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THEBIGGER PICTURE For deep tomographic reconstruction to realize its full potential in practice, it is crit-
ically important to address the instabilities of deep reconstruction networks, which were identified in a
recent PNAS paper. Our analytic compressed iterative deep (ACID) framework has provided an effective so-
lution to address this challenge by synergizing deep learning and compressed sensing through iterative
refinement. Here, we provide an initial convergence analysis, describe an algorithm to attack the entire
ACID workflow, and establish not only its capability of stabilizing an unstable deep reconstruction network
but also its stability against adversarial attacks dedicated to ACID as a whole. Although our theoretical re-
sults are under approximations, they shed light on the convergingmechanismof ACID, serving as a basis for
further investigation.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
Due to lack of the kernel awareness, some popular deep image reconstruction networks are unstable. To
address this problem, here we introduce the bounded relative error norm (BREN) property, which is a special
case of the Lipschitz continuity. Then, we perform a convergence study consisting of two parts: (1) a heuristic
analysis on the convergence of the analytic compressed iterative deep (ACID) scheme (with the simplification
that the CS module achieves a perfect sparsification), and (2) a mathematically denser analysis (with the two
approximations: [1] AT is viewed as an inverse A-1 in the perspective of an iterative reconstruction procedure
and [2] a pseudo-inverse is used for a total variation operator H). Also, we present adversarial attack algo-
rithms to perturb the selected reconstruction networks respectively and, more importantly, to attack the
ACID workflow as a whole. Finally, we show the numerical convergence of the ACID iteration in terms of
the Lipschitz constant and the local stability against noise.
INTRODUCTION

The vulnerability of neural networks has been demonstrated with

adversarial attacks in all major deep learning tasks, from

misclassification examples to deep reconstruction instabilities.1
This is an open access article under the CC BY-N
In the landmark paper, Antun et al. showed that deep recon-

struction is unstable due to lack of kernel awareness, but spar-

sity-promoting reconstruction does not have such a problem.2

To address these instabilities, we design an analytic com-

pressed iterative deep (ACID) network.3 The key idea behind
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ACID is to combine data-driven priors and sparsity constraints

to outperform either simple-minded deep reconstruction net-

works or established compressed sensing-based reconstruction

methods. In our study, we have not only experimentally shown

the merits of ACID3 but also theoretically analyzed the rationale

of ACID in terms of its converging behavior and solution charac-

teristics. In the following, we put our analysis on ACID in the

perspective of others’ analyses on general computational opti-

mization in general and existing representative image recon-

struction networks in particular.

There are profound results in non-computability in the field of

computer science. Computational optimization is important not

only in the field of computer science but also to our real-world

applications. The theoretical research on this theme can be

traced back to Turing’s ground-breaking paper onmachine intel-

ligence and Smale’s list of problems for the twenty-first century.4

Recently, Bastounis et al.5 made remarkable progress in settling

this theoretical issue. Their theory bears a major implication for

Smale’s 18th problem about the boundary of artificial intelligence

(AI), especially deep learning as the current mainstream of AI.

They show that it is in general non-computable to construct a

neural network via loss minimization and apply it to testing

data, and such a neural network is generally unstable. For

example, there are in principle many classification problems

for which ‘‘one may have 100% success rate on arbitrarily large

training and validation datasets, and yet there are uncountably

many points arbitrarily close to the training data for which the

trained network will fail.’’5

Tomographic reconstruction is an important type of computa-

tional optimization problem, and, interestingly enough, deep net-

works for image reconstruction can and cannot be computed

under different conditions. In the context of these inverse prob-

lems, the article by Antun et al. reported instabilities of deep

reconstruction networks2 due to the lack of kernel awareness.6

Then, a comprehensive follow-up analysis by Antun et al.7 estab-

lished the boundary of deep-learning-inspired tomographic

reconstruction, which helps address Smale’s 18th problem.

Among their contributions, the following three points are clearly

made on (1) existence, (2) non-existence, and (3) the conditional

existence of desirable networks. That is, while the existence of

neural networks is proved in the literature for an excellent func-

tional representation, the non-existence is proved of any algo-

rithm that trains or computes such a neural network in a general

setting. However, the conditional existence is also proved of

such an algorithm to compute an accurate and stable network

that solvesmeaningful inverse problems such as Fourier imaging

from sparse data. Specifically, the existence of a network for a

universal representation is well known (Theorem 2.1 in Antun

et al.7), but how to train a network to achieve an accurate and

stable approximation is a difficult issue. It has been shown that

a counterexample can always be found in a general setting so

that the accuracy and robustness of a network cannot be simul-

taneously obtained (Theorem 2.2 in Antun et al.7). On the other

hand, under certain conditions, such as sparsity in levels, an ac-

curate and stable network can be indeed obtained (Theorems

5.5 and 5.10 in Antun et al.7), with the FIRENET network as a

good example.7 At the core of the construction of FIRENET is

kernel awareness. Clearly, training the network defined in sub-

section 5.1 in Antun et al.7 cannot obtain kernel awareness and
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is subject to the phase transition of solutions to the inverse prob-

lems. In other words, if the difference between the two images

lies close to the null space of the measurement matrix and is

bounded from below, the Lipschitz constant of the inverse map-

ping can be very large, yielding a poor imaging performance.

Fortunately, an algorithm can be used to utilize sparsity in levels

and find a stable and accurate neural network (Theorems 5.5 and

5.10 in Antun et al.,7 with uniform recovery guarantees, geomet-

ric convergence, and bounds on the number of samples and the

number of layers of a network for a pre-specified accuracy).

In addition to the excellent work by Antun et al., active

research efforts have been going on to develop deep networks

for accurate and stable deep tomographic reconstruction.

Representative results include the Learned Experts’ Assess-

ment-based Reconstruction Network( LEARN),8 ItNet network,9

Momentum-Net,10 null-space network,11 aswell as deep equilib-

rium networks.12

In Chen et al.,8 an iterative reconstruction algorithm in the CS

framework was unrolled and trained in an end-to-end fashion.

The experimental results from the resultant LEARN network on

the Mayo Clinic low-dose computed tomography (CT) dataset

are competitive with representative methods in terms of artifact

reduction, feature preservation, and computational speed. In

Genzel et al.,9 an iterative deep-learning-based reconstruction

network was designed to solve underdetermined inverse prob-

lems accurately and stably (ItNet shown in Figure 1 in Genzel

et al.9). In comparison with total-variation minimization, their re-

sults reveal that standard end-to-end network architectures are

resilient against not only statistical noise but also adversarial per-

turbations. In Chun et al.,10 another iterative neural network,

referred to as Momentum-Net, was prototyped by combining

data-driven regression and model-based image reconstruction

(MBIR). Momentum-Net is convergent under reasonable condi-

tions (quadratic majorization via M-Lipschitz continuous gradi-

ents). Their results show that Momentum-Net outperformed

MBIR and several other networks, but the effect of adversarial at-

tacks onMomentum-Net was not evaluated. In Schwab et al.,11 a

null-space network was studied to offer a theoretical justification

todeep learning-based tomographic reconstruction via so-called

F-regularization. The convergence of the overall reconstruction

workflow is proved, assuming a Lipschitz continuity and preser-

ving the data consistency (illustrated in Figure 1 in Schwab

et al.11). In Gilton et al.,12 the deep equilibrium models were

adapted to find the fixed point with guaranteed convergence un-

der the ε-Lipschitz continuity. Subsequently, the trade-off can be

made between reconstruction quality and computational cost.

In connectionwith theabove results, ourACIDnetwork has sig-

nificant merits and unique features. First, ACID is dedicated to

overcoming the instabilities of neural networks on extensive da-

tasets in Antun et al.2 As a result, we have made a solid step

forwardalong thedirection of stabilizing deep reconstruction net-

works, showing that accurate and stable deep reconstruction is

feasible, and remains an exciting research opportunity. Second,

the ACID network is the first prototype that combines an

established sparsity-oriented algorithm, a data-driven direct-

reconstruction network, andan iterativedata fidelity enforcement

(for example, LEARN8 and multi-domain integrative Swin trans-

former13 ignore data consistency, ItNet network9 lacks kernel

awareness, Momentum-Net10 and DRONE networks14 miss a
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learnedmapping fromdata to images, null-space network11 uses

no sparsity, and deep equilibrium networks12 focus only on the

fixed point that does not imply image sparsity or data fidelity).

Third, the converging behavior and solution characteristics of

ACID have been analyzed under a reasonable assumption. The

assumption is called the bounded relative error norm (BREN),

which is a special case of a Lipschitz continuity. The Lipschitz

continuity we used in our convergence analysis, which is practi-

cally interpreted as the BREN property and experimentally

verified in our study, is consistent with the previous studies on

non-convex optimization such as in the aforementioned network

convergence analyses.10–12 Furthermore, note that we do not

request that the measurement matrix must satisfy a compressed

sensing condition such as the restricted isometry property (RIP).

This means that a standard sparsity-promotion algorithm may

not give a unique solution. In this case, ACID promises to outper-

form the sparsity-minimization reconstruction alone, because

data prior plays a significant role to fill in the gap in deep recon-

struction. Last but not least, in addition to an accurate recon-

struction performance, ACID has stability in two related aspects:

(1) ACID can stabilize an unstable deep reconstruction network

(by putting it in the ACID framework), and (2) ACID as awhole iter-

ative procedure is resilient against adversarial attacks. Both as-

pects of the ACID stability are studied systematically in this work.

RESULTS

Our ACID architecture is heuristically obtained by minimizing an

overall objective function. It is necessary to perform a convergent

analysis for the iterative scheme to interpret the ACID algorithm.

Althoughthe following theoretical analysis isunder several approx-

imations, our findings do improve our understanding of the initially

heuristically derived ACID scheme. It is underlined that there is no

closed-form solution for the non-linear optimization problem, and

acomputationally efficient iterative formula ispreferred for a stable

solution. In the process, the errors will be suppressed via ACID it-

erations so that theACIDalgorithmwill converge to a desirable so-

lution in the intersection of the space constrained by measured

data, the space of sparse solutions, and the space of data-driven

deep priors. This mechanism is similar to the conventional alge-

braic reconstruction technique (ART)/simultaneous algebraic

reconstruction technique (SART) algorithm whose convergence

was rigorously proved for convex optimization.15–18

Interpretation of ACID convergence
In the medical imaging field, a tomographic imaging task can be

simplified to a system of linear equations: pð0Þ = Af� + e, where

A˛Rm3N is a system matrix (for example, A is the Radon trans-

form for CT19 and the Fourier transform for MRI20), pð0Þ˛ Rm is

an original measurement data, f�˛RN is the ground truth image

of the object to be reconstructed, and e˛Rm is data noise,

jjejj2%hwith a noise level hR0. We focus on the few-view imag-

ing for CT and sparse sampling for MRI. In this case, the column

number of the system matrix is less than its row number, that is

m<N, meaning that the inverse problem is underdetermined. For

the under-deterministic problem, additional prior knowledge

must be introduced to uniquely and stably recover the original

image. Without loss of generality, we assume that H˛ RN3N is

unitary, and H� is the adjoint of H. AH� satisfies the RIP of order
s, and Hf� is s-sparse. We further assume that the function Fð ,Þ
models a well-trained neural network, and it continuously maps

measurement data to an image. AlthoughFð ,Þ outputs an image

f from themeasurement, which is an inverse process of the linear

system p = Af, we have an approximate form: AFðpÞyp in

some sense such as satisfying the aforementioned BREN.

Because the systemmatrix A is underdetermined and the neural

network is unstable andmay generate an artifact image,FðAfÞ =
f + fob + fnl, where fob is observable and fnl is in the null space of

A. fnl satisfies Afnl = 0, and kAfobks0 if kfobks0.

In this work, our goal is to design an iterative framework to sta-

bilize an unstable neural network aided by a CS-based sparsity-

promoting module. As an idealized setting to show the essential

idea, we assume that the input to the neural network is dataset

pð0Þ, and the output of the CS module is f: Let us introduce a re-

sidual error p in the projection domain, that is p=pð0Þ � Af as a

target of a correction mechanism. Then, we want to minimize

the following objective function:

argmin
p;f

1

2
kFðAf +pÞ � fk22 +

l

2
kpð0Þ � Af � pk22 +

m

2
kpk22 + xkHfk1;

(Equation 1)

where l > 0, m R 0, and x > 0 are hyperparameters, the first term

is thedifferencebetween theoutputsof theneural network and the

CS-based sparsifying module, the second term is the measured

noise energy, the third term is the residual error energy also in

the projection domain, and the last term is to enforce the sparsity

of the output imageof theCSmodule,which is subject to the data-

fidelity constraint in the projection domain. Let us define

Lðp; fÞ : =
1

2
kFðAf +pÞ � fk22 +

l

2
kpð0Þ � Af � pk22

+
m

2
kpk22 + xkHfk1:

(Equation 2)

Then, we can use the block coordinate descent method21 to

optimize Equation 2 as follows:8><>:
pðk + 1Þ = argmin

p
L
�
p; fðkÞ

�
fðk + 1Þ = argmin

f

L
�
pðk + 1Þ; f

� : (Equation 3)

To update p, we need to solve the following problem:

pðk + 1Þ = argmin
p

�
1

2
kF
�
AfðkÞ +p

�
� fðkÞk

2

2
+
l

2
kpð0Þ � AfðkÞ

�pk22
�
+
m

2
kpk22: (Equation 4)

Computing the partial derivative of the right side of (Equa-

tion 4), we have 
vF
�
AfðkÞ +p

�
v
�
AfðkÞ +p

� !T�
F
�
AfðkÞ + p

�
� fðkÞ

�
+ l
�
AfðkÞ + p�pð0Þ

�
+mp= 0:

(Equation 5)
Patterns 3, 100475, May 13, 2022 3
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Because the neural network is well-trained to solve the problem

Af = p, we assume AFðpÞyp (at least on a training dataset). By

performing derivative on both sides of AFðpÞyp, we have

A
�
vFðpÞ
vp

�
yI, where I is the identity matrix. This means vFðpÞ

vp y

A�1 (in the sense of a pseudo-inverse for an underdeterminedma-

trix A which can be obtained by classical methods such as trun-

catedsingular valuedecomposition [SVD]). In theclassic andmod-

ern iterative CT reconstructionmethods (e.g., SART), whileATAs
I, the residual error correctionmechanismand the resultant cumu-

lative effect of the whole iterative process will make the final

solution converge to an optimal solution for projections that are

sufficiently sampled.15,16 In this sense, treating a backprojection

operator AT as an approximate inverse to the projection operator

A in each iteration is reasonable. Furthermore, in the ACID iterative

framework, we alsomake the approximationATyA�1. Hence, we

have the approximation that vFðpÞvp yA�1yAT and
�
vFðpÞ
vðpÞ

�T
yA.

In Equation 5,
�
vFðAfðkÞ +pÞ
vðAfðkÞ +pÞ

�T
yA is the operator transforming a

reconstructed image into a measurement dataset, and it is

approximated as A. By ignoring the observable artifact image

from the neural network (since in the iterative correction, the arti-

fact image will be gradually reduced; see the section ‘‘method

details’’ for justification), we have AFðAfðkÞ +pÞyAfðkÞ +p.

Therefore, Equation 5 can be simplified as

pðk +1Þy
l
�
pð0Þ � AfðkÞ

�
1+ l+m

: (Equation 6)

To update f, we solve the following problem:

fðk + 1Þ = argmin
f

�
1

2
Fk�Af +pðk + 1Þ�� fk2

2
+
l

2
kpð0Þ � Af

�pðk + 1Þk22 + xkHfk1
�
: (Equation 7)

With f =Hf and f = H�f, Equation 7 is rewritten as follows:

f
ðk +1Þ

= argmin
f

�
1

2
Fk�AH�f +pðk + 1Þ��H�fk2

2
+
l

2
kpð0Þ

�AH�f � pðk + 1Þk22 + xkfk1
�
: (Equation 8)

Computing the partial derivative of the right side of Equation 8,

we have 
HAT

�
vF
�
AH�f +pðk + 1Þ�

vðAH�f +pðk + 1ÞÞ

�T

�H

!�
F
�
AH�f + pðk + 1Þ��H�f

�
+ lHAT

�
AH�f �pð0Þ + pðk + 1Þ�+ xsgnðfÞ= 0:

(Equation 9)

Similarly treating
�
vFðAH�f +pðk +1ÞÞ
vðAH�f +pðk + 1ÞÞ

�T
as A and ATyA�1, Equa-

tion 9 can be simplified as

lf + lHAT
�
pðk + 1Þ �pð0Þ�+ xsgnðfÞy0: (Equation 10)
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From Equation 6, we have

pð0Þ y
ð1+ l+mÞpðk + 1Þ

l
+AfðkÞ: (Equation 11)

By substituting Equation 11 into Equation 10, we have

lf �ð1 + mÞHATpðk + 1Þ � lHfðkÞ + xsgnðfÞy0: (Equation 12)

Noting that

ATpðk + 1Þ yA�1pðk + 1ÞyF
�
pðk + 1Þ�; (Equation 13)

Equation 12 can be simplified as

lf �ð1 + mÞHF
�
pðk + 1Þ�� lHfðkÞ + xsgnðfÞy0: (Equation 14)

By rewriting Equation 14 as

fyHfðkÞ +
ð1+mÞ

l
HF
�
pðk + 1Þ�� x

l
sgnðfÞ (Equation 15)

We have fðk +1Þ via soft-threshold filtering:

fðk +1ÞyH�Sx
l

�
H

�
fðkÞ +

1+m

l
F
�
pðk + 1Þ���; (Equation 16)

where the soft-thresholding kernel is defined as

S
ε
ðxÞ =

�
0; jxj<ε
x � sgnðxÞε otherwise

: (Equation 17)

Combining Equations 6 and 16, we obtain a set of formulas:8>>><>>>:
pðk + 1Þy

l
�
pð0Þ � AfðkÞ

�
1+ l+m

fðk + 1ÞyH�Sx
l

�
H

�
fðkÞ +

1+m

l
F
�
pðk + 1Þ��� : (Equation 18)

Let us denote x
l
= ε and simplify Equation 18 as

8>>><>>>:
pðk + 1Þy

l
�
pð0Þ � AfðkÞ

�
1+ l+m

fðk + 1ÞyH�S
ε

�
H

�
fðkÞ +

1+m

l
F
�
pðk + 1Þ��� : (Equation 19)

Clearly, Equation 19 agrees with our heuristically derived ACID

network by settingm = 0. In otherwords, ACID is a special case of

Equation 19 after theweighting parameters are properly selected.

Although a unitary property is assumed for the sparse trans-

form H to obtain Equation 19, as is the case of the orthogonal

wavelet decomposition, similar results can be also obtained in

non-unitary cases. Poon22 studied the problem of recovering a

1D or 2D discrete signal that is approximately sparse in its

gradient transform from an incomplete subset of its Fourier coef-

ficients. To obtain a high-quality reconstruction with high proba-

bility, robust to noise and stable to inexact gradient sparsity of

order s, Poon proved that it is sufficient to draw OðslogNÞ of

the available Fourier coefficients uniformly at random.22 With

Poon’s results, we can extend Equation 19 to a non-unitary

discrete gradient transform for total variation (TV) minimization.
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Specifically, the term kHfk1 in Equation 2 is specialized as a

total-variation function gðfÞ based on discrete gradient transform

gðfÞ =
XIw
iw = 2

XIh
ih = 2

ðjfðiw; ihÞ� fðiw � 1; ihÞj + jfðiw; ihÞ� fðiw; ih � 1ÞjÞ;

(Equation 20)

where Iw and Ih represent thewidth and height of a reconstructed

image, and the gradients on the image border are assumed to be

zero. An FFT-based algorithm, FTVd,23 can be employed to find

the sparse solution for f. Note that the generic TV favors piece-

wise constant regions, while high-order TV encourages piece-

wise polynomials.23 Here, the input to the CS-based sparsifying

module is normalized to [0, 1] to facilitate the selection of the

regularized parameters, which requires de-normalization of the

output of the CS module. In the CS framework, the robust null-

space property ensures the stability of sparsity regularized

recovery.6,24

Let us denote

f

�
k + 1

2

�
= fðkÞ +

1+m

l
F
�
pðk + 1Þ�; (Equation 21)

Equation 19 can be rewritten as8>>>>>>>><>>>>>>>>:

pðk + 1Þy
l
�
pð0Þ � AfðkÞ

�
1+ l+m

f

�
k + 1

2

�
= fðkÞ +

1+m

l
F
�
pðk + 1Þ�

fðk + 1ÞyH�S
ε

 
Hf

�
k + 1

2

�!
: (Equation 22)

The discrete gradient function gðfÞ defined in Equation 20 can

be interpreted as jjHfjj1 with a non-unitary transform matrix H.

Because H is not invertible, the adjoint matrix H� in Equation 22

is not the inverse ofH. However, due to the fact that bothH� and
H work as a pair before and after the soft-thresholding filtering in

Equation 22, H� can be interpreted as a pseudo-inverse of the

discrete gradient transform H.25 Hence, each pixel of fðk +1Þ at
the position ðiw; ihÞ in Equation 22 can be expressed as follows25:

fðk +1Þðiw; ihÞ = 1

4

 
S�1
ε

 
f

�
k + 1

2

�
ðiw; ihÞ; f

�
k + 1

2

�
ðiw + 1; ihÞ

!

+ S�1
ε

 
f

�
k + 1

2

�
ðiw; ihÞ; f

�
k + 1

2

�
ðiw; ih + 1Þ

!

+ S�1
ε

 
f

�
k + 1

2

�
ðiw; ihÞ; f

�
k + 1

2

�
ðiw � 1; ihÞ

!

+ S�1
ε

 
f

�
k + 1

2

�
ðiw; ihÞ; f

�
k + 1

2

�
ðiw; ih � 1Þ

!!
;

(Equation 23)
where S�1
ε
ð,; ,Þ is the pseudo-inverse of the soft-thresholding

kernel SεðxÞ for a given threshold ε. The pseudo-inverse

S�1
ε
ð,; ,Þ is defined as25:

S�1
ε
ðva; vbÞ =

8>>>><>>>>:
va + vb

2
; if jva � vbj%ε

va � ε

2
; if va � vb>ε

va +
ε

2
; if va � vb<� ε

: (Equation 24)

with the pseudo-inverse (Equation 24), although the discrete

gradient transform is neither unitary nor invertible, the iterative

framework (Equation 19) can still be applied for TV minimization

using a compressed sensing technique.22

Under practically reasonable conditions such as noisy and

insufficient data, the ACID iteration will converge to a feasible so-

lution subject to an uncertain range proportional to the noise

level (see the convergence analysis in the section ‘‘method

details’’).

BREN property
Our theoretical analysis requires the following BREN property of

a reconstruction neural network to reconstruct f from measure-

ment p = Af�. If a reconstruction network satisfies the BREN

property, we call it a well-designed and well-trained reconstruc-

tion network, or a proper network.

Definition: a reconstruction network has the BREN property if

the ratio between the L2 norm of the reconstruction error and

the L2 norm of the corresponding ground truth is less than

ð1�sÞ with 0<s<1. For an s-sparse observable image f�, there
are different ways to formulate the Lipschitz continuity such as

our BREN property. Let us assume that the function Fð ,Þ
models a well-trained neural network. Denote the output of

the neural network FðAf�Þ = f� + fob + fnl, where the second

and third terms are observable and null-space components of

the error image associated with the ground truth image f�

and the measurement matrix A, the BREN property is

defined as

kFðAf�Þ � f�k
kf�k =

kfob + fnlk
kf�k %ð1� sÞ: (Equation 25)

Equation 25 implies that kfob + fnlk%ð1 � sÞkf�k.
Remark 1: in the literature of deep imaging, including the paper

on instabilities of deep reconstruction,2 a reconstruction

network, even if it is unstable, will still produce an output not

too far from the ground truth in the sense of the BREN property.

The involved errors of types I and II have significant clinical im-

pacts but the norm of these errors in combination is assumed

to be small relative to that of the underlying image. This is how

a proper reconstruction network is defined and commonly ex-

pected in practice. For example, the most popular loss function

of a reconstruction network is in the L2 norm so that a recon-

structed image should be close to the ground truth in the sense

of the L2 norm without an adversarial attack. Furthermore, in the

adversarial attack cases of our interest, the BREN property is

assumed to be valid as the condition for our convergence anal-

ysis below.
Patterns 3, 100475, May 13, 2022 5



Table 1. BREN ratios (%) associated with different

reconstruction networks

Methods r1 r2 r3 r4

Med-50 2.90 x x x

AUTOMAP 10.39 23.09 47.85 85.86

Deep MRI 2.73 8.03 13.28 x

MRI-VN 3.53 x x x
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Remark 2: for deep reconstruction in the supervised

mode, a training dataset is typically in the format of ðpðiÞ;
fðiÞÞ; i = 1;2; /; Itrn. We assume that the imaging model is

linear, and we can augment the training dataset to ðapðiÞ;
afðiÞÞ; i = 1; 2;/; Itrn, where a is any constant within a reason-

able range. With the augmented data, the network will map the

input of a small norm to an output of a proportionally small

norm. Alternatively, we can include the normalization layer(s)

in the reconstruction network so that the network performance

is insensitive to the magnitude of data and images.

Remark 3: our assumption of the BREN property is needed for

our convergence analysis below, just like the case for CS theory

where RIP/rNSP is required for unique image recovery. If the

requirement is not met, the theoretical arguments below will

not be valid. We have shown that our BREN ratio is substantially

less than 1 for the datasets in this PNAS study.2

Specifically, all the experimental results with perturbations

were repeated in the CT and MRI cases26–29 reported in Antun

et al.2 Then, the BREN ratios were computed using different

reconstruction networks with various perturbations. It is found

that all these ratios in CT and MRI experiments are substantially

less than 1. As shown in Table 1 and Figures 1, 2, 3, and 4, the

AUTOMAP seems more sensitive to the perturbations; i.e., small

perturbations cause large changes in the sense of the L2-norm.

Clearly, the BREN property is satisfied in this context. It is easy

to observe that the perturbed images contain artifacts; for

example, the MED-50, AUTOMAP, and MRI-VN results. In these

cases, the sparsity of reconstructed images was corrupted, and

the feedforward data estimation based on these reconstruction

results are usually not consistent with the original measurement.

Searching for a feasible solution within the space of sparse solu-

tion is central to the traditional iterative reconstruction. Further-

more, the ACID searches for a reconstruction good in the three

aspects: image sparsity, big-data-driven prior, and iterative cali-

bration to eliminate unexplained residual data.When the final im-

age satisfies all these three constraints, it will be our best

possible solution.
Lipschitz convergence with perturbations
Let the combination of the measurement matrix A and the neural

network Fð ,Þ be FAð ,Þ. According to the definition of the

Lipschitz constant, if we employ the L2 norm, the Lipschitz con-

stant is the minimal constant that holds for the following

inequality:

kFAðfÞ�FAðf 0Þk%Lkf � f 0k: (Equation 26)

For each fixed f, we generated a series of perturbations to

obtain f 0, and computed the value of the ratio kFAðfÞ �
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FAðf 0Þk=kf � f 0k. Specifically, we computed for many images

and found the upper and lower bounds of the Lipschitz constant

as our empirically estimated ranges in the CT and MRI cases,

respectively. Note that the authors of AUTOMAP did not provide

the original data and code for sufficient training and testing, we

only performed this experiment on the DAGAN and Ell-50.

Here, only 500 pairs of ellipse phantoms were used for Ell-50.

Each pair contains f and f 0, where f 0 was generated by adding

an adversarial attack on the clear image f using the aforemen-

tioned adversarial method. Specifically, the lower and upper

bounds in the Ell-50 case are 0.4674 and 0.6424, respectively.

In contrast, 14,866 pairs of MRI images were used to determine

the lower and upper bounds in the DAGAN case, and the corre-

sponding lower and upper bounds are 1.4854 and 12.0737,

respectively.

We had shown the convergence of ACIDwith respect to PSNR

in Part A of our work,3 and here we show the convergence of

ACID in terms of the Lipschitz constant with respect to the num-

ber of iterations. As representative examples, the convergence

curves in the C3 and M4 cases (see the supplemental informa-

tion of Wu et al.3 for more details) are given in Figure 5. It can

be observed that the Lipschitz constant of ACID for both CT

and MRI are monotonically decreasing and finally converge to

a constant scale.

ACID against noise
Although some examples about the insensitivity of ACID against

noise are reported in Part A of Wu et al.,3 here we followed up the

study in Koonjoo et al.30 and performed a similar local stability

test on ACID with DAGAN and Ell-50 respectively built in. This

local robustness was assessed using the maximum ratio be-

tween variations in the output space and variations in the imag-

ing object space: kFAðfÞ�FAðf 0Þk=kf �f 0k for two adjacent im-

ages f and f 0. In this test, 500 pairs of CT phantoms were

selected from the Ell-50 test dataset. Then, the additive white

Gaussian noise was added, with zeromean and standard deriva-

tion 11–30 HU. In this way, we obtained 500 cases. Furthermore,

14,866 image pairs were chosen from theMRI dataset. Similarly,

the additive white Gaussian noise was randomly added to each

of these images to generate f 0. A maximum output-input varia-

tion ratio of 3.023was observed for these noisy inputs. The histo-

grams in the CT and MRI cases are given in Figure 6. The results

empirically demonstrate the local stability of the ACID recon-

struction against noise.

DISCUSSION

Kernel awareness and network stability
The kernel awareness is an important concept. When a recon-

struction algorithm lacks the kernel awareness, a ‘‘cardinal

crime’’ (‘‘cardinal sin’’) could be committed,6 which implies that

a well-trained network model would potentially produce highly

unstable results, defeating the purpose of medical imaging. In

that scenario, the trained network would produce significantly

different images from essentially identical input datasets, be-

tween which there are subtle differences representing invisible

perturbations.

Specifically, a deep network is trained on a dataset D using an

optimization technique. The learning procedure would normally



A B C D Figure 1. Reconstruction results usingMED-

50 from Antun et al.

The first to fourth images represent the original

image, MED-50 result without perturbation,

perturbation image, and MED-50 result with

perturbation, respectively.
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converge to a network model with optimized parameters, which

is usually a continuous transform T such that for f˛ D,

kTðAfÞ� fk<t; (Equation 27)

where k ,k is a suitable norm, A is a measurement matrix, and a

constant t is a bound. To evaluate the stability of the network

model, an ε-Lipschitz metric is defined as follows:

LεðT ;pÞ= sup
0<jjp�p0 jj<ε

kTðpÞ � Tðp0 Þk
kp� p0 k (Equation 28)

A formula can be derived for a lower bound of the ε-Lipschitz

index estimation for p = Af:

LεðT ;pÞ>1
ε

ðkf 0 � fk� 2tÞ: (Equation 29)
A B C D

E F G H

I J K L

M N O P
In fact,

LεðT ;pÞR kTðAf 0Þ � TðAfÞk
kAf 0 � Afk

R
kf 0 � fk � kTðAfÞ � fk � kTðAf 0Þ � f 0k

kAf 0 � Afk
>
1

ε

ðkf 0 � fk� 2tÞ;

(Equation 30)

for εRt: An inverse problem, such as few-view CT and sparse

MRI, involves solving Af = p+ ε, where A is an m3N matrix,

m<N, and ε is measurement noise. Clearly, the transform A

would have a null space (kernel) with dimðNullðAÞÞ>1: Then, there
is a nonzero vector f0˛neighborofNullðAÞ and a scale factor s for

a large number L such that
Figure 2. Reconstruction results using

AUTOMAP from Antun et al.

The first to fourth columns represent the original,

perturbation, original plus perturbation, and

perturbed AUTOMAP images, respectively. The

first to fourth rows represent different strengths of

perturbation, where r1
2
F<r2

2
F<r3

2
F<r4

2
F.
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A B C

D E F

IHG

Figure 3. Reconstruction results using deep MRI

These results were adapted from Antun et al. The first-third columns represent

the original, perturbation, and perturbed deep MRI (DM) results, respectively.

The first to third rows present different strengths of perturbation, where r1
2
F<

r2
2
F<r3

2
F.

A B C

Figure 4. Reconstruction results using MRI-VN from Antun et al.

The first to third images represent the original, perturbation, and perturbed

MRI-VN results, respectively.
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kAf0k< ε; kAf 0 �pk< ε; and kf 0 � fk> L+ 2t; (Equation 31)

where f 0 = f +sf0 with f˛ðNullðAÞÞt. If the training set has at

least two such elements ðAf; fÞ and ðAf 0; f 0Þ, we have

LεðT ;pÞ> L

ε

: (Equation 32)

From Equation 32, the instability is intrinsic; that is, when input

data are very close to the null space of the associated imaging

operator and p is slightly perturbed, a large variation would be

induced in the reconstructed image. The instability of the trained

network would yield artifacts in reconstructed images, subject to

either false-positive or false-negative diagnosis.

BREN and Lipschitz continuity
Assuming the BREN property, our analysis (see the section

‘‘method details’’ and Figures 7–9) shows that ACID is stable

against adversarial attacks. In fact, BREN can be viewed as a

special case of the Lipschitz continuity; i.e., they are consistent.

Let us first define measurement and reconstruction operators

M andR on two metric spaces ðF;dFÞ and ðP;dPÞ, respectively.
Let us measure an image f˛F tomographically to obtain a mea-

surement p˛P. We assume that each image in F is non-trivial in

that sense that f>0. Let us denote the measurement operator

M : F/P; that is p = MðfÞ. Suppose that the measurement

process is totally transparent to us. Thus, we know a 1-to-1 cor-

respondenceP4F perfectly. For example, in our case, themea-

surement matrix A satisfies the RIP of order s, f is s-sparse, p =

Af, and there exists a 1-to-1 map. Then, we can define the ideal
8 Patterns 3, 100475, May 13, 2022
reconstruction operator f = RðpÞ. Reasonably, we assume that

the operator R is a Lipschitz continuous (LC) function R : P/F

that satisfies dFðRðp1Þ;Rðp2ÞÞ%L1dFðf1; f2Þ for a constant L1>0.
With a big dataset, we can train a deep network F to approx-

imate the ideal reconstruction operator R, F : P/F is an LC

function that satisfies dFðFðp1Þ;Fðp2ÞÞ%L2dFðf1; f2Þ for a con-

stant L2>0. Furthermore, we assume that network F is well de-

signed and well trained so that, for a training tomographic data-

set, we have FðpðiÞÞ� RðpðiÞÞ<dn, i = 1;2;/; Itrn. For a new

dataset p0 from an underlying image f 0, the BREN property re-

quires that kFðp0Þ�Rðp0Þk
kRðp0Þk = kFðAf 0Þ�f 0k

kf 0k %1� s. Suppose that the im-

age f 0 is close to an image fði0Þ in the training dataset. In this

setting, we have the following relations:

kFðpði0ÞÞ�Rðpði0ÞÞk<dn; (Equation 33)

dFðRðpði0ÞÞ;Rðp0ÞÞ%L1dFðfði0Þ; f 0Þ; (Equation 34)

dFðFðpði0ÞÞ;Fðp0ÞÞ%L2dFðfði0Þ; f 0Þ; (Equation 35)

where Equation 33 is due to the fact the network is well designed

and well trained, and Equation 34 and Equation 35 are due to the

Lipschitz continuity of R and F. Therefore, we have

kFðp0Þ �Rðp0Þk = kFðp0Þ �Fðpði0ÞÞ + Fðpði0ÞÞ�Rðpði0ÞÞ
+ Rðpði0ÞÞ�Rðp0Þk%kFðp0Þ �Fðpði0ÞÞk
+ kFðpði0ÞÞ�Rðpði0ÞÞk+ kRðpði0ÞÞ
�Rðp0Þk<L1dFðfði0Þ; f 0Þ+ L2dFðfði0Þ; f 0Þ+ dn:

(Equation 36)

Therefore, under the condition that

L1dFðfði0Þ; f 0Þ+ L2dFðfði0Þ; f 0Þ+ dn

kf 0k < 1; (Equation 37)

we have the BREN. The condition can be simplified to
ðL1+ + L2ÞdF ðfði0Þ;f 0Þ+ dn

kf 0k <1, which is roughly ðL1+ +L2ÞdF ðfði0Þ;f 0Þ
kf 0k <1. That

is, as long as an image is fairly close to the training dataset,

the BREN property is satisfied. Heuristically, if the image norm



A B Figure 5. Convergence curves of ACID in

terms of the Lipschitz constant

(A and B) The convergence curves of ACID with

respect to the number of iterations in the C3 andM4

cases, respectively.
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is greater than the product of the LC constant ðL1+ + L2Þ and the

distance between an image to be reconstructed and its closest

reference point, we have the BREN property. For a big dataset,

dFðfði0Þ; f 0Þ is small, so that L can be large, which is especially

true if we interpret F and P as appropriate low-dimensional

manifolds.

Because there is a 1-to-1 correspondence P4F perfectly, we

can treat the combination of the measurement matrix A and the

neural network F as a new LC function FA, which satisfies

dFðFAðf1Þ;FAðf2ÞÞ%LdFðf1; f2Þ: (Equation 38)

The Lipschitz continuity assumption is useful to assess the

convergence of a deep reconstruction algorithm. In the section

‘‘results’’, we have verified the BREN property for the data

used in Antun et al.2 Those results support the practical rele-

vance of the BREN property. More importantly, one can calcu-

late the Lipschitz constant directly for both the MRI and CT

data using Equation 38.

Unlike the establishment of the instabilities, it is mathemati-

cally insufficient to prove the general applicability of ACID using

only a finite number of positive experimental results. Hence, a

theoretical analysis is desirable on the convergence of the

ACID iteration. Although a thorough characterization is rather

challenging (since the field of non-convex optimization is still in

its infancy), we have assumed an experimentally motivated

BREN property of the reconstruction network, which is a special
A B

Figure 6. ACID is locally stable with respect to noise

(A) The histogram of the output-to-input ratio between noise-free and Gaussian input data, where ACID has

(B) The histogram of the output-to-input ratio between noise-free and Gaussian input data, where ACID has D
case of the Lipschitz continuity that is

widely used for non-convex optimization

to establish various converging proper-

ties.31,32 The BREN property means that

the relative error of a deep network-based

reconstruction is under control in a L2

norm. Based on BREN, we have made an initial effort to under-

stand the converging mechanism of the ACID iteration. Specif-

ically, we have provided not only (1) a heuristic analysis based

on the simplification that the CS module allows a perfect sparsi-

fication but also (2) a mathematically denser analysis of the

convergence under two approximations (the first approximation

to invert an underdetermined systemmatrixA, and the other is to

minimize TV with a non-unitary transform H).

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Hengyong Yu, PhD (e-mail: Hengyong-yu@ieee.org).

Materials availability

The study did not generate new unique reagents.

Data and code availability

The codes, trained networks, test datasets, and reconstruction results are

publicly available on Zenode (https://zenodo.org/record/5497811).

Method details

Adversarial attacks to a selected network

In the image reconstruction field, the continuous imaging system33,34 can be

discretized into a linear model p = Af, where A˛Rm3N is the system matrix,

p represents collected data, andm andN defines the size of the systemmatrix

A. The aim of image reconstruction is to reconstruct f from p for a given system

matrix A. To assess the stability of image reconstruction, it is necessary to

compute a tiny perturbation or adversarial attack.6,35,36 In this context, Antun

et al.2 first computed a tiny perturbation
Ell-50 built-in, giving the maximum value of 0.229.

AGAN embedded, with the maximum ratio of 3.023.

Patterns 3, 100475, May 13, 2022 9

https://zenodo.org/record/5497811


Deep Learning

Iterative Refinement

Compressed Sensing
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Figure 7. ACID architecture for stabilizing

deep tomographic image reconstruction

ACID consists of the following components: deep

reconstruction, compressed sensing-based spar-

sity-promotion, analytic mapping, and iterative

refinement. pð0Þ is original tomographic data, and

pðkACIDÞ, kACID = 1, 2, 3, ., KACID, represents an

estimated residual dataset in the kACID
th iteration

between pð0Þ and the currently reconstructed

counterpart. FðpðkACIDÞÞ is an output of the deep

reconstruction module, and fðkACIDÞ represents the

image after compressed sensing-based regulari-

zation.
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Reconstruct f from p=Af; A˛Rm3N: (Equation 39)

For a well-trained neural network F : Rm/ RN to solve Equation 39, similar to

the adversarial attack in image classification,37 we compute the instabilities by

formulating the following problem2

beðfÞ˛argmin
e

kek; s:t: kFðp+AeÞ � FðpÞkRε: (Equation 40)

With Equation 40, when ε>0, the relationship p=Af might not hold. One can

consider the constrained Lasso variant of Equation 40 as follows:

beðfÞ˛ argmax
e

kFðp + AeÞ�FðpÞk; s:t: kek%s: (Equation 41)

There is no infeasibility issue for Equation 41. An unconstrained Lasso inspired

version of Equation 41 is given by

e�ðpÞ˛ argmax
e

1

2
kFðp+AeÞ � FðpÞk22 �

g

2
kek22: (Equation 42)

With FðpÞ = lðfÞ, Equation 42 is further converted to

e�ðpÞ˛argmax
e

1

2
kFðp+AeÞ � lðfÞk22 �

g

2
kek22; (Equation 43)

where lðfÞ= f for image-domain post-processing38–40 and lðfÞ=FðAfÞ with the

end-to-end network (such as AUTOMAP27 and iRadonMap41). Note that Equa-

tion 43 works in the image domain to find perturbations. One generates a re-

constructed image using an easy way and then compares the original image

with a perturbed one to determine whether the perturbed image is accept-

able/unacceptable. Now, we describe the details on how to generate pertur-

bations for a single neural network.

Since the neural network F : Rm/ RN is a non-linear function. It is difficult

to search for a global maximum for Equation 43. Here, we use the same strat-

egy as in Antun et al.2 to search for tiny perturbations. In other words, one usu-

ally can reach the local maxima of Equation 43 using a gradient search

method. Especially, one defines the following objective function:

Dl
pðeÞ =

1

2
kFðp+AeÞ � lðfÞk22 �

g

2
kek22; (Equation 44)

Regarding the optimization of Equation 44, the gradient ascent search is a

very commonmethod.42 See the supplemental information for details of the al-

gorithm implementation.

Adversarial attacks to ACID as whole

The iterative process of ACID is to find the optimized solution in the intersec-

tion of (1) the space of data-driven priors, (2) the space of sparse images, and
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(3) the space of solutions satisfying the measurement, as shown in Figure 7.

With a tiny perturbation to our proposed ACIDworkflow, the feedforward prop-

agation of the perturbation is illustrated in Figure 8. Specifically, the formula of

Equation 44 is converted to

Dl
pð0Þ ðeÞ = 1

2
kbf�p;pð0Þ�� lðfÞk2

2
� g

2
kek22; (Equation 45)

where bf is different from f as computed by the neural network and stabilized in

the ACID framework. bf ðp;pð0ÞÞ is the solution minimizing the following objec-

tive function (Equation 1).

For the optimization problem (Equation 1), we now compute a tiny perturba-

tion via gradient ascent search. Specifically, we compute

Dl
pð0Þ +AeðeÞ =

1

2
kbf�p;pð0Þ +Ae

�� fk2
2
� g

2
kek22: (Equation 46)

The backpropagation process for ACID is shown in Figure 9. More clearly,

we define the cost function of ACID as

Lc =
1

2
kfe � fk22 �

g

2
kek22; (Equation 47)

where e is the perturbation, fe =bf ðp;pð0Þ +AeÞ is the output of the ACID

system with the perturbation e, and f is the corresponding output without e.

To find an effective e, we need to compute the gradientdLc=de, and then refine

the perturbation e using a gradient ascent algorithm. For clarity, the iteration

index for ACID is changed to kACID ðkACID = 0;.;KACIDÞ in this subsection.

In Figure 9, there are two branches contributing to fðkACIDÞðkACID = 1; .;

KACID � 1Þ; i.e., branches 1 and 2. To compute the gradient dLc=de, we take

both branches into account.

Because dLACID=de with the loss function LACID = 1
2kfe � fk22 is complicated,

we cannot directly compute the gradient of Lc. Fortunately, dLc=de can be

solved using the backpropagation algorithm,43,44 which is commonly used in

deep learning.45,46 Then, dLc=de can be split as

dLc

de
=
d
�
1
2
kfe � fk22

�
de

� ge=
dðLACIDÞ

de
� ge: (Equation 48)

Now, let us start with the backpropagation process for ACID, as shown in

Figure 9. First, we can decompose the ACID system into the three modules

keyed to p, u, and f respectively, where u = FðpÞ, and the whole procedure

is shown in Figure 9. The input and the output of p, u, and f are denoted as

pi ; ui ; f i ; po; uo; and fo, respectively. Also, the gradient of p, u, and f can

be denoted as dpo

dpi
; duo

dui
and dfo

df i
, respectively.
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Figure 8. Feedforward propagation of ad-

versarial data in the ACID framework
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Following the same steps as for the selected network, we will use the

gradient ascent method to iteratively compute adversarial attacks for the

whole ACID system, and the target to be attacked will be changed from a sin-

gle unstable neural network to our whole ACID workflow. There are two itera-

tive loops: the outer loop is for gradient ascent search, and the inner loop is for

ACID feedforward and backpropagation. The stopping criteria of finding an ad-

versarial attack for the whole ACID include (1) the number of iterations reaches

themaximumnumber of iterations for computing an adversarial attack (AA) de-

noted as KAA; or (2) the noise strength of the adversarial attack is greater than

that used in attacking the single neural network recorded in our study in terms

of the L2-norm. As mentioned above, the maximum number of iterations of the

inner loop is KACID for the ACID feedforward process. Because each whole in-

ner loop can be considered as an intermediate node, we can use the idea of

backpropagation to search for a desirable perturbation. See the supplemental

information for details of the algorithm implementation.

Heuristic analysis on the ACID convergence

Let pð0Þ denote measured data, which is generally incomplete, inconsistent,

and noisy. Specifically, the data can be sinogram or k-space data. Then, we

need the three key functions in the ACID scheme. First, an imaging model A

is the forward model from an underlying image to tomographic data, which

is assumed to be linear without loss of generality. Second, the recon-net

Fð ,Þ consists of a data-enhancement sub-net and a direct-reconstruction

sub-net. This network may be unstable. Note that even if the recon-net is un-

stable, we assume that it respects the BREN property for our convergence

analysis. Third, the CS module Q can be a standard CS algorithm or a

network-version of the CS algorithm. This module is an image post-processor

that maps an image reconstructed by the recon-net to a refined image within

the space of sparse solutions. The loss function of the CS module can be a

weighted sum of the fidelity term and the sparsity term. The fidelity term can

be in the L2 norm of the difference of the input and output images. Let k be

the index for iteration, k = 0; 1; 2;., and we define the following variables.
( )
( )
( )

( )
( )
( )

( )
( )
( )

( )
( )
( )

= 12 ( ) − ( ) − 2

− 10
dðkÞ : tomographic image produced by the recon-

net Fð ,Þ: dð0Þ =Fðpð0ÞÞ; which is assumed to be a

good initial image based on the BREN assumption.

dðkÞ; k = 1; 2;. represents successive refinements

to dð0Þ:
fðkÞ : tomographic image refinedby theCSmodule

Q; k = 0; 1; 2;.; which should be in the space of

sparse solutions in the CS framework, and may or

may not be the ground truth, depending on if RIP/

rNSP is satisfied or not.

mðkÞ : estimated data based on the output of the
CS module, k = 0; 1;2; ., which should eventually become as close as

possible to the measured data pð0Þ.
pðkÞ : unexplained residual errors based on fðk�1Þ in reference to the

measured data pð0Þ, k = 1; 2;.: Specifically, this residual is defined as pðkÞ =
pð0Þ � Afðk�1Þ. This data residual will be small when k is sufficiently large to

obtain a good image quality.

Now, let us analyze the first cycle of the ACID workflow in the

following steps.

The first step is to generate dð0Þ from the original data pð0Þ, which is done by

the recon-netFð ,Þ : dð0Þ =Fðpð0ÞÞ: Since the recon-netFð ,Þ may be unstable,

dð0Þ can be generally decomposed into the following three components: (1) f�,
the ground truth image, which is assumed to be s-sparse; (2) fð sps;0Þ, artifacts
in the space of sparse solutions of the CS module Q, which cannot be elimi-

nated based on the sparsity consideration; and (3) fð nsps;0Þ, artifacts not in

the space of sparse solution that can be suppressed by the CS module Q.

That is, dð0Þ = f� + fð sps;0Þ + fðnsps;0Þ.
Then, dð0Þ is processed by the CS module Q to obtain fð0Þ. That is,

fð0Þ =Qðdð0ÞÞ so that the difference between dð0Þ and fð0Þ is minimized subject

to that fð0Þ is in the space of sparse solutions of Q under the constraint of the

measurement. As a result, fð0Þ = f� + fðsps;0Þ (without loss of generality, here we

assume that the sparsity can be perfectly achieved). Without loss of generality,

let us take CT as an example.

Based on fð0Þ, mð0Þ can be estimated with the forward imaging model as

mð0Þ = Afð0Þ. Generally, we consider fðsps;0Þ = fðob;0Þ + fðnl;0Þ where two compo-

nents fðob;0Þ and fðnl;0Þ are observable and unobservable, respectively (an un-

observable image fðnl;0Þ is in the null space of A). When fð ob;0Þ is nonzero,

the estimated data and the measured data pð0Þ must be inconsistent. This

discrepancy is quantified as the data residual pð1Þ = pð0Þ � Afð0Þ. When A

does not satisfy RIP/rNSP, the intersection of the data constrained space

and the data prior space may contain many solutions, and thus it could be

possible that pð1Þ = 0 but fð0Þ = f� + fðnl;0Þ (that is, f� + fðnl;0Þ and f� explain the
Figure 9. Backpropagation process of ACID
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data pð0Þ equally well). Nevertheless, it is highly unlikely in practice that the re-

sidual data become zero, and the ACID iterative process will not converge

immediately.

The nonzero data residual can be further reconstructed into the image incre-

ment Dfð1Þ using the recon-net Fð ,Þ; that is, Dfð1Þ = Fðpð1ÞÞ. Then, the current

tomographic image is updated to dð1Þ = fð0Þ +Dfð1Þ (the sum of two prior-

consistent images are assumed to be still consistent with data-driven prior,

which can be alternatively achieved by applying the recon-net to the

augmented data pð0Þ +pðkÞ). Generally speaking, dð1Þ will be closer to the

ground truth f� than the previous image dð0Þ, since our reconstructed image

should explain as much as possible data pð0Þ. With dð1Þ, the residual error in

the data domain will be reduced.

Now, we can describe the converging mechanism of ACID, assuming that

the recon-net Fð ,Þ satisfies the BREN property. Our key arguments include

the following three steps:

1. After we have fð0Þ = QðFðpð0ÞÞÞ, by BREN we have kfð sps;0Þ + fðnsps;0Þk
kf�k <1.

That is, kfð ob;0Þk
kf�k =að0Þ<1 and kfðnl;0Þk

kf�k = bð0Þ<1, because fðsps;0Þ = fðob;0Þ +

fðnl;0Þ is orthogonal to fðnsps;0Þ, and fðob;0Þ is orthogonal to fðnl;0Þ. That

is, both kfð ob;0Þk and kfð nl;0Þk are fractions of kf�k.
2. We use the forward model A to synthesize the unexplained residual

data pð1Þ. Then, pð1Þ is fed to the recon-net to reconstruct Dfð1Þ =

Fðpð1ÞÞ. Sincepð1Þ is due to fð ob;0Þ. Then,�fð ob;0Þ can be reconstructed

up to a new artifact image fð ob;1Þ + fð nl;1Þ + fðnsps;1Þ. By BREN again,

kfð ob;1Þk
kfð ob;0Þk=að1Þ<1 and kfð nl;1Þk

kfð ob;0Þk = bð1Þ<1. That is, both kfð ob;1Þk and kfð nl;1Þk
are fractions of kfð ob;0Þk.

3. We can repeat this process for k/N, we have that dðNÞ = fðNÞ = f� +

fð ob;NÞ +
PN
k = 0

fð nl;kÞ. Because the norm of fð ob;NÞ is less than

kf�kQN
k = 0 a

ðkÞ/0, fð ob;NÞ/0. Meanwhile fð nl;NÞ/0 since

kfð nl;kÞk = kfð ob;k�1ÞkbðkÞ = kf�k
Yk�1

k0 =0

aðk0 ÞbðkÞ:

Noting that both aðkÞ and bðkÞ are smaller than 1, we have

k
XN
k =0

fð nl;kÞk<
XN
k =0

kf ð nl;kÞk=
XN
k = 0

kf�k
Yk�1

k0 =0

aðk0 ÞbðkÞ<N:

That is, the ACID will converge to f� +
PN
k = 0

fð nl;kÞ, which will be in the intersec-

tion of the space of solutions satisfying measured data, the space of sparse

solutions, and the space of data-driven solutions. While this ACID scheme

may converge to an image still containing a nonzero null-space component

when RIP/rNSP is not satisfied, the key point is that under the same condition

(i.e., RIP/rNSP is not satisfied) a sparsity-promoting algorithm cannot eliminate

such a nonzero null space component either, and more importantly ACID has

enforced the powerful deep prior so that the space of feasible solutions is

greatly reduced relative to that permitted with a sparsity-promoting algorithm

alone. In our experiments, we have shown that ACIDwith the kernel awareness

embedded consistently outperforms the selected sparsity-promoting algo-

rithms that do not utilize big-data-driven prior. In other words, the data prior

is instrumental in recovering the nonzero null-space component that cannot

be measured by the system matrix.

Although the above analysis is not mathematically rigorous, it indeed sheds

light on the inner working of ACID. This analysis adds value, especially in the

current situation that a general non-convex optimization theory is yet to be

developed. In the above analysis, we have assumed the BREN property of

the recon-net. As a result, even if the network is not ideal (which means pro-

ducing a substantial nonzero artifact image), the convergence is still guaran-

teed, as long as the relative error is under control (less than 100%) in the L2
norm, which is a practically motivated condition. On the other hand, it is under-

lined that if the network is indeed optimized or nearly optimized so that artifact

image is small in the first place, the iterative process will converge rapidly, and

in that case the whole ACID workflow can be unrolled into a compact feedfor-

ward network.
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Mathematical analysis on the ACID convergence

In the theoretical iterative framework (Equation 19) andwith the BRENproperty

of the neural network, we will show that the final solution fðk + 1Þ will converge to

an optimal image, and particularly the ground truth f� assuming that RIP/rNSP

is satisfied, subject to a noise-induced uncertainty distance in terms of the L2
norm and the null-space component. While this convergence analysis is not

rigorous, it helps rationalize the ACID workflow, and in this context the conver-

gence to the optimal solution implies stability.

Now, let us analyze the convergence of our ACID scheme. Denoting

M1 =
l

1+ l+m
and M2 = 1+m

l
, we have M=M1M2 =

l
1+ l+m

1+m
l

= 1+m
1+ l+m

<1: Equa-

tion 19 can be simplified to our heuristically designed ACID iteration:

� pðk +1Þ =M1

�
pð0Þ � Af ðkÞ

�
f ðk +1Þ =H�S

ε

�
H
�
f ðkÞ +M2F

�
pðk +1Þ��� : (Equation 49)

In this subsection, we replace y in Equation 19 with = in Equation 49,

abusing the notation a bit. Let us analyze the convergence of our ACID network

for noise-free measurement as follows. Assuming an initial image Fðpð0ÞÞ =
f� + fðob;0Þ + fðnl;0Þ. By the BREN property, we have

kfðob;0Þ + fðnl;0Þk<ð1�sÞkf�k: (Equation 50)

Since Hfðob;0Þ and Hfðnl;0Þ are orthogonal, we have

kf ðob;0Þ + f ðnl;0Þk = kHf ðob;0Þ + Hfðnl;0Þk= kHfðob;0Þk+ kHf ðnl;0Þk= kf ðob;0Þk+ kf ðnl;0Þk:
(Equation 51)

This implies that

kfðob;0Þk<ð1� sÞkf�k: (Equation 52)

Since fð0Þ is the output of the soft-thresholding filtering, it can be expressed as

f ð0Þ = F
�
pð0Þ�� H�f

ðe;0Þ
; (Equation 53)

where f
ðe;0Þ

is a noise background in the transform domain. If we denote f
ðe;0Þ
n

as the nth component of f
ðe;0Þ

; there will be
			f ðe;0Þn

			%ε; which is a noise floor.

Without loss of generality, in the transform domain we assume the first s com-

ponents span the s-sparse space ofHf�. Because only the first s components

of f
ðe;0Þ

is observable, let us decompose f
ðe;0Þ

into two parts ðfðe;0ÞÞn%s and

ðfðe;0ÞÞn>s, where ðfðe;0ÞÞn%s is observable and ðfðe;0ÞÞn>s is in the null space of

A. Then, Equation 53 can be rewritten as

fð0Þ = f� + f ðob;0Þ � H�
�
f
ðe;0Þ�

n%s
+gðnl;0Þ; (Equation 54)

where gðnl;0Þ = fðnl;0Þ � H�ðfðe;0ÞÞn>s is in the null space of A.

For the case k = 0:

From Equations 49 and 54, we have

pð1Þ = M1

�
pð0Þ �Af ð0Þ

�
= �M1Af

ðob;0Þ +M1AH
�
�
f
ðe;0Þ�

n%s
; (Equation 55)

F
�
pð1Þ� = �M1f

ðob;0Þ +M1H
�
�
f
ðe;0Þ�

n%s
+ f ðob;1Þ + f ðnl;1Þ; (Equation 56)

kfðob;1Þk<ð1� sÞkM1f
ðob;0Þ �M1H

�
�
f
ðe;0Þ�

n%s
k; (Equation 57)

f ð1Þ = fð0Þ +M2F
�
pð1Þ �� H�f

ðe;1Þ
= f� + ð1�MÞ

�
f ðob;0Þ

� H�
�
f
ðe;0Þ �

n%s

�
+M2f

ðob;1Þ � H�
�
f
ðe;1Þ �

n%s
+gðnl;1Þ; (Equation 58)

where gðnl;1Þ =gðnl;0Þ +M2ðfðnl;1ÞÞ � H�ðfðe;1ÞÞn>s is in the null space of A.

For the case k = 1:

From Equations 49 and 58, we have
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pð2Þ = M1

�
pð0Þ �Af ð1Þ

�
= � ð1�MÞM1A

�
f ðob;0Þ �H�

�
f
ðe;0Þ�

n%s

�
�MAfðob;1Þ +M1AH

�
�
f
ðe;1Þ�

n%s
;

(Equation 59)

F
�
pð2Þ� = � ð1�MÞM1

�
fðob;0Þ �H�

�
f
ðe;0Þ�

n%s

�
�Mf ðob;1Þ

+M1H
�
�
f
ðe;1Þ�

n%s
+ fðob;2Þ + fðnl;2Þ;

(Equation 60)

kf ðob;2Þk<ð1� sÞkð1�MÞM1

�
fðob;0Þ �H�

�
f
ðe;0Þ�

n%s

�
+ Mf ðob;1Þ

�M1H
�
�
f
ðe;1Þ�

n%s
k;

(Equation 61)

fð2Þ = f ð1Þ +M2F
�
pð2Þ�� H�f

ðe;2Þ
= f� + ð1�MÞ2

�
fðob;0Þ �H�

�
f
ðe;0Þ�

n%s

�
+ ð1�MÞ

�
M2f

ðob;1Þ �H�
�
f
ðe;1Þ�

n%s

�
+M2f

ðob;2Þ � H�
�
f
ðe;2Þ�

n%s
+gðnl;2Þ;

(Equation 62)

with gðnl;2Þ = gðnl;1Þ +M2f
ðnl;2Þ � H�ðfðe;2ÞÞn>s.

If we continue the above procedure, for k>1, it is easy to obtain that

pðk +1Þ = � ð1�MÞkM1A
�
fðob;0Þ �H�

�
f
ðe;0Þ�

n%s

�
�
Xk
k0 =1

ð1�MÞk�k0A
�
Mf ðob;k

0 Þ �M1H
�
�
f
ðe;k0 Þ�

n%s

�
= ð1�MÞpðkÞ

� A
�
Mfðob;kÞ �M1H

�
�
f
ðe;kÞ�

n%s

�
:

(Equation 63)

Denoting the ground truth image of pðkÞ as fð�;kÞ, that is pðkÞ = Af ð�;kÞ, we have

f ð�;k + 1Þ = ð1�MÞf ð�;kÞ �Mfðob;kÞ +M1H
�
�
f
ðe;kÞ�

n%s
: (Equation 64)

kfðob;k + 1Þk<ð1�sÞkf ð�;k + 1Þk: (Equation 65)

Because each component of ðfðe;kÞÞn%s is bounded by ε, we have

kH�
�
f
ðe;kÞ�

n%s
k = k

�
f
ðe;kÞ�

n%s
k%ε

ffiffiffi
s

p
: (Equation 66)

Equations 64–66 imply:

kfð�;1Þk = kM1f
ðob;0Þ + M1H

�
�
f
ðe;0Þ�

n%s
k%M1kfðob;0Þk+M1ε

ffiffiffi
s

p
; (Equation 67)

kfð�;2Þk = kð1�MÞfð�;1Þ �Mfðob;1Þ + M1H
�
�
f
ðe;1Þ�

n%s
k%ð1�MÞkf ð�;1Þk

+Mkfðob;1Þk+M1ε
ffiffiffi
s

p
%ð1�MÞkfð�;1Þk+Mð1� sÞkfð�;1Þk

+M1ε
ffiffiffi
s

p
%ð1�MsÞ

�
M1kfðob;0Þk + M1ε

ffiffiffi
s

p �
+M1ε

ffiffiffi
s

p
%ð1�MsÞM1kfðob;0Þk+ ðð1�MsÞ + 1ÞM1ε

ffiffiffi
s

p
:

(Equation 68)

If we continue this process, we can reach

kfð�;k + 1Þk% ð1�MsÞkM1kf ðob;0Þk+
Xk
k0 =0

ð1�MsÞk0M1ε
ffiffiffi
s

p

= ð1�MsÞkM1kfðob;0Þk+ 1� ð1�MsÞk + 1

Ms
M1ε

ffiffiffi
s

p
;

(Equation 69)

kfðob;k + 1Þk<ð1�sÞ
 
ð1�MsÞkM1kf ðob;0Þk +

1� ð1�MsÞk +1

M2s
ε

ffiffiffi
s

p
!
:

(Equation 70)

When k/N, Equation 70 shows

kfðob;NÞk<ð1� sÞ ffiffiffi
s

p
M2s

ε: (Equation 71)
Because the parameter ε for the soft-thresholding kernel should match the

system tolerance level, it is a noise floor. Equation 71 implies that fðob;kÞ will

converge to a noise-induced uncertainty range of the imaging system. For

an ideal noise-free case, the matching ε/0 and kfðob;NÞk/0. The bound

(Equation 69) will monotonously decrease if it satisfies ε

ffiffi
s

p
kf�k<

ð1�sÞMs

ð1�MsÞ . In other

words, if the image is not too noisy, the ACID algorithm will converge to a so-

lution in the intersection of the space constrained bymeasured data, the space

of sparse solutions, and the space of deep priors.

In the above analysis, we have assumed that the input to the neural network

is noise free; that is, pð0Þ = Af�. When there is a noise component in the pro-

jection data, this noise e can be decomposed into two parts, e1 and e2, where

e1 satisfying e1 =An� with n� being the observable image corresponding to the

noise so that f� +n� is still consistent to both the data-driven prior and the

sparsity condition, and e2 =e� e1 as a complement of e1. Because the image

n� can be absorbed by f�, we can ignore e1 and only consider e2. Because e2

is outside the intersection of the three spaces constrained by (1) data-driven

prior, (2) sparsity condition, and (3) measurement data, and thus makes no

contribution to the final image, we can just modify the system tolerance level

ε accordingly to accommodate the effect of the noise e without affecting the

above convergence analysis.
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