitation
after RF-EMR exposure for 48 h (64). The irradiated primary
hippocampal neurons and Neuro2a cells were lysed with IP lysate
(Beyotime, China) on ice for 15min, rotated and then centrifuged
at 15,000 g for 30min at 4◦C to remove the precipitate. The
protein concentration of the supernatant was measured by the
BCA method (Beyotime, China). Three hundred micrograms of
protein supernatant from each group was taken equally. IgG
antibody (Beyotime, China) and 1 µg active Rap1 antibody was
added to the sham group and irradiation group and rotated
overnight. The next day, protein A/G agarose beads (Beyotime,
China) were added to bind the FC segment of active Rap1
antibody to precipitate, and the non-specifically bound antigen
was washed away with PBS (Beyotime, China). After adding
loading buffer (Beyotime, China), IP samples were heated to
denature and subjected to western blot analysis. In the above
steps, the IgG group represents the background gray value, and
the irradiated group and the control group represent the natural
active form of Rap1.

Transfection of Constitutively Active Rap1
Mutant Plasmid
Glycine at the 12th position of the Rap1 gene was replaced
with valine, and GFP fluorescence label was added. The steps
for synthesizing the mutant plasmid were introduced in a
previous article (31). The mutant plasmid (GenePharma, China)
was transfected with the pEX-2 vector. Lipofectamine 3000
transfection reagent (Thermo Scientific, USA) and Opti-MEM
medium (Invitrogen, USA) were used to help the mutant
plasmids transfecting into cells and stabilize the expression in
Neuro2a cells. In the sham group, negative control plasmid
carrying the pEX-2 vector was transfected into the cells in the
same way. After seeding for 24 h, the transfection reagent and
mutant plasmid were added and incubated. After transfection for

24 h, retinoic acid was used for differentiation and irradiation for
48 h as depicted before.

Statistical Analysis
Statistical analysis was performed using GRAPH Prism 8.0
software. All data were collected from at least three independent
duplicate experiments and are presented as the mean± standard
error of the mean (SEM). Student’s t-tests, one-way ANOVA
followed by the Brown–Forsythe test and Welch ANOVA
were used to determine significance. P < 0.05 was considered
statistically significant.
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