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Abstract
Background: The global prevalence of nonalcoholic fatty liver disease (NAFLD) is increasing. The pathogenesis of NAFLD is
multifaceted, and the underlying mechanisms are elusive. We conducted data mining analysis to gain a better insight into the
disease and to identify the hub genes associated with the progression of NAFLD.
Methods: The dataset GSE49541, containing the profile of 40 samples representing mild stages of NAFLD and 32 samples
representing advanced stages of NAFLD, was acquired from the Gene Expression Omnibus database. Differentially expressed
genes (DEGs) were identified using the R programming language. The Database for Annotation, Visualization and Integrated
Discovery (DAVID) online tool and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database were used to
perform the enrichment analysis and construct proteineprotein interaction (PPI) networks, respectively. Subsequently, tran-
scription factor networks and key modules were identified. The hub genes were validated in a mice model of high fat diet (HFD)-
induced NAFLD and in cultured HepG2 cells by real-time quantitative PCR.
Results: Based on the GSE49541 dataset, 57 DEGs were selected and enriched in chemokine activity and cellular component,
including the extracellular region. Twelve transcription factors associated with DEGs were indicated from PPI analysis. Upre-
gulated expression of five hub genes (SOX9, CCL20, CXCL1, CD24, and CHST4), which were identified from the dataset, was also
observed in the livers of HFD-induced NAFLD mice and in HepG2 cells exposed to palmitic acid or advanced glycation end
products.
Conclusion: The hub genes SOX9, CCL20, CXCL1, CD24, and CHST4 are involved in the aggravation of NAFLD. Our results
offer new insights into the underlying mechanism of NAFLD progression.
Copyright© 2021 Chinese Medical Association. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

The incidence of nonalcoholic fatty liver disease
(NAFLD) and its advanced subtypes has been rising
rapidly, leading to health and economic burden on the
patients.1,2 NAFLD is the leading cause of liver dis-
eases globally and is associated with several metabolic
rvices by Elsevier B.V. on behalf of KeAi Communications Co. Ltd.
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disorders, such as type 2 diabetes.3,4 NAFLD includes
a series of conditions from early steatosis to nonalco-
holic steatohepatitis (NASH), and even hepatic carci-
noma.5 However, the exact mechanisms of the
development and progression of NAFLD are still not
completely elucidated.6

Nowadays, microarray technology is a widely used
method in discovery-based biomedical research.7 The
pathogenesis of NAFLD involves a myriad of distinct
molecular pathways and cellular changes. Several
studies have reported the molecular mechanisms of
NAFLD pathogenesis in the liver.8e10 However, the
key genes associated with the disease progression and
the underlying functional pathways remain obscure,
and whether the differentially expressed genes (DEGs)
are involved in hepatic lipid metabolism is still unclear.

In the present study, we have integrated the avail-
able microarray datasets of human NAFLD liver tis-
sues to perform comprehensive bioinformatic analysis
of DEGs. Moreover, we have verified the expression
changes of the liver hub genes of high fat diet (HFD)-
induced NAFLD mice, as well as in the HepG2 cells
exposed to glucolipotoxicity. Our results might eluci-
date potential biomarkers and targets for the diagnosis
and treatment of NAFLD.

Methods

Animal experiments ethics

The animal experiments in this study were approved
by the Animal Care and Use Committee of Peking
University (No. LA2018316). All ethical principles
involved in the care and usage of laboratory animals
were carried out.

Microarray data collection

The Gene Expression Omnibus dataset GSE49541,
which was contributed by Moylan et al.,11 was down-
loaded from the National Center for Biotechnology
Information website. The dataset contained a total of
72 RNA profiles from liver samples, including 40
belonging to mild NAFLD (fibrosis stage 0e1) and 32
belonging to advanced NAFLD (fibrosis stage 3e4).
The dataset was generated using the GPL570 platform
(Affymetrix Human Genome U133A Array).

Data preprocessing and DEG screening

The R language (Affy package, version 1.64.0) was
used to manipulate the raw data. Based on annotation
files, the probe IDs were converted into gene symbols,
following background correction, standardization, and
expression value calculation processes, as previously
described.12 Subsequently, DEG screening was per-
formed using the R language Limma package (version
3.42.2). The statistically significant screening criteria
for the identification of DEGs were defined at jlog 2
(fold change)j > 1 and P < 0.05.

Enrichment analysis of DEGs

To evaluate the functions of a cluster of DEGs, the
Database for Annotation, Visualization and Integrated
Discovery (DAVID) tool (https://david.ncifcrf.gov/)
was used to perform the Gene Ontology (GO) anal-
ysis. Moreover, the Kyoto Encyclopedia of Genes and
Genomes (KEGG) was used for the pathway analysis
of DEGs. The enrichment analysis of DEGs was
regarded as statistically significant at P < 0.05. The
GO enrichment package of the R language, gplot, was
used to list all the enriched pathways according to
the P value.

Proteineprotein interaction and module analyses

To investigate the connections among the proteins
encoded by the identified DEGs, the Search Tool for the
Retrieval of Interacting Genes (STRING; https://string-
db.org/) was used to establish the proteineprotein
interaction (PPI) network, with a confidence score
>0.4 as the threshold. Cytoscape software (version
3.8.2x; The Cytoscape Consortium, New York City, NY,
USA) was used to visualize the PPI network. Molecular
Complex Detection (MCODE) algorithm was used to
identify the key modules of the PPI network within the
set criteria of significance, which were defined at
degree ¼ 5, node score ¼ 0.2, k-core ¼ 2, and max
depth ¼ 100. According to this algorithm of Cytoscape,
the obtained modules were ranked and scored. The top 2
modules with the highest score were considered to be
significant. To identify hub genes, the top 16 genes were
ranked. The genes with common diagrams �10 in every
topological algorithm were considered hub genes.

Transcription factor analysis

The expression of genes is regulated by transcrip-
tion factors. To predict and visualize the key tran-
scription factors of the PPI network, the iRegulon
plugin of Cytoscape (version 3.8.2x) was used, as
previously described.13 Normalized enrichment score
(NES) > 5 was defined to select transcription factors.

https://david.ncifcrf.gov/
https://string-db.org/
https://string-db.org/
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According to the NES score, the top three modules
were ranked and listed.

Establishment of the mouse NAFLD model

All mice were purchased from the Vital River An-
imal Center (Beijing, China). After one-week of
acclimatization, twelve 8-week-old male C57BL/6N
mice were divided into three groups. Two groups of
mice were fed an HFD (dietary fat content of 60%) for
18 weeks (n ¼ 6) and 24 weeks (n ¼ 3), which rep-
resented the mild and advanced NAFLD models,
respectively. One additional group of mice (n ¼ 3) fed
a normal diet (dietary fat content of 4%) served as the
control. All the mice were reared in individually
ventilated cages located in the same room. Food and
water were accessed ad libitum. Before sacrificing the
animals, magnetic resonance imaging (MRI; Siemens
Prisma, Munich, Germany) was used to measure the
body fat content.

Oil red O staining

The liver tissues were fixed overnight with 10% (v/v)
neutral-buffered formalin at 4 �C and embedded in
optimal cutting temperature compound. The 5 mm-thick
sections were stained with oil red O solution (Service-
bio, Wuhan, China) to assess the accumulation of he-
patic fat. Images were obtained using a panoramic
section scanner (3Dhistech, Pannoramic, Budapest,
Hungary).

Establishment of liver cell glucolipotoxicity models in
vitro

Human liver cell line, HepG2, (validated for gene
expression and checked for mycoplasma contamina-
tion before use) were kindly gifted from the Medical
Research Center, Peking University Third Hospital
(Beijing, China).14 Palmitic acid (PA; Sigma, St.
Louis-Aldrich, MO, USA) was used to establish the
lipotoxicity-induced hepatic insulin resistance model,
and advanced glycation end products (AGEs; Abcam,
Cambridge, UK) were used to generate the glucotox-
icity-induced hepatic damage model in vitro. HepG2
cells were incubated in Dulbecco's Modified Eagle's
Medium (Gibco, Carlsbad, CA, USA) with 10% (v/v)
fetal bovine serum (Gibco). PA (256 mg) was dissolved
in 5 mL anhydrous ethanol, and then titrated with 5 mL
sodium hydroxide (0.l mol/L). A total of 5 mL PA
solution was slowly dripped into 95 mL 10% bovine
serum albumin to obtain a complex with a concentra-
tion of 5 mmol/L as previously described.15 Subse-
quently, the HepG2 cells were incubated with PA (125,
250, 500, and 1000 nmol/L), or with AGEs (1, 10, and
100 mg/mL) for 24 h. Cells were then collected for
RNA extraction.

Real-time quantitative PCR

RNA of liver tissues or HepG2 cells was extracted
with Trizol (Thermo Fisher Scientific, Waltham, MA,
USA) and reverse transcribed to cDNA using a Revert
Aid First Strand cDNA Synthesis kit (Fermentas, Vil-
nius, Lithuania). The cDNA was subjected to quanti-
tative analysis using the SYBR Green supermix (Bio-
Rad Laboratories, Hercules, CA, USA) in a real-time
quantitative PCR detection system (Bio-Rad Labora-
tories). The primer sequences synthesized by the Bei-
jing AuGCT DNA-SYN Biotechnology Company
(Beijing, China) are summarized in Supplementary
Table S1. The housekeeping gene, GAPDH, was used
to normalize the expression level of each gene.

Statistical analysis

All in vivo and in vitro studies were performed as
three independent experiments. The experimental data
are presented as the means ± standard deviation (SD).
Statistical analysis was carried out using one-way
ANOVA followed by the post-hoc TukeyeKramer test.
The statistical significance was defined at P < 0.05. All
the analyses were performed using the Statistical
Product and Service Solutions (SPSS) 22.0 software
(IBM SPSS Inc, Chicago, IL, USA).

Results

Data preprocessing and DEG screening

The dataset contained the microarray data of 40
patients with mild NAFLD (fibrosis stage 0e1) and 32
patients with advanced NAFLD (fibrosis stage 3e4). To
identify the hub DEGs precisely, statistical significance
was defined at jlog 2 (fold change)j > 1 and P < 0.05. A
total of 57 DEGs, including 52 upregulated DEGs and 5
downregulated DEGs, were selected (Supplementary
Table S2), and displayed in form of a heat map and a
volcano map (Fig. 1). The top 5 upregulated DEGs were
EPCAM, STMN2, CTHRC1, EFEMP1 and CD24. The
five downregulated DEGs were CYP2C19, DHRS2,
MT1M, FITM1, and GNMT (Supplementary Table S2).



Fig. 1. Heat map (A) and volcano map (B) of the identified differentially expressed genes (DEGs) between mild (n ¼ 40) and advanced (n ¼ 32)

NAFLD livers based on the GSE49541 dataset.
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KEGG pathway and GO enrichment analyses of
DEGs

To determine the biological functions of the iden-
tified DEGs, enrichment analysis was performed
using DAVID. As shown in Fig. 2, the upregulated
DEGs were enriched in the extracellular region, pro-
teinaceous extracellular matrix, extracellular matrix,
extracellular space, and extracellular exosome in the
cellular component GO term. In molecular function
class, the DEGs were associated with chemokine ac-
tivity and extracellular matrix structural constituent.
In the biological process class, the DEGs were
Fig. 2. Top 11 pathways and biological functions enriched in Kyoto Encyc

Ontology (GO) analysis related to DEGs.
significantly associated with cell adhesion, cell
chemotaxis, and sulfur compound metabolic process.
In the KEGG pathway enrichment analysis, the DEGs
were solely enriched in the chemokine signaling
pathway (Fig. 2).

PPI network analysis of DEGs

The identified DEGs were introduced into the on-
line database, STRING. Subsequently, Cytoscape was
used for network visualization analysis, and the iso-
lated genes that showed no interactions were
removed. As shown in Fig. 3A, there were 28 nodes
lopedia of Genes and Genomes (KEGG) pathway analysis and Gene
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and 36 edges in the PPI network. The MCODE plugin
of Cytoscape software was further used to identify the
densely connected significant modules that met the
cutoff criteria. According to their score, two signifi-
cant modules were identified from the PPI network.
There were 4 nodes and 6 edges in module 1 (score: 4)
(Fig. 3B), and 5 nodes and 7 edges in module 2 (score:
3.5) (Fig. 3C). The plugin CytoHubba was used to
parse the PPI network. According to a network mea-
sures, including the degree, average shortest path
length, eccentricity, betweenness centrality, radiality,
neighborhood connectivity, stress, topological coeffi-
cient, closeness centrality, clustering coefficient, and
the number of directed edges, the top 16 genes were
regarded as important nodes in each topological
analysis method, and the hub genes were selected
with the frequency of occurrence �10 (Table 1).
Based on the analysis of 11 topological algorithms,
SOX9, CCL20, CXCL1, CD24, and CHST4 were
Fig. 3. Proteineprotein interaction (PPI) and module analyses. (A) PPI n

Significant modules, module 1 (B) and module 2 (C), selected from PPI n

(darker the color and larger the size, the greater is the degree). The strength

thicker the line, the higher is the confidence score).
considered as the hub genes (Table 1), which were
used for the further validation studies.

Modules of key transcription factors

Transcription factors regulate gene expression and
function by binding to a specific DNA sequence. Here,
the iRegulon plugin was used to predict the transcrip-
tion factors and the regulatory network of their target
genes. All predicted transcription factor modules with
NES >5 are listed in Supplementary Table S3. Ac-
cording to the NES score, the top 3 transcription factor
modules are displayed in Fig. 4. In module 1, it was
predicted that TEAD1, TEAD2, TEAD3, and TEAD4
transcription factors would regulate LPL, THBS2,
GABRP, PLCXD3, FABP4, and GABRB3 (Fig. 4A). In
module 2, the transcription factors HIVEP1, HIVEP2,
HIVEP3, and ZNF831 would regulate THBS2,
GABRB3, CCL20, and PODXL (Fig. 4B). In module 3,
etwork and module analyses of DEGs in GSE49541 dataset. (BeC)
etwork analysis. The color and size of node are relative to its degree

of the confidence score is symbolized by the thickness of the line (the



Table 1

Hub genes analyzed by different topological algorithms in the protein�protein interaction network.

Different topological algorithms Top genes

Degree LUM, COL1A2, CXCL1, CTHRC1, SOX9, MMP7, CXCL6, CCL20, CCL19, CD24, CHST4, OGN,

THBS2, COL15A1, PODXL, EPCAM

Average shortest path length GAL3ST4, CHI3L1, CXCL6, CCL20, CCL19, PODXL, FZD7, EPCAM, CD24, DPT, CHST4, CXCL1,

OGN, THBS2, CTHRC1, SOX9

Eccentricity CXCL6, CCL20, CCL19, PODXL, GAL3ST4, CHI3L1, CXCL1, CD24, CHST4, EPCAM, DPT, FZD7,

LUM, CTHRC1, SOX9, MMP7

Betweenness centrality MMP7, COL1A2, CXCL1, LUM, SOX9, CHST4, CTHRC1, COL15A1, CD24, THBS2, OGN, PODXL,

GAL3ST4, CHI3L1, CXCL6, CCL20

Radiality GAL3ST4, CHI3L1, CXCL6, CCL20, CCL19, PODXL, FZD7, EPCAM, DPT, CD24, CHST4, CXCL1,

OGN, THBS2, CTHRC1, SOX9

Neighborhood connectivity COL15A1, THBS2, OGN, DPT, CHI3L1, MMP7, SOX9, COL1A2, FZD7, CTHRC1, CXCL6, CCL20,

CCL19, LUM, EPCAM, CHST4

Stress MMP7, COL1A2, LUM, CXCL1, CHST4, SOX9, CTHRC1, COL15A1, CD24, THBS2, OGN, PODXL,

DPT, CHI3L1, FZD7, CXCL6

Topological coefficient CXCL6, CCL20, CCL19, DPT, EPCAM, COL15A1, THBS2, OGN, PODXL, CD24, CTHRC1, CXCL1,

SOX9, MMP7, CHST4, COL1A2

Closeness centrality GAL3ST4, CHI3L1, CXCL6, CCL20, CCL19, PODXL, FZD7, EPCAM, CD24, DPT, CHST4, CXCL1,

OGN, THBS2, CTHRC1, SOX9

Clustering coefficient CXCL6, CCL20, CCL19, EPCAM, DPT, OGN, THBS2, COL15A1, CD24, CTHRC1, SOX9, MMP7,

COL1A2, CXCL1, LUM, GAL3ST4

Number of directed edges COL1A2, LUM, CXCL1, CTHRC1, SOX9, MMP7, CXCL6, CCL20, CCL19, OGN, THBS2, COL15A1,

CD24, CHST4, EPCAM, DPT

Common DEGs (�10 diagrams) CCL20, CXCL1, CD24, CHST4, SOX9
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it was predicted that ZNF333, RUNX2, CBFB, and
HOXA13 would regulate SOX9, PLCXD3, CHST4,
GABRB3, and COL15A1 (Fig. 4C).

Validation of key genes associated with NAFLD in
vivo and in vitro

We screened the possible hub genes of NAFLD
based on highly correlated topological algorithms from
the PPI networks. The 5 hub genes, SOX9, CCL20,
CXCL1, CD24, and CHST4, were identified (Table 1).
To confirm the role of these hub genes in the liver
during different stages of NAFLD, mice were fed an
HFD with different periods. First, we detected
Fig. 4. Transcription factor target networks in the top 3 modules using th

scription factors. Pink oval nodes represent the transcription factor-regulate
deposition of adipose in the liver of HFD-fed mice. In
addition, all the HFD-fed mice developed some form of
hepatic steatosis. The oil red O staining showed more
fat droplets and hepatocyte ballooning in the liver of the
HFD-fed mice compared with the control group. These
changes were more severe in mice fed HFD for 24
weeks than in mice fed HFD for 18 weeks (Fig. 5A).
The percentage of total adipose tissue (as detected by
the MRI scan) to body weight was higher in the 18-
week HFD-fed mice than in the control mice
[(14.20 ± 0.11) % vs. (4.72 ± 0.99) %, t ¼ 15.95,
P < 0.01], and much higher in the 24-week HFD-fed
mice than in the 18-week HFD-fed mice [(15.60 ± 0.60)
% vs. (14.20 ± 0.11) %, t ¼ 3.791, P < 0.05)] (Fig. 5B).
e iRegulon plugin. Blue octagon nodes represent the predicted tran-

d genes.



Fig. 5. Validation of the potential key genes in the livers of NAFLD mice and in cultured HepG2 cells exposed to glucolipotoxicity. C57BL/6N

mice were fed a high fat diet (HFD) for 18 (n ¼ 6) and 24 (n ¼ 3) weeks. Age-matched C57BL/6N mice fed a normal diet (n ¼ 3) were used as the

control. (A) Oil red O staining of liver tissues. Scale bar ¼ 50 mm. (B) The percentage of total adipose tissue (as detected by magnetic resonance

imaging scan) to body weight. (C) Relative mRNA levels of hub genes in mouse liver tissues detected by real-time quantitative PCR (qPCR). (D)

Relative mRNA levels of hub genes determined by qPCR in HepG2 cells cultured with palmitic acid (PA) or vehicle for 24 h (n ¼ 3). (E) Relative

mRNA levels of hub genes detected by qPCR in HepG2 cells cultured with advanced glycation end products (AGEs) or vehicle for 24 h (n ¼ 3).

Data are expressed as the means ± standard deviation. Statistical analysis was conducted using one-way ANOVA followed by the post-hoc

TukeyeKramer test. aP < 0.05 (vs. control). bP < 0.05 (vs.18-week HFD exposure).
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These results indicate that HFD could successfully
induce adipose accumulation and lead to the develop-
ment and progression of NAFLD in mice. Next, we
determined the expression of the key genes in the liver
of the HFD-induced NAFLD mice. The mRNA levels of
Sox 9, Ccl20, Cxcl1, and Chst4 in the liver were higher
in mice fed an 18-week HFD than in the control mice,
and their levels were further increased after 24-week
HFD (Fig. 5C).

Given that NAFLD is strongly associated with an
abnormal metabolism of lipids and glucose, we further
explored the expression levels of the hub genes in
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cultured liver cell line, HepG2, exposed to lipotoxic or
glucotoxic conditions, induced by the application of
PA or AGEs, respectively. The mRNA levels of SOX9,
CCL20, CXCL1, and CHST4 were upregulated by high
concentrations (500 and 1000 nmol/L) of PA (Fig. 5D).
Furthermore, the mRNA levels of SOX9, CCL20,
CD24 and CHST4 were upregulated by 100 mg/mL of
AGEs (Fig. 5E). These results indicate that the sug-
gested hub genes might be highly relevant to the
development of NAFLD. Interestingly, CD24 and
CCL20, the key genes involved in the progression of
NAFLD, were also upregulated in the livers of patients
with type 2 diabetes, when the GSE15653 database
(including 5 normal liver tissues and 9 liver samples
from diabetic patients) was used for validation analysis
(Supplementary Fig. S1).

Discussion

The prevalence of NAFLD, one of the most com-
mon chronic liver diseases, is increasing at an alarming
pace globally.16 However, the pathogenesis of NAFLD
is not completely understood.17 It has been suggested
that NAFLD is strongly correlated with genetic com-
ponents.18 In this study, we downloaded the GSE49541
dataset to obtain gene expression data of the advanced
NAFLD liver tissues and compared them with mild
NAFLD liver tissues. A total of 57 DEGs, 52 upregu-
lated genes and 5 downregulated genes, were selected.
Functional and enrichment analyses indicated that the
DEGs were mainly enriched in the extracellular region,
chemokine activity, and cell adhesion. KEGG pathway
analysis demonstrated that the DEGs were only
enriched in the chemokine signaling pathway. We
identified SOX9, CCL20, CXCL1, CD24, and CHST4
as hub genes based on the PPI network analysis.
Furthermore, we validated the upregulated expression
of these hub genes in the livers of HFD-induced
NAFLD mice and in cultured HepG2 cells exposed to
glucolipotoxicity.

A total of 57 DEGs were chosen in this study. As
the expression of a single gene is not sufficient to
explain the entire biological process, and the changes
in biological phenotype, it is necessary to study the
interaction of a series of genes and proteins. Enrich-
ment analysis is fundamental for biological interpre-
tation of experimental “omics” data.19 Our enrichment
analysis revealed that DEGs were significantly
enriched in extracellular process and cell adhesion in
the cellular component and biological process classes,
respectively. Extracellular processes such as neutrophil
extracellular traps,20 have been reported to participate
in the inflammation associated with NASH.21 Some
adhesion molecules promote leukocyte recruitment in
the liver and exacerbate the NAFLD.22 These results
suggest that the extracellular region is the main path-
ological site for the aggravation of fatty liver pheno-
type and that cell adhesion, especially the adhesion of
inflammatory factors, is the main biological process of
the disease.

Next, we screened the hub genes associated with the
progression of NAFLD. Through the PPI network
analysis, SOX9, CCL20, CXCL1, CD24, and CHST4
were selected as the most common genes in 11 topo-
logical algorithms. SRY-box transcription factor 9
(SOX9) is mainly expressed in bile duct cells under
physiological conditions.23 During the process of
chronic liver injury, SOX9-positive cells act as facul-
tative liver stem cells and are involved in liver regen-
eration.24 SOX9 is also highly expressed in
hepatocellular carcinoma tissues, which is related to
poor prognosis in the patients.25,26 In the present study,
SOX9 was upregulated in the livers of HFD-induced
NAFLD mice and in HepG2 cells exposed to PA or
AGEs. These results suggest that SOX9 is involved in
metabolic liver diseases and may serve as a potential
biomarker to diagnose and assess the severity of
NAFLD.

Liver steatosis is associated with a presence of many
chemokines and active inflammatory cells,which is a sign
of chronic inflammation.27 Our study showed that the
DEGs were enriched in the chemokine pathway and ac-
tivity in both the KEGG pathway and molecular function
analyses. Moreover, CeC motif chemokine ligand 20
(CCL20) and C-X-C motif chemokine ligand 1 (CXCL1)
were predicted as the hub genes from the PPI network
analysis. Furthermore, we found that the expression
levels of Ccl20 and Cxcl1 were higher in the livers of
HFD-induced NAFLD mice than in the control mice,
and the mRNA levels of CCL20 and CXCL1 were
upregulated by PA in HepG2 cells. Many studies in
rodent models indicate that chemokines play a crucial
role in NAFLD.28,29 The levels of CCL20 were
increased in the animal models of liver injury,
especially with the acute-on-chronic condition.30

Results from a network meta-analysis showed that the
concentrations of chemokines, including CCL20, in the
NASH group were higher than those in the control
group.29 Additionally, the CCL20 gene is one of the
most upregulated transcripts observed in fibrosis
associated with NAFLD, in comparison to normal
conditions, which was further validated in a replication
group.31 These results suggest that the CCL20
chemokine is a potential therapeutic target, and can be
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regarded as one of the most important chemokines
involved in the mechanisms underlying NAFLD.

The cluster of differentiation 24 (CD24) and car-
bohydrate sulfotransferase 4 (CHST4) were the two
other DEGs that we identified and validated in the
livers of HFD-induced NAFLD mice and in HepG2
cells exposed to PA or AGEs. A previous study im-
ported three GEO datasets of NAFLD samples
(GSE66676, GSE49541, and GSE834521), and found
that CD24 was the only gene co-expressed in all three
datasets.10 In a cross-sectional study, liver tissue-tran-
scriptome differences were evaluated in a subset of 25
mild-NAFLD and 20 NASH biopsies. Five identified
DEGs, including CD24, were positively associated
with disease severity and were found to be important
classifiers of mild NAFLD and severe NAFLD.32

CD24-positive cells isolated from hepatocellular car-
cinoma cell lines exhibited stemness properties, such
as self-renewal, chemotherapy resistance, metastasis,
and tumorigenicity.33 These results indicate that CD24
may play a role in hepatocyte injury and promote
regeneration during the development and progression
of NAFLD. Another hub gene, CHST4, encodes sul-
fotransferase, an enzyme which utilizes 30-phospho-50-
adenylyl sulfate to catalyze the transfer of sulfate, ul-
timately serving as ligand for L-selectins (SELL,
Selectin L, a lymphocyte homing receptor). SELL li-
gands are highly expressed in endothelial cells and
play a central role in lymphocyte homing at sites of
inflammation.34 Therefore, our findings suggest that
CHST4 may participate in the inflammation associated
with NAFLD. Up till now, the precise functions and the
underlying mechanisms of CD24 and CHST4 in
NAFLD progression remain unclear.10

All the 12 transcription factors identified in the
present study using transcription factor analysis were
likely to be implicated in the progression of NAFLD.
The transcription factors of transcriptional enhanced
associate (TEA) domain DNA-binding family
(TEAD1, TEAD2, TEAD3, and TEAD4) regulate gene
expression primarily through interaction with tran-
scriptional co-activators with PDZ-motif (TAZ).35 A
previous study demonstrated that inhibiting liver TAZ
in murine NASH models prevented or even reversed
hepatic inflammation, hepatocyte death and hepatic
fibrosis, but not liver steatosis.36 Upregulation of Runt-
related transcription factor 2 (Runx 2) in activated
murine hepatic stellate cells promoted hepatic infil-
tration of macrophages by increasing the expression of
monocyte chemotactic protein 1.37 The involvement of
other transcription factors, including HIVEP, ZNF,
CBFB, and HOXA13, identified in this study has not
been reported in liver diseases. The specific function of
these transcription factors in NAFLD, especially in
hepatic fibrosis, requires further research.

There are certain limitations in this study. First,
the duration of HFD exposure in our animal model
may not be long enough to induce severe NAFLD
and to successfully compare the different lengths
of HFD treatment in mice. Second, the sample size is
relatively small. Larger sample sizes obtained
from animal studies and prospective clinical cohort
studies are warranted to verify the function of these
hub genes.

In summary, we used bioinformatics analyses to
identify 57 DEGs in mild and advanced NAFLD liver
tissues. We identified SOX9, CCL20, CXCL1, CD24,
and CHST4 as hub genes, and identified intersecting
pathways involved in extracellular space, cell adhe-
sion, and inflammation. Notably, we verified the
upregulated expression of these hub genes in the livers
of HFD-induced NAFLD mice and in HepG2 cells
exposed to PA or AGEs. These hub genes may serve as
biomarkers for advanced NAFLD stages and offer new
insights into drug discovery. Nevertheless, further
studies are required to clarify the detailed function and
specific mechanisms of these hub genes in the devel-
opment and progression of NAFLD.
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