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Abstract

Discoveries of bacterial communities in environments that previously have been described

as sterile have in recent years radically challenged the view of these environments. In this

study we aimed to use 16S rRNA sequencing to describe the composition and temporal sta-

bility of the bacterial microbiota in bovine milk from healthy udder quarters, an environment

previously believed to be sterile. Sequencing of the 16S rRNA gene is a technique com-

monly used to describe bacterial composition and diversity in various environments. With

the increased use of 16S rRNA gene sequencing, awareness of methodological pitfalls such

as biases and contamination has increased although not in equal amount. Evaluation of the

composition and temporal stability of the microbiota in 288 milk samples was largely ham-

pered by background contamination, despite careful and aseptic sample processing.

Sequencing of no template control samples, positive control samples, with defined levels of

bacteria, and 288 milk samples with various levels of bacterial growth, revealed that the

data was influenced by contaminating taxa, primarily Methylobacterium. We observed an

increasing impact of contamination with decreasing microbial biomass where the contami-

nating taxa became dominant in samples with less than 104 bacterial cells per mL. By apply-

ing a contamination filtration on the sequence data, the amount of sequences was

substantially reduced but only a minor impact on number of identified taxa and by culture

known endogenous taxa was observed. This suggests that data filtration can be useful for

identifying biologically relevant associations in milk microbiota data.

Introduction

The introduction of DNA based methods to study bacterial communities has in recent years

stimulated interest and substantially challenged previous knowledge about environments

thought to be sterile. Milk, placenta and airways are examples of environments that previously
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were considered sterile in healthy individuals, but when studied with DNA based methods

revealed to harbor their own microbiome [1–5]. Simultaneously publications on problems

with laboratory and reagent contamination in microbiota studies have become increasingly

common and a list of commonly occurring contaminating genera has been created [6, 7].

Occasionally discoveries of a microbiome in a previously believed sterile environments have

been questioned and attributed to methodological artefacts [8].

Milk microbiota has been suggested to play an important role for infant gut development

and maternal mammary gland health [9]. For the bovine mammary gland, a milk microbiota

has been described [1] and associated to; somatic cell count (SCC) [10], culture negative masti-

tis samples [2], intra-mammary infection [11, 12],history of intra-mammary infection [13],

farm environment [14] and cow genotype [15]. Recently the “logical implications” for a bovine

milk microbiota has been questioned based on udder immunology and established models for

mastitis control [16].

Sequencing of the 16S rRNA gene is the most commonly used technique to describe bacte-

rial composition and diversity in various environments. 16S rRNA gene sequencing has revo-

lutionized science but it is a challenging technique that is prone to introduction of errors and

biases (see Pollock et al. [17] for review). Several published studies report occurrence of con-

tamination in blank controls originating either from the reagents used to process samples or

the laboratory environment [6–8, 18, 19]. Salter et al. [6] was among the first to suggest a cor-

relation between microbial biomass and level of contamination. In their study, dilution series

of a pure culture of Salmonella bongori became dominated with non-SalmonellaDNA after

extraction and sequencing when input bacterial biomass was approximately 103–104 bacterial

cells per mL. Glassing et al.[7] found similar results, in their study they extracted DNA from

molecular grade water and determined DNA concentration using qPCR and universal prim-

ers. They reported contamination as 10 Escherichia coli equivalent genomes per μl in the

absence of competing human DNA, corresponding to 104 E. coli cells/mL. Subsequently, the

“best practice” for microbiome studies based on sequencing of the 16S rRNA gene is con-

stantly discussed [17].

In this paper we add information to the knowledge gap on how the microbiome profile in

low biomass bovine milk samples is affected by sample processing.

The milk samples used in this study came from an animal experiment that was designed to

assess the composition and temporal stability of the bovine milk microbiota in healthy udder

quarters using 16S rRNA gene sequencing. Due to earlier reported technical challenges with

samples containing a low bacterial biomass [6, 7] we sequenced the collected milk samples,

negative controls, positive controls and used culturing data to evaluate; 1) how sample prepa-

ration and sequencing influence the bacterial composition, 2) the relation between cultivable

bacteria and microbiota composition assessed by 16S rRNA gene sequencing and 3) level of

contamination. Further we assessed two data filtration methods to exclude contaminating taxa

from the data set.

Material and method

Animal study design

Nine cows in the dairy herd at the Swedish Livestock Research Center in Uppsala, Sweden

were enrolled in the experiment. The cows were in lactation 1–3, day 187–316 in lactation at

first sampling and had a milk SCC below 100 000 cells/mL in each udder quarter for six sam-

plings during the three weeks prior to the start of the experiment. Milk SCC is used as a mea-

surement of inflammation in the mammary gland and can also be used as an indicator of

intramammary infection. SCC below 100 000 cells per mL is considered to indicate a healthy

Microbiota data from low biomass milk samples is markedly affected by laboratory and reagent contamination

PLOS ONE | https://doi.org/10.1371/journal.pone.0218257 June 13, 2019 2 / 17

rewarded to SA, JD, MM, KPW, Kö. The funder had
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mammary gland. Quarter level milk samples were taken before morning milking on Mondays

and Thursdays over four consecutive weeks. All cows were fed a standard diet with ad libitum
silage and individual concentrate rations to meet the calculated nutrient requirements for their

individual milk production. During the whole experiment all cows were kept in one group in a

loose housing system, having access to the same type of bedding material, milked twice daily

in an automatic rotary (DeLaval AMR, DeLaval AB, Tumba, Sweden) with 12 hour intervals.

No antibiotics or other medication were given to the animals during the experiment or the

three weeks preceding the experiment.

All animal handling was approved by the Uppsala animal ethics committee, protocol no:

C99/13.

Sampling and bacterial culturing

Milk samples were taken according to guidelines for bacteriological analyses [20]. Teats were

wiped visually clean with an individual moist cloth, the teat apex was wiped with two alcohol

soaked cotton wads, three squirts of milk were discarded before the milk sample was collected

by hand milking into a sterile 15 mL tube and placed on ice. The collected milk samples were

transported to a laboratory and gently mixed after reaching room temperature before being

divided into five aliquots, each consisting of 2 mL of milk; four aliquots were frozen at minus

80˚C and stored (for maximum 7 months) until sample preparation whereas the fifth aliquot

was used for bacterial culturing and determination of SCC. The maximum time from sampling

to freezing or bacterial culturing was 4.1 and 5.1 hours, respectively.

For bacterial culturing; 10 μl of milk was inoculated on agar plates with 5% bovine blood

and 0.05% esculin (National Veterinary Institute, Uppsala, Sweden) and incubated aerobically

at 37˚C. Growth was evaluated after 24 and 48 hours as no growth 0–2 CFU/10 μl, sparse

growth 3–10 CFU/10 μl, moderate growth 11–50 CFU/10 μl or abundant growth >50 CFU/

10 μl. Plates with growth of>2 CFU were evaluated, and bacterial isolates were identified to

species level using MALDI-TOF, when appropriate, at the ISO 17025 accredited Mastitis Labo-

ratory at the National Veterinary Institute, Uppsala, Sweden. Milk SCC was measured on a

DeLaval Cell counter (DCC DeLaval AB, Tumba, Sweden) with a fluorescent microscopy

based method. Milk aliquots were processed and bacterial inoculation was performed on an

ethanol cleaned bench top, only sterile equipment was used in contact with milk.

DNA extraction

Milk aliquots were thawed, warmed to 20˚C and vortexed at room temperature before 1 mL of

milk was withdrawn for DNA extraction. The milk was centrifuged at 13 000 x g for 5 minutes,

the supernatant and the fat layer was removed and DNA was extracted from the cell pellet

using the PowerFood Microbial DNA isolation kit, kit batch no PF15C12, (MO BIO Laborato-

ries, Inc., Carlsbad, USA) according to the manufacturer’s instructions except that a Mini-

Beadbeater (Biospec products, Bartlesville, USA) was used for cell lysis. The bead beating step

was performed 2 x 1 minutes at the setting homogenize. DNA extraction was performed in

batches of 24 samples. For each DNA extraction batch an empty vial was used as a no-template

DNA extraction control (NTC) into which the first reagent was added and further processed

as the milk samples, i.e. one NTC per 23 extracted milk samples.

16S rRNA gene amplicon sequencing

Illumina MiSeq sequencing libraries were prepared by amplifying the V3–V4 region of the 16S

rRNA gene using the 341F-805R primers described by Hugerth et al. [21]. The primers con-

tained a linker sequence compatible with barcoding primers that were used to attach sample
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specific barcodes and Illumina adaptors in a second PCR. Each PCR reaction contained 12.5 μl

of Phusion high-fidelity PCR master mix with HF buffer (Life technologies; Carlsbad, USA),

1.25 μl of each primer in a 10 μM solution, 5 μl DNA free water and 5 μl of DNA template.

Thermocycling was performed on a MyCycler (Bio-Rad Laboratories Inc., Hercules, USA) and

thermocycling conditions were: initial denaturation at 98˚C for 30 sec, 35 cycles of denatur-

ation at 98˚C for 10 sec, annealing at 60˚C for 30 sec and elongation at 72˚C for 7 sec, a final

elongation was performed at 72˚C for 2 min after the last cycle. A positive and a negative PCR

control were included in each run and the PCR reaction was repeated if the negative PCR con-

trol contained a band when visualised on 1% agarose gel. PCR products (20 μl) were purified

with Ampure Beads (Beckman Coulter, Brea, USA) using 0.8 volumes of beads per volume of

PCR product and eluted in (40 μl of) DNA free water. The second PCR attached Illumina

adapters and barcodes; used the same thermocycling conditions for 10 cycles, 10 μl of purified

PCR products as DNA template and one barcode per milk sample. PCR products were again

purified with Ampure Beads but eluted in Elution Buffer. DNA was quantified with Qubit 3.0

Fluorometer (Life Technologies, Carlsbad, USA). The samples were thereafter pooled into

equimolar amounts and sequenced on an Illumina MiSeq sequencer with v3 sequencing chem-

istry (Illumina Inc., San Diego, USA) at the Science for Life Laboratory (Uppsala, Sweden).

The NTC’s from DNA extraction were included in all the steps of the 16S gene amplification.

In the second PCR, all NTC reactions were run separately but a limited number of barcodes

were used, i.e. the same barcode was used for several NTC. DNA extraction and first PCR

preparations were performed in a laminar air-flow hood cleaned with 10% bleach and 70%

ethanol, and UV-irradiated for 30 minutes before execution of sample processing.

Mock community as positive control

Five commonly occurring udder pathogens were chosen to create a bacterial mock community

used for method evaluation. Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC

13883, Streptococcus dysgalactiae CCUG 39323, Staphylococcus aureus ATCC 25923 and True-
perella pyogenes CCUG 39326 were cultured separately in 50 mL nutrient broth with 10%

horse serum aerobically on a shaker at 37˚C. The time of culture was 25 hours for T. pyogenes
and 4 hours for the other bacteria. Bacterial concentrations were determined by manual count-

ing of several aliquots from different dilutions using a Bürker counting chamber and a micro-

scope with 100X enlargement. The five bacterial strains were used to create a mock

community with equal numbers of cells and the mock community was prepared in three dif-

ferent dilutions (107, 105 and 103 cells of each bacterial species per mL). DNA from the mock

communities was extracted and 16S gene amplification was performed as for the milk samples

except that a Precellys24 (Bertin Technologies, Montigny-le-Bretonneux, France, with cell dis-

ruption for 2 x 45 sec at 6500 rpm) was used for cell lysis during DNA extraction. Information

on number of 16S rRNA gene copies per bacterial strain was obtained from the Ribosomal

RNA Operon Copy Number Database (RRNDB) and NCBI GeneBank for accurate calculation

of relative abundance of 16S rRNA genes in input data.

Illumina sequencing data analysis

The generated sequencing data was processed according to the procedure described by Müller

et al. [22]. Cutadapt tool [23] and Quantitative Insights into Microbial Ecology (QIIME) ver-

sion 1.8.0 [24] was used to generate operational taxonomic units (OTUs) using the open refer-

ence OTU picking strategy at a threshold of 97%, with U-CLUST against a Greengenes core

set (gg_13_8) [25, 26]. The representative sequences were aligned against the Greengenes core

set using PyNAST software [27]. The chimeric sequences were removed by ChimeraSlayer
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PLOS ONE | https://doi.org/10.1371/journal.pone.0218257 June 13, 2019 4 / 17

https://doi.org/10.1371/journal.pone.0218257


[28]. Taxonomy was assigned to each OTU using the Ribosomal Database Project (RDP) clas-

sifier with a minimum confidence threshold of 80% [29]. The OTU table was further filtered to

include OTUs present in at least three samples and randomly subsampled to contain 1498

reads per sample. After analysis of sequence data, genera that represented >1% of the total rel-

ative abundance in a NTC were identified as contaminants. Taxonomic families containing a

contaminant were manually filtered out from the OTU table. A weighted UniFrac dissimilarity

matrix was created in QIIME for the original and the filtered data. The UniFrac distances

between samples were used to compare consecutively collected samples in bacteriologically

stable quarters with randomly selected samples (i.e. samples taken from quarters with the same

bacteriological finding by culture three or four days apart were compared to random values in

the data set). This procedure was repeated both in the original and the filtered data set. In addi-

tion, the contamination identified herein were compared to the contamination identified by

the “decontam” package in R [30].

Descriptive analysis on sequencing results and statistical analyses, multivariate analyses and

contamination identification were performed using Microsoft Excel, PAST [31] and R [32]

and statistical significance was set at the level P<0.05. The 16S rRNA gene sequences were

deposited in the NCBI Sequence Read Archive (SRA) under accession number PRJNA485047.

Results

Udder health and bacterial growth in milk

In this study the milk SCC of a majority of the quarters were stable and 96.9% (279/288) of the

samples had a value below 100 000 cells/mL, averaging 17 195 cells/mL (Fig 1). The majority of

the milk samples, 79.2% (228/288 samples), had no bacterial growth after 48 hours, 20 samples

(6.9%) had sparse growth, 34 samples (11.8%) had moderate growth and six samples (2.1%)

had abundant growth of bacteria after 48 hours (Table 1). Bacterial species identified by the

Mastitis Laboratory at the National Veterinary Institute, Uppsala, Sweden were: Corynebacte-
rium spp. (44 samples), mixed flora (15 samples) and Staphylococcus spp. (1 sample) (Table 1).

Mixed flora was defined as growth of more than one phenotypically different CFU on the agar

Fig 1. Milk somatic cell count (SCC) per cow, quarter and sampling time. Milk SCC expressed as x 1000/mL, cow (A-I) and quarter (Q1-Q4) in columns and

sampling time (1–8) in rows. Light green; 0–24, dark green; 25–50, yellow; 51–100, pink;>100 cells/mL.

https://doi.org/10.1371/journal.pone.0218257.g001
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plate and were not further evaluated. Sixteen out of 36 quarters were bacteriological stable by

culture throughout the study period, i.e. had the same bacterial species identified, or absence

of bacteria, at all sampling points.

Microbiota in milk samples and negative controls

The 288 milk samples generated on average of 7 726 ±8355 quality controlled reads per sample

(reads and DNA concentrations are provided in S1 Table). With the subsample threshold set

to 1498 reads/sample, 278 milk samples were used for further analysis.

According to the sequencing results, four genera were present in more than 95% of all the

milk samples;Methylobacterium, Achromobacter, Burkholderia and an unclassified genus in

the family Oxalobacteriaceae. Together these genera represented 66% of the sequence data.

Methylobacterium was the only genus present in all milk samples with average abundance of

57.9% (range 0.4–92.9%). Box plots for the ten most abundant genera are provided in S1 Fig.

A principal coordinate analysis (PCoA) based on Bray Curtis distances was applied on the

sequence and culture dependent data to search for clustering patterns among the samples. The

PCoA revealed that growth of Corynebacterium spp. was a major factor affecting dissimilarity in the

milk samples (Fig 2). An analysis of similarity (ANOSIM) revealed that samples with bacterial

growth (Corynebacterium or mixed flora) were significantly different from other samples (S3 Table).

After DNA isolation and PCR amplification, seven out of 14 NTC had measurable amounts of

DNA and were subsequently sequenced. Within the four barcodes used for the sequenced NTC,

47 different taxa were identified. The most predominant genus in the NTC’s,Methylobacterium,

was present in all NTC’s and represented 70.0–92.2% of the data (Fig 3). In addition, Achromobac-
ter, Burkholderia, Corynebacterium, Pseudomonas, Stenotrophomonas and unclassified genus in

the family Oxalobacteraceae and Comamonadaceae were present in all sequenced NTC.

SinceMethylobacterium was detected in all milk samples and in all NTC’s we investigated if

there were differences in (Methylobacterium) abundance, between DNA extraction batches

with and without detectable amounts of DNA in the NTC. Regardless if the NTC for a specific

DNA extraction batch contained or did not contain DNA,Methylobacterium was the most

predominant genera in the associated milk samples. Moreover, there was no difference in rela-

tive abundance ofMethylobacterium between milk samples prepared in DNA extraction

batches with or without measurable amounts of DNA in NTC (p-value 0.75, t-test).

There was an association between the proportion ofMethylobacterium and number of bac-

teria determined by culturing. In milk samples with no bacterial growth after 48 hours,Methy-
lobacterium was the most predominant taxa with an average abundance of 61.8%. In samples

with abundant growth (i.e. >50 CFU/10μl)Methylobacterium was present in significantly

lower proportions (P<0.01, t-test) with an average abundance of 32.3% (Fig 4), these samples

were instead dominated by Corynebacterium, which is in agreement with what was found on

the agar plates. There was a decrease in number of identified taxa per milk sample with

increased bacterial growth/biomass, a total of 460 different taxa were identified in milk sam-

ples with no bacterial growth while a total of 94 different taxa were identified in milk samples

with abundant bacterial growth (>50 CFU/10μl milk).

Mock community as positive control

The microbial analysis of the three mock community dilutions revealed the presence of a total

of 21 different taxa. More than 96% of the sequence data in the two highest concentrations

(5x107 and 5x105 cells/mL) were associated with the input bacteria whereas in the lowest con-

centration (5x103 cells/mL) only 60% of the sequence data originated from input bacteria. In

the lowest concentration (5x103 cells/mL)Methylobacterium represented 37% of the total
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abundance (Fig 5), while this species accounted for less than 0.5% of the sequences when the

bacterial concentration was higher than 105 cells/mL. There were also indications that sample

processing (DNA extraction, PCR, choice of primer etc.) influenced the proportions of the

taxa within the mock community. Gram-positive Staphylococcus aureus and Streptococcus dys-
galactiae became less abundant in the sequence data compared to input, while Trueperella pyo-
genes became more abundant than expected. The Gram-negative Escherichia coli and

Klebsiella pneumoniae became more abundant in the sequence data than input and were cor-

rectly classified at the family level (Enterobacteriaceae). However at genus level Escherichia coli
and Klebsiella pneumoniae where classified as Klebsiella, Erwinia, Escherichia and “other”.

Effect of data filtration and identified contaminants

An analysis of sequence data identified genera that represented >1% of the total relative abun-

dance in a NTC as contaminants. Nine taxonomic families were found to contain at least one

Fig 2. Principal coordinates analysis with Bray-Curtis similarity index of milk samples in the study (n = 278). Samples are color-coded based

on bacterial growth; black = no growth, green = growth of Corynebacterium spp, yellow = growth of mixed bacterial flora.

https://doi.org/10.1371/journal.pone.0218257.g002
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contaminant and were excluded from the data set. Consequently, the filtered data set did not

contain any genera from the families; Alcaligenaceae, Burkholderiaceae, Caulobacteraceae,
Methylobacteriaceae, Nocardioidaceae, Oxalobacteraceae, Pseudomonadaceae, Rhodobactera-
ceae or Xanthomonadaceae, a total of 39 genera in the data set belonged to these families. Con-

tamination filtration led to a 72% reduction in available data from milk samples leaving 622

Fig 3. Relative abundance of the 15 most common families or order of bacteria found in NTC. 14 no-template DNA extraction controls (NTC’s) were

individually processed and barcoded with a limited number of barcodes, 7 NTC’s marked with 4 different barcodes were included in sequencing.

https://doi.org/10.1371/journal.pone.0218257.g003
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839 sequence reads for further analysis. The number of identified taxa decreased from 487 in

the original data set to 438 in the filtered data set. After data filtration Corynebacterium and

unclassified genus in the Ruminococcaceae and Clostridiaceae family were the most abundant

genera, together they represented 33% of total abundance and were present in 94%, 96% and

72% of the milk samples respectively.

Fig 4. Relative abundance of the 15 most common families or order of bacteria found in bovine milk samples. Milk samples (n = 278) are grouped by

number of colony forming units (CFU) in 10μl milk. Presence of Corynebacterium spp. was confirmed by culture and found in 44 milk samples.

https://doi.org/10.1371/journal.pone.0218257.g004
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In order to study how the filtration method influenced the relation between samples, Uni-

Frac distances between samples collected consecutively from the same cow and quarter were

compared with UniFrac distances between randomly selected samples in the data set. Before

filtration there was no difference in the UniFrac distance between consecutive and random

comparisons (p-value 0.30, t-test). However in the filtered data set there was a significant

Fig 5. Relative abundance of input cells and the 10 most common genera found by sequencing in a mock community. Input bacterial cells, corrected for

number of 16S rRNA genes per species (left), and sequencing results (right) from a bacterial mock community at three different dilutions of a bacterial mix

created from five commonly occurring udder pathogens.

https://doi.org/10.1371/journal.pone.0218257.g005
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difference between consecutive and random comparisons with larger UniFrac distances for

random comparisons (p-value <0.01, t-test).

The recently published “decontam” R-package [30] was also used to identify contamina-

tion. The strict (0.5) threshold settings in the prevalence-based contaminant identification in

the “decontam” R-package identified 32 contaminating taxa. Ten taxa were identified as con-

tamination by both protocols, a list of identified contaminants is available in S2 Table, Coryne-
bacterium was butMethylobacterium was not identified as a contaminant by the “decontam”

R-package.

Discussion

The animal experiment for this study was designed to compare the milk microbiota within

quarter over time, as well as between quarters and between animals over time. A large propor-

tion of quarters had a similar bacteriological finding by culture throughout the study period

indicating that bacteria findings by culture dependent methods were stable over time. Coryne-
bacterium spp. was the most commonly isolated bacteria by culture and was repeatedly

detected in milk from the same quarters adding further support that bacteriological response

was stable over time. We aimed to study the composition and temporal stability of the milk

microbiota using 16S amplicon sequencing. Despite a very careful treatment of the samples,

with all DNA isolations carried out in a laminar air flow hood pretreated with UV light and

cleaned with both 10% bleach and 70% ethanol, contamination from reagents and the labora-

tory environment had a pronounced effect on the results. Due to this contamination, charac-

terization and assessment of temporal stability of the bovine milk microbiota via 16S rRNA

sequencing proved difficult and is further discussed below.

When bacterial cell count determined by culture dependent analysis or manual counting

was below 104 cells per mL, contaminating taxa became more dominant. This was observed

both in sequence data generated from a created mock community as well as in milk samples

where concentration of bacteria was determined by a culture-based approach. When the bacte-

rial concentration in a created mock community corresponded to 5x103 cells/mLMethylobac-
terium, the major contaminant in this study, represented 37% of the sequences. Similar

proportions ofMethylobacterium was identified in milk samples when the bacterial concentra-

tion corresponded to 103−104 cells/mL. Noteworthy is an observed correlation between the

relative abundance ofMethylobacterium and abundance of bacterial growth in milk samples,

whereMethylobacterium became more abundant with fewer viable bacteria (Fig 4). These

results are in line with previously published data from Salter et al. and Glassing et al. [6, 7]

who reported thresholds of 103–104 bacterial cells/mL and 10 E. coli equivalent genomes per μl

respectively. Thus, the evidence that low bacterial biomass 16S-based microbiota studies are

prone to be contaminated is increasing.

Randomly occurring DNA contamination in a laboratory environment is challenging to

overcome and milk samples can easily become contaminated either at sampling in the barn, or

during laboratory sample processing. In this experiment precaution was taken to minimize

and characterize contamination arriving from different steps but measurable amounts of DNA

occurred in every other NTC from DNA extraction. Due to the small bacteriological biomass

in the milk samples it was necessary to use many PCR-cycles. Using many PCR-cycles may

enhance the impact of a contamination and introduce PCR-artefacts such as chimera

sequences but was inevitable in this study. However, there was no statistical difference in rela-

tive abundance ofMethylobacterium in milk samples prepared in batches where measurable

amounts of DNA could be found in the NTC, compared with batches where no DNA could be
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found in the NTC. This led us to the conclusion that absence of visible bands or measurable

amounts of DNA in NTC´s does not necessarily imply absence of contamination.

Methylobacterium is a genus consisting of 52 species of aerobic Gram-negative bacteria that

are slow growing, commonly isolated from soil, leaf surface and fresh water and have capacity

to form biofilms [33].Methylobacterium has been reported to cause colonization and infection

in immunocompromised humans [34] and has previously been reported as a contaminant in

microbiome studies [6, 35]; to our knowledgeMethylobacterium has never been isolated from

milk of dairy cows.

Different DNA extraction methods can affect and skew the relative abundance of bacteria

present in a mock community and some DNA extraction methods are more prone to intro-

duce contamination [18, 36]. Further, in each step to prepare samples for sequencing there is a

risk that biases are introduced (thoroughly discussed by Pollock et al. [17]). We used the

Power food DNA extraction kit from MO BIO since this according to the literature [37] and

personal experience yielded most DNA from the milk samples. From the sequenced mock

community we noticed that the method introduced some biases in the distribution of taxa.

Sequencing of the mock community led to an overestimation of Gram-negative bacteria and

an underestimation of two out of three Gram-positive bacteria (Fig 5) an effect that might be

related to the DNA extraction method used. We also noticed that partial sequencing of the 16S

rRNA gene might not be sufficient for correct annotation of all present bacteria since E. coli
and K. pneumoniae were annotated into four different genera, although, all within the Entero-
bacteriaceae family.

Identification of contaminants in this study was based on presence of a taxa in NTC and a

threshold of>1% relative abundance. Davis et al. [30] reason in a similar manner for the prev-

alence-based contaminant identification in the R-package “decontam”. Accordingly; preva-

lence of contaminants will be higher in negative controls than in true samples due to the

absence of competing DNA in the sequencing process. The prevalence-based contaminant

identification in the “decontam” R-package also include a stricter threshold option that will

identify all sequences that are more prevalent in negative controls than in positive samples as

contaminants. Here,Methylobacterium was not identified as a contaminant by the “decontam”

R-package, likely due to the presence ofMethylobacterium in all samples and high prevalence

in the milk samples. In conclusion, the “decontam” R-package is a highly useful tool and com-

plement for identification of contaminating taxa.

Evaluation of the data filtering of contaminants in this data set was made under the assump-

tion that a milk microbiota stable over a short time period exists, in the absence of disease and

major environmental changes. This assumption was based on the fact that in the bovine udder

each quarter (mammary gland) functions as a separate unit. Intra-mammary infection often

occurs in a quarter with no immunological or bacterial response in neighboring quarters.

Studies of the bovine milk microbiota have confirmed that the microbiota in two quarters

within the same cow can be substantially different [2, 11] and also that the microbiota profile

of quarters within the same cow are more similar to each other than quarters of other cows

[38]. It has also been shown that the human milk microbiota often, yet not always, is stable

over time [39]. Thus, we expected the difference in microbiota between two samples to be

smallest if they were taken from the same quarter from two consecutive sampling points that

had the same bacteriological response by culture. With the weighted UniFrac dissimilarity

matrix created in QIIME for the original and the filtered data, distances for consecutive sam-

plings in bacteriologically stable quarters were compared to distances for randomly selected

comparisons in the data set. In the original data set there was no difference between consecu-

tive and random comparisons, while in the filtered data set there was a significant difference

between consecutive and random comparisons, with larger similarity between consecutive
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comparisons. This demonstrates that even if the data filtration contribute to a substantial

reduction in sequence data it can improve the possibility to find biologically relevant associa-

tions in milk microbiota data.

In this study Corynebacterium was the most commonly isolated bacteria in milk samples by

culture but CorynebacteriumDNA was also present in all NTC. With the threshold set to>1%

abundance in a NTC for a genera to be categorized as a contaminant, Corynebacterium did not

meet the requirements and was subsequently not filtered from the data set, consequently Cory-
nebacterium became the most abundant genus in the data after filtration. Interestingly Coryne-
bacterium isolated by culture was a major factor affecting dissimilarity before filtration even

though it was not very abundant (S3 Table). Of the nine taxonomic families that were filtered

from the data set, none is known to contain major mastitis causing pathogens. In the family

Pseudomonadaceae, one genus (Pseudomonas aeruginosa) is known to cause mastitis in dairy

cows but is considered a rare udder pathogen in Sweden [40]. A similar strategy to exclude

contaminating taxa used here was discussed by Glassing et al. [7] but rejected due to too large

data loss and loss of known endogenous taxa. The method for filtration used herein did indeed

lead to a great reduction in available data but had a small effect on the number of identified

taxa and only had a minor impact on known endogenous taxa in the bovine milk microbiota.

In this study we have shown that the impact of contamination in samples with a low bio-

mass can conceal biologically relevant associations. Further we conclude that proper identifi-

cation of the contaminants is necessary in order to evaluate the overall impact of the

contamination, and that absence of measurable amounts of DNA in negative controls does not

imply absence of contamination.

Supporting information

S1 Fig. Box plot of the 10 most abundant genera separated by bacterial growth in 10 μl of

milk. Relative abundance of the ten most abundant genera before data filtration separated by

bacterial growth in 10 μl of milk. The 25–75 percent quartiles and median value are shown

within the box, whiskers represent value less than 1.5 times box height, values 1.5–3 times

box height are shown as circles and values>3 times box height are shown as stars.

(PNG)

S1 Table. Sample information.
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S2 Table. List of contaminants identified as >1% prevalence in NTC or by the “decontam”

R-package.

(XLSX)

S3 Table. ANOSIM between samples classified by type of bacterial growth. One-way ANO-

SIM with Bonferroni corrected p-values based on BrayCurtis similarity index, samples are clas-

sified based on the type of bacterial growth identified by culture. One sample with growth of

Staphylococcus omitted.

(DOCX)
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