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Background: Hyaline cartilage tissue of joints is susceptible to injuries due to avascularity. 
Mesenchymal stem cells (MSCs) are used for cartilage tissue engineering. Among MSCs, adipose 
stem cells (ASCs) are attractive because of accessibility, their large number, and rapid growth. 
Common in vitro protocols successfully induce chondrogenic differentiation by expression of multiple 
cartilage-specific molecules. However, transforming growth factor β (TGFβ) promotes chondrogenesis 
to terminal stages. Despite much attention being given to the influences of biochemical factors on 
chondrogenesis of MSCs, few studies have examined the chondrogenic effect of mechanical factors 
such as ultrasound as a feasible tool.
Materials and Methods: In this study, we focused on inducing chondrogenesis in the early stages of 
differentiation by using low-intensity ultrasound (LIUS). Four groups of ASC pellets (control, ultrasound, 
TGFβ, and ultrasound/TGF) were cultured under chondrogenic (10 ng/ml of TGFβ3) and ultrasound conditions 
(200 mW/cm2, 10 min/day). After 2 weeks, differentiation was evaluated by histology, quantitative gene 
expression analysis, and immunohistochemistry.
Results: Our data demonstrated that ultrasound differentiated pellets showed increased expression of early 
chondrogenesis marker, Col2A, than those in TGFβ groups (P < 0.001), and Col2B and Col10 expression were 
more prominent in TGFβ groups. Immunostaining of sections showed Col2 fibrils around lacuna in LIUS 
and TGFβ treated groups.
Conclusion: Using LIUS resulted in early chondrogenesis in comparison with terminally differentiated 
chondrocytes by TGFβ. Therefore, LIUS might provide an applicable, safe, efficient, and cheap tool for 
chondrogenic differentiation of ASCs in cartilage tissue engineering.
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INTRODUCTION

Articular cartilage (AC) damage and degeneration are 
among the most common disorders due to avascularity 
that results in limited capacity for self‑repair. On the 
other hand, still there is no efficient treatment for 
this kind of diseases.[1] However, tissue engineering 
approaches by using mesenchymal stem cells (MSCs) 
are promising and adipose tissue has been described as 
an alternative source for autologous adult MSCs.[2] Zuk 
et al. showed that these cells can differentiate toward 
the adipogenic, chondrogenic, neurogenic, osteogenic, 
and myogenic lineages.[3]

Chondrogenesis of MSCs requires inducers such 
as transforming growth factor β (TGFβ).[4‑6] But 
the end result of this differentiation often is 
terminal differentiation with transient cartilage 
properties.[7,8] Previous studies have found other 
types of chondrogenic stimulants such as mechanical 
loadings. Numerous publications have shown 
the positive effects of biomechanical conditioning 
such as mechanical compression and hydrostatic 
pressure on the chondrogenic differentiation of 
MSCs. Angele et al. showed that cyclic hydrostatic 
pressure stimulated chondrogenic differentiation of 
bone marrow derived MSCs (BM‑MSCs) in pellet 
culture.[9] Studies of transplanted MSCs reported 
that application of mechanical stimuli improved 
cartilage healing in the rabbit knee joint. Huang 
et al. suggested that cyclic compressive loading could 
promote chondrogenesis of rabbit BM‑MSCs by 
inducing endogenous TGFβ.[9‑12] However, among the 
mechanical loading types, ultrasound is a noninvasive, 
cheap, and easy to apply tool. Biological effects of 
ultrasound on chondrocytes and cartilage metabolism 
have also presented some promising results.[13] 
Ultrasound has also been found to be effective on 
chondrogenesis of bone marrow MSCs. These studies 
have used ultrasound transducer directly on cells like 
chondrocytes or MSCs in order to induce chondrogenesis 
differentiation.[14,15] While for in vivo conditions or 
future clinical applications, it is necessary to consider 
the distance between transducer of ultrasound waves 
and target cells. Thus, we designed a novel method 
for calculating this distance to induce chondrogenesis 
on adipose stem cells (ASCs). The goal of this study 
was to optimize the conditions for chondrogenesis 
of ASCs by low intensity ultrasound (LIUS) and to 
compare chondrogenic stage of chondrocytes that were 
differentiated by ultrasound and TGFβ3.

MATERIALS AND METHODS

Adipose stem cells isolation and culture
Informed consent and local ethical committee approval 

were obtained for the use of adipose tissue specimens for 
this research. ASCs were isolated from subcutaneous 
adipose tissue that was harvested from patients 
undergoing elective surgical procedures. Cells were 
isolated from adipose tissue using methods previously 
described with minor modifications.[16] Briefly, the 
obtained tissue was washed with phosphate‑buffered 
saline (PBS) to remove red blood cells, chopped into 
small pieces of about 25‑50 mm3, and the extracellular 
matrix was digested for 60 min at 37°C with 
collagenase I (0.5 mg) for each gram of adipose tissue, 
St. Louis, MO, USAin PBS. The ASC‑containing cell 
suspension was centrifuged at 600 g and the pellet was 
resuspended in culture medium, which was composed 
of Dulbecco’s modified Eagle’s medium (DMEM, 
Sigma) supplemented with 500 µg/ml streptomycin 
sulfate (Sigma), 600 µg/ml penicillin (Sigma), and 10% 
placental human serum.[17] Cultures were washed with 
PBS buffer after 24 h plating to remove unattached 
cells and erythrocytes, and then re‑fed with fresh 
medium.[17,18] Cultures were maintained at 37°C with 
5% CO2 and fed two times per week.

For pellet culture, ASCs were differentiated in 
15‑ml Falcon tubes. ASC pellets were formed by 
centrifuging 2 × 105 cells at 500 g in serum‑free basal 
chondrogenic medium consisting of high glucose 
DMEM (DMEM‑HG; Gibco, Paisley, Renfrewshire, 
UK), 10−7 M dexamethasone (Sigma, St. Louis, 
MO, USA), 200 µM ascorbic acid 2‑phosphate 
(Sigma), 1% bovine serum albumin (BSA; Sigma), 
Insulin‑Transferrin‑Selenium (ITS; Gibco, Paisley, 
Renfrewshire, UK), and 1% streptomycin sulfate 
(Sigma)/penicillin (Sigma). Four groups of (control, 
ultrasound, TGFβ, and ultrasound/TGFβ) pellets were 
cultured in basal chondrogenic medium for 14 days. 
In this study, we added TGFβ3 (10 ng/ml) to basal 
chondrogenic medium for TGFβ containing groups.

Low-intensity ultrasound stimulation
With the LIUS device (Novin, Tehran, Iran), 
continuous wave at 1 MHz and intensity of 200 mW/cm2 
was applied for 10 min/day in ultrasound groups. 
The distance between transducer and cultures was 
determined by the Sarvazyan method [Figure 1a].[19‑21] 
A chamber was designed based on the distance 
determined [Figure 1b and c] and was covered with 
sound absorbent material for reducing reflected beams 
[Figure 1d]. Ultrasound treatment was carried out 
in this water‑filled chamber that was placed in an 
incubator at 37°C. Our instrument consists of an 
ultrasound generator and transducer coupled tank in 
incubator. All experiments were performed on three 
sets of samples.

Histological and immunocytochemical analysis
Pellets were harvested and fixed in 10% buffered 
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formalin for 2 h at room temperature. The fixed pellets, 
after tissue possessing, were embedded in paraffin and 
routinely stained. Also, proteoglycans were visualized 
by staining with toluidine blue for 5 min at 60°C. For 
immunocytochemical assessment, sections post fixation 
with acetone for 5 min were washed in PBS (pH 7.5) 
for 30 min at 37°C and then peroxidase activity was 
blocked by a 30‑min incubation in 0.3% H2O2 in 
ethanol. After two 5‑min rinses with PBS, the pellets 
were pretreated with 1 mg pepsin (Sigma) (1 ml in 0.5 
M acetic acid) for 40 min at 37°C for optimal antigen 
retrieval and then were washed two times for 5 min 
with PBS. The procedure was followed by overnight 
incubation at room temperature with the indicated 
antibodies in PBS containing 0.1% BSA. Primary 
antibodies to collagen type II and aggrecan (1‑100) were 
obtained from Serotec, Oxford, UK. All incubations were 
performed in a humidified chamber. After extensive 
washing with PBS to remove residual primary antibody, 
reactivity was detected using secondary antibody 
(Horse radish peroxidise; DAKO cytomation, cyan, 
Ely, UK) for 60 min at room temperature. Peroxidase 
activity was visualized using diaminobenzidine (DAB) 
as the substrate (DAKO cytomation). The sections were 
incubated for 10 min. The reaction was stopped by 
rinsing with water and the sections were counterstained 
with Hematoxylin (Merck; Darmstadt, Germany). The 
sections were dehydrated through graded alcohols, 
cleared with xylene, and permanently mounted.

Gene expression
RNA isolation was performed using Trizol 
(Invitrogen, Eugene, OR, USA). After cDNA synthesis 
(Ferementase), real‑time polymerase chain reaction 
(PCR) was performed in two separate wells for each 
of our samples (ABI SYBR Green kit). Undiluted 
cDNA (2 µl) was used in 20 µl PCR mix. Relative gene 
expression of aggrecan (AGG), collagen types 2A and 
B and collagen type 10 of the treatment groups was 
determined to housekeeping gene expression (18s) and 
then normalized to untreated (day 0) ASCs.

Statistical analysis
Data were obtained from three independent donors. 
For statistical analysis, the data were presented as 
means ± SEM. Significances were tested by one‑way 
analysis of variance (ANOVA) in Graph Pad Prism 
program. Differences were considered significant if 
P < 0.05.

RESULTS

After 2 weeks of chondrogenic differentiation using 
LIUS and TGFβ, the gene expression results of this 
study show that LIUS induces chondrogenesis in 
ASCs. The expression of Col2A increased significantly 
in the LIUS group versus control and TGFβ groups 
[Figure 2a]. However, Col2B and aggrecan expressions 
were very high in the TGFβ group (P < 0.001) 
[Figure 2b]. LIUS stimulated Col2B and aggrecan 
in comparison to the control group, but was not 

Figure 1: Instruments used for LIUS calibration and stimulations. (a) Determining optimal distance, (b) Schematic view (b) The chamber for LIUS 
exposure to ASCs pelltes. (d) Inside of chamber for LIUS exposure
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statistically significant [Figure 2b and c]. Also, 
collagen 10 expression was dramatically prominent 
in the TGFβ group versus LIUS containing groups.

The routine histologic results of sections showed 

cartilage‑like appearance in induced ASCs  
[Figure 3 c‑d] and larger lacunas in TGFβ containing 
groups [Figure 3c and d, inset]. Toluidine blue staining    
revealed metachromasia in experimental groups 
because of proteoglycan [Figure 4].

Collagen type 2 is an essential component of hyaline 
cartilage. Our results demonstrated the expression 
following LIUS and TGFβ treatment, suggesting that 

Figure 3: Micrographs of H and E staining of four experimental groups 
of ASC pellets, ×60 (inset, ×150); (a) Control; (b) LIUS; (c) TGF; and 
(d) LIUS–TGF

dc
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Figure 4: Toluidine blue staining of four experimental groups of ASCs, 
×100: (a) Control; (b) LIUS; (c) TGF; and (d) LIUS–TGF

ba

dc

Figure 2: Effect of LIUS stimulation on the gene expression of cartilage differentiation markers. The cells were cultured for up to 14 days with 
or without LIPUS and TGFβ stimulation for 10 min/day. The mRNA expression of Col2A, Col2B, aggrecan and Col 10 were determined using 
real-time PCR. The data shown are the mean ± SEM of three separate experiments. ** means is P<0.01 and *** means is P<0.001
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increased secretion of collagen 2 had occurred in the 
LIUS group similar to TGFβ group. Following Col2 
antibody staining, the secreted Col2 around lacuna 
was strongly positive in both the LIUS group and TGFβ 
group. There were also no apparent differences in Col2 
fibril positivity between the three experimental groups 
and no thick fibrils in the control group [Figure 5]. 
Also, we showed that there was more aggrecan protein 
in TGF pellets than in those treated with LIUS. 
These results were parallel with our gene expression 
observation [Figure 6].

DISCUSSION

Based on the current knowledge of tissue engineering 
technology and adipose tissue stem cell technology,[2] 
we have formulated an innovative physical approach 
for chondrogenic differentiation. In this method, 
LIUS produced functional chondrocytes in contrast to 
TGFβ differentiated chondrocytes, which were almost 
useless because of unwanted production of collagen 
type 10. Both induction methods can differentiate 
ASCs to chondrocytes which can express collagen 
type 2 protein, but gene expression results revealed 
LIUS produces Col2A more than Col2B. Type IIA 
collagen is the splice variant of type II collagen that 
has been found in prechondrocytes and immature 
chondrocytes. Johnstone et al.’s study showed that 
when chondrogenesis was achieved, the morphology 
of the aggregate changed from the appearance of a 
mesenchymal cell condensation to that of cellular 
cartilage, as seen in embryonic limb formation.[23]

Furthermore, at day 7 post‑aggregation, the presence 
of type IIA collagen mRNA was detected by reverse 
transcription (RT)‑PCR.[5]

Optimization of chondrogenesis protocol to generate 

stable cartilage is necessary for clinical use. Permanent 
cartilage development has not been elucidated; 
however, it is obvious that physical activity of 
fetus play important role in joint development.[22,23] 
Our focus is to obtain early stage of chondrocytes 
from ASCs that are suitable for transplantation in 
articular cartilage defects. A pervious study has found 
dynamic compressive loading in the early stage of 
BM‑MSC chondrogenesis.[11] This finding confirmed 
the results of this study by LIUS. Maintenance of the 
chondrocyte phenotype is critical for the formation of 
cartilaginous matrices cell therapies using autologous 
chondrocytes for repairing cartilage injuries. Tein 
showed that low‑intensity pulsed ultrasound (LIPUS) 
stimulates aggrecan and type II collagen synthesis in 
chondrocytes.[24]

LIPUS showed similar stimulatory effects on aggrecan 
and type II collagen synthesis of human chondrocytes; 
the effects on synthesis of aggrecan appeared earlier 
than that of type II collagen. Several studies have found 
that exposure to PLIUS can significantly modulate the 
chondrocyte functions.[25, 30‑32]

Some investigations used LIUS of pulsed wave 
at 30 mW/cm2 and showed ultrasound maintains 
chondrocyte properties in vitro and in vivo,[1,15] Park 
et al. used directly continuous wave at 200 mW/cm2 to 
induce chondrogenic differentiation,[33] but we applied 
this mode of waves and the same intensity at 7.5 cm 
distance. There are major differences between studies 
of this kind, therefore discrepancy of results could be 
caused by differences in the cell source, with or without 
scaffold, and LIUS stimulation mode, particularly 
transducer–cell distance. It is possible that the LIUS 
stimulation mode could be the most critical factor and 
LIUS activity could be dependent on TGFβ.[31] Findings 
suggest that there is a complex network for the control 

Figure 5: Effect of LIUS and TGF; on the chondrogenic differentiation of 
ASCs. Immunostaining of collagen in sections of experimental pellets: 
(a) Control; (b) LIUS; (c) TGF; and (d) LIUS–TGF

d
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Figure 6: Effect of LIUS and TGF; on the chondrogenic differentiation 
of ASCs. Immunostaining of aggrecan in sections of experimental 
pellets: (a) Control; (b) LIUS; (c) TGF; and (d) LIUS–TGF
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of MSC chondrogenesis. On the other hand, the exact 
mechanism of the effect of mechanical loadings such as 
ultrasound on MSCs has not been elucidated.

CONCLUSION

Our new method of ultrasound application can induce 
chondrogenesis in ASCs. LIUS interestingly produces 
chondrocytes in early stages instead of TGFβ that it 
is desirable for cartilage tissue engineering purposes. 
Thus, LIUS can be used as an efficient tool for future 
clinical applications.
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