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Abstract 

Phenylacetic acid (PAA) is a fine chemical with a high industrial demand for its widespread uses. Whereas, microor-
ganic synthesis of PAA is impeded by the formation of by-product phenethyl alcohol due to quick, endogenous, and 
superfluous conversion of aldehydes to their corresponding alcohols, which resulted in less conversation of PAA from 
aldehydes. In this study, an Escherichia coli K-12 MG1655 strain with reduced aromatic aldehyde reduction (RARE) that 
does duty for a platform for aromatic aldehyde biosynthesis was used to prompt more PAA biosynthesis. We establish 
a microbial biosynthetic pathway for PAA production from the simple substrate phenylalanine in E. coli with heterolo-
gous coexpression of aminotransferase (ARO8), keto acid decarboxylase (KDC) and aldehyde dehydrogenase H (AldH) 
gene. It was found that PAA transformation yield was up to ~94% from phenylalanine in E. coli and there was no 
by-product phenethyl alcohol was detected. Our results reveal the high efficiency of the RARE strain for production of 
PAA and indicate the potential industrial applicability of this microbial platform for PAA biosynthesis.
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Introduction
Phenylacetic acid (PAA) has received much attention on 
account of its extensive applications, which offer the huge 
demand. It has lots of applicable uses in medicine, pes-
ticides, disinfectants and other industries (Dongamanti 
et al. 2012; Duan et al. 2000; Huang et al. 2014a), and has 
also been investigated as a kind of industrial raw mate-
rial. Nowadays it is procured mainly by chemical meth-
ods. PAA could be obtained by chemical synthesis from 
different substrates like benzyl chloride, benzyl cyanide, 
mandelic acid, or ethylbenzene (Giroux et al. 2000; Milne 
et al. 2012). However, the methods of producing PAA via 
chemical synthesis have many drawbacks. The substrates 
such as sodium cyanide and benzyl cyanide are poison-
ous substances which are harmful to environment and 
the operation personnel. Although there are some strate-
gies using enzyme catalytic synthesis of PAA, for example 

utilizing a nitrile hydratase and an amidase of Rhodococ-
cus equi TG328 (Gilligan et  al. 1993) or an arylacetoni-
trilase from Pseudomonas fluorescens EBC191 (Sosedov 
et al. 2010), the yield is low or the cost is high.

Biosynthesis in microbe cell factory has many advan-
tages, compared with chemical synthesis or in  vitro 
enzyme catalytic synthesis (Agapakis et  al. 2012; Huang 
et al. 2014b). Nowadays, microbes are employed for the 
production of a wide array of complex drug molecules 
or precursors (Chen and Nielsen 2013; Nielsen et  al. 
2014), such as biofuel molecule (Rabinovitch-Deere et al. 
2013), limonene and perillyl alcohol (Alonso-Gutierrez 
et  al. 2013), terpenoids (Gupta et  al. 2015; Wang et  al. 
2016), l-methionine (Huang et al. 2016). PAA is derived 
from the amino acid Phe through the intermediate phe-
nylpyruvate in fungi and bacteria (Kishore et  al. 1976; 
Krings et al. 1996; Groot and Bont 1998). Recently there 
is an observation suggesting that transamination of phe-
nylalanine, decarboxylation of phenylpyruvate, subse-
quent oxidation of phenylacetaldehyde would be the 
most likely pathway for PAA synthesis (Cook et al. 2016; 
Somers et al. 2005). Aminotransferase (ARO8) and keto 
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acid decarboxylase (KDC) have been shown to catalyze 
the first and the second steps in Saccharomyces cerevi-
siae (Li et  al. 2016). However, aldehyde dehydrogenase 
involved in the last step to generate PAA has not yet been 
experimentally characterized and this knowledge gap 
limits the process development for producing PAA from 
phenylalanine. Aldehyde dehydrogenase are a superfam-
ily enzymes which catalyze the oxidation of a large variety 
of aldehydes (Jo et  al. 2008). It was reported previously 
that FeaB, AldB and AldH from E. coli were character-
ized as aldehyde dehydrogenase activity for the oxidation 
of phenylacetaldehyde or benzaldehyde in vitro (Ho and 
Weiner 2005; Jo et al. 2008; Koma et al. 2012). Therefore, 
we assessed these aldehyde dehydrogenases such as FeaB, 
AldB and AldH for biosynthesis of PAA from phenylala-
nine in the intracellular.

In this study, we establish a microbial biosynthetic path-
way for PAA production from the simple substrate phenyla-
lanine through overexpression of an aminotransferase gene 

ARO8, a keto acid decarboxylase gene KDC from S. cerevi-
siae and an aldehyde dehydrogenase H gene aldH from E. 
coli in E. coli (Fig. 1). Phenylacetaldehyde can be reduced 
to 2-phenylethanol that compets with PAA (Fig. 1), so we 
further assessed a reduced aromatic aldehyde reduction 
(RARE) E. coli K-12 MG1655 strain for biosynthesis of PAA 
(Kunjapur et  al. 2014). It showed about 94% molar trans-
formation yield from phenylalanine in this strain, which 
demonstrates the potential industrial applicability of this 
microbial platform for PAA biosynthesis.

Materials and methods
Materials
Reagents and solvents purchased from Sigma-Aldrich. 
Restriction enzymes, T4 DNA ligase and DNA poly-
merase were purchased from New England Biolabs and 
used according to the manufacturer’s specifications. Plas-
mid mini kits, PCR purification kits and gel extraction 
kits were ordered from Fermentas (Burlington, Canada) 

Fig. 1  The phenylacetic acid (PAA) biosynthesis pathway used in this study
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and used according to the manufacturer’s specifications. 
DNA primers were synthesized by GenScript, Nanjing, 
China.

Plasmid construction in this research work
A plasmid of pDG30 for expression KDC gene (GenBank: 
NP_010668.3) from S. cerevisiae YPH499 was constructed 
in our previous study (Guo et al. 2017). The ARO8 (Gen-
Bank: EWH18548.1) gene was amplified by PCR from S. 
cerevisiae YPH499 genomic DNA using primers ARO8-
XbaI and ARO8-XhoI, and inserted into pET28a(+) 
to give pDG2. The phenylacetaldehyde dehydrogenase 
(FeaB, GenBank: 945933), aldehyde dehydrogenase B 
(AldB, GenBank: 948104) and aldehyde dehydrogenase 
H (AldH, GenBank: 8183735) gene were individually 
amplified by PCR from E. coli BL21 genomic DNA using 
primers FeaB-XbaI/FeaB-NheI–BamHI, AldB-XbaI/
AldB-SacI–BamHI and AldH-XbaI/AldH-NheI–BamHI 
separately, and individually inserted into pET28a(+) to 
give pDG3, pDG4 and pDG5. The XbaI–XhoI fragment 
of FeaB, AldB or AldH from pDG3, pDG4 or pDG5 was 
individually inserted into NheI and XhoI sites of pDG30 to 
give pDG6, pDG7 and pDG8. The XbaI–XhoI fragment of 
ARO8 from pDG2 was inserted into NheI and XhoI sites 
of pDG8 to give pDG9. The sequences of all primers used 
in PCRs are listed in Table 1. Plasmids used in this study 
are showed in Table 2.

Shake flask cultures to heterologous expression PAA in E. 
coli
Plasmids containing different genes were transformed 
into E. coli K-12 MG1655 strain respectively to get 
recombinant strains. Overnight cultures inoculated from 
single colonies were used to inoculate shake flasks con-
taining M9 medium with 20  g/L glucose as previously 
described by Guo et  al. (2015), and shaken at 30  °C as 
above. The cells were induced at OD600 0.6–0.8 with 
0.1 mM IPTG. Samples were taken during the course of 
the cultures for total wax esters analyses described below.

GC/MS analysis of PAA produced in E. coli
Cell cultures were harvested and prepared for wax esters 
using a previously published method (Guo et  al. 2015). 
GC/MS analysis was performed with a DB-5 capillary 
column. The following temperature program was applied: 
100  °C for 3  min, an increase of 15  °C/min to 240  °C. 
Quantification was done by using benzoic acid as internal 
standard.

Results
Construction of PAA biosynthetic pathway from glucose 
in E. coli
The precursor substrate phenylpyruvate is an intermedi-
ates of shikimate pathway in E. coli. In this work, we over-
expressed a keto acid decarboxylase (KDC) gene from S. 

Table 1  Primers used in this study

Primer name Sequence (5′–3′)

FeaB-XbaI AACTCTAGATTTAAGAAGGAGATATAATGACAGAGCCGCATGTAGCAG

FeaB-NheI–BamHI ACAGGATCCGCTAGCTTAATACCGTACACACACCGACTTAGTTT

AldB-XbaI ATCTCTAGATTTAAGAAGGAGATATAATGACCAATAATCCCCCTTCAGC

AldB-SacI–BamHI TGTGAGCTCGGATCCTCAGAACAGCCCCAACGGTT

AldH-XbaI ATCTCTAGATTTAAGAAGGAGATATAATGAATTTTCATCATCTGGCTTACTG

AldH-NheI–BamHI TCAGGATCCGCTAGCTCAGGCCTCCAGGCTTATCC

ARO8-XbaI AACTCTAGATTTAAGAAGGAGATATAATGATGACTTTACCTGAATCAAAAGACTTTTC

ARO8-XhoI CCGCTCGAGCTATTTGGAAATACCAAATTCTTCGTATAA

Table 2  Plasmids used in this study

Plasmids Replication origin Overexpressed genes Resistance Source

pDG2 pBR322 PT7: aro8 Kan This study

pDG3 pBR322 PT7: feaB Kan This study

pDG4 pBR322 PT7: aldB Kan This study

pDG5 pBR322 PT7: aldH Kan This study

pDG6 pBR322 PT7: kdc and feaB Kan This study

pDG7 pBR322 PT7: kdc and aldB Kan This study

pDG8 pBR322 PT7: kdc and aldH Kan This study

pDG9 pBR322 PT7: kdc, aldH and aro8 Kan This study
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cerevisiae YPH499 to enhance phenylacetaldehyde syn-
thesis from phenylpyruvate. Then it was identified that 
whether several candidate genes (feaB, aldB and aldH) 
possess aldehyde dehydrogenase activity to catalyze phe-
nylacetaldehyde into PAA in E. coli. The peak of PAA 
was only observed on the gas chromatogram in the sam-
ple from the extract of the recombinant MG1655/pDG8 
strain harboring gene aldH (Fig.  2), which means AldH 
could oxidase phenylacetaldehyde to PAA while FeaB and 
AldB couldn’t. Hence, our study suggests that AldH may 
be a efficient phenylacetaldehyde dehydrogenase for oxi-
dation of phenylacetaldehyde to PAA. On the other hand, 
the peak of PAA is relatively low in GC/MS map with a 
titer of 49.5 ± 1.27 mg/L (Table 3), which means it is pos-
sible that phenylpyruvate from glucose is relatively low 
in expanded shikimate pathway (Gallardo et  al. 2008). 
Hence we need to find another way to produce more phe-
nylpyruvate, thus to get higher production of PAA.

Construction of the PAA biosynthesis pathway 
from l‑phenylalanine in E. coli
There are two strategies to increase phenylpyruvate avail-
ability to improve the production of PAA. A strategy is 
metabolically engineered E. coli strain to strengthen shi-
kimate pathway. Another strategy is transamination of 
l-phenylalanine to phenylpyruvate by aminotransferase. 
Several groups have demonstrated the biosynthesis of 

2-phenylethanol from l-phenylalanine with a high titer 
by transamination (Kim et al. 2014; Yin et al. 2015).

The gene ARO8 encode aminotransferase was ampli-
fied from S cerevisiae YPH499 and introduced to the 
aldH and KDC PAA production system. And addition 
of l-phenylalanine as the substrate into this new PAA 
biosynthesis system with heterogenous expression of 
ARO8, aldH and KDC gene in an engineered strain 
MG1655/pDG9 was identified whether PAA yield has 
changed. From the GC/MS result, PAA production was 
up to 425.8 ±  15.41  mg/L PPA with the molar yield of 
0.52 moL/moL (Table 3; Fig. 2), which demonstrates that 
the conversation rate of PAA from l-phenylalanine is 
higher than that from glucose.

However, in the process of producing PAA in E. 
coli, it is general accompanied with the production of 
2-phenylethanol converted from phenylacetaldehyde 

Fig. 2  The GC/MS result of PAA from the extract of the recombinant strain MG1655/pDG8 and MG1655/pDG9 in shake flasks for 28 h. Identified 
substances: 1 phenethyl alcohol; 2 benzoic acid (used as internal standard, 40 mg/L); 3 phenylacetic acid (PAA)

Table 3  PAA production in  engineered strain with  M9 
medium with  or without  1.0  g/L of  l-phenylalanine 
in shake flasks for 28 h

All experiments were performed in triplicate and error bars show SD

Production (mg/L) The engineered E. coli strains

MG1655/pDG8 MG1655/pDG9 RARE/pDG9

PAA 49.5 ± 1.27 425.8 ± 15.41 772.9 ± 26.80
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by phenylacetaldehyde reductase. Kristala concluded 
that RARE strain knocked out of phenylacetaldehyde 
reductase could prevent phenylacetaldehyde from being 
reduced into phenethyl alcohol (Kunjapur et  al. 2014). 
In this study, pDG9 was transformed into RARE strain 
to get recombinant RARE/pDG9 strain. This strain 
produced up to 772.9  ±  26.80  mg/L PPA from 1  g/L 
l-phenylalanine with the molar yield of 0.94 moL/moL 
(Table 3; Fig. 3), which indicates that knock out of phe-
nylacetaldehyde reductase is effective for improvement of 
PAA production.

Discussion
Phenylacetic acid (PAA) is a class of important com-
pounds represented by several industries and its demand 
is very large. And the approaches of PAA production have 
been studied by more and more researcheres in recent 
years (Kishore et al. 1976; Krings et al. 1996; Groot and 
Bont 1998). With the rapid development of the domestic 
spices, pharmaceuticals, pesticides and other industries, 
the demand of PAA will further increase. Although some 
methods of chemical synthesis for PAA production have 
lots of problems including harmful and high corrosive 
nature, difficulties in handling and work up procedure 
and their disposal today, they are the primary ways of 
producing PAA so far.

Recombinant microorganisms are sustainable alterna-
tive for the production of chemicals like PAA (Gavrilescu 
and Chisti 2005). Oelschlägel et  al. recently heterolo-
gously expressed a synthetic styC membrane gene in E. 

coli BL21(DE3) pLysS for whole cell biocatalyst for the 
production of PAA from styrene with a conversion rate 
~85% (Oelschlägel et  al. 2015). PAA, as an intermedi-
ate in the catabolite pathway of phenylalanine, could 
also be produced from transamination of phenylalanine, 
decarboxylation of phenylpyruvate, and subsequent oxi-
dation of phenylacetaldehyde. However, phenylacetalde-
hyde synthesis would be hindered due to the conversion 
of aldehydes to phenethyl alcohol. A reduced aromatic 
aldehyde reduction (RARE) E. coli K-12 MG1655 strain 
whose three genes that encode aldo–keto reductases and 
three genes that encode alcohol dehydrogenases have 
been deleted, got the aromatic aldehydes as end products 
could be accumulated in E. coli (Kunjapur et al. 2014).

In this study, a promising PAA biosynthetic pathway 
was constructed by using a RARE E. coli K-12 MG1655 
strain as the host for heterologous expression of ami-
notransferase ARO8, keto acid decarboxylase KDC and 
oxyreductase AldH. In this construct pathway in engi-
neered E. coli, the PAA is mainly derived from phenyla-
lanine (Fig. 1) and the conversion rate is as high as 94%. 
The result of PAA conversion rate (94%) in our study is 
higher than that (85%) of Oelschlägel’s study (2015) and 
the process in this study is much simpler, which have 
many advantages in the industry application, and micro-
bial production of PAA.

The aim of this research was to identify if it were possible 
to generate a distinct biological gateway for the production 
of PAA. We have designed a new microbial biosynthetic 
pathway to produce PAA from phenylalanine. Rather than 

Fig. 3  The GC/MS result of PAA from the extract of the recombinant strain RARE/pDG9 in shake flasks for 28 h. Identified substances: 1 benzoic acid 
(used as internal standard, 100 mg/L); 2 phenylacetic acid (PAA)
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using glucose as substrates, phenylalanine has superiority 
in improvement of PAA yield. One of the most important 
characteristics of this approach is that there is little dissi-
pation of aldehydes to its corresponding 2-phenylethanol 
alcohol due to the RARE strain. This work demonstrates 
that the selection of appropriate substrate for PAA bio-
synthesis is a feasible method for enhancing PAA produc-
tion. Future efforts to further increase PAA production 
via microbial metabolic engineering, such as selection of 
applicable and low-cost substrate, may be accomplished 
through overproduction of the appropriate metabolites as 
substrate for incorporation by some genes.
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