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Abstract
Background Computed tomography (CT)-derived pectoralis muscle area (PMA) measurements are
prognostic in people with or at-risk of COPD, but fully automated PMA extraction has yet to be developed.
Our objective was to develop and validate a PMA extraction pipeline that can automatically: 1) identify the
aortic arch slice; and 2) perform pectoralis segmentation at that slice.
Methods CT images from the Canadian Cohort of Obstructive Lung Disease (CanCOLD) study were used
for pipeline development. Aorta atlases were used to automatically identify the slice containing the aortic
arch by group-based registration. A deep learning model was trained to segment the PMA. The pipeline was
evaluated in comparison to manual segmentation. An external dataset was used to evaluate generalisability.
Model performance was assessed using the Dice–Sorensen coefficient (DSC) and PMA error.
Results In total 90 participants were used for training (age 67.0±9.9 years; forced expiratory volume in 1 s
(FEV1) 93±21% predicted; FEV1/forced vital capacity (FVC) 0.69±0.10; 47 men), and 32 for external
testing (age 68.6±7.4 years; FEV1 65±17% predicted; FEV1/FVC 0.50±0.09; 16 men). Compared with
manual segmentation, the deep learning model achieved a DSC of 0.94±0.02, 0.94±0.01 and 0.90±0.04 on
the true aortic arch slice in the train, validation and external test sets, respectively. Automated aortic arch
slice detection obtained distance errors of 1.2±1.3 mm and 1.6±1.5 mm on the train and test data,
respectively. Fully automated PMA measurements were not different from manual segmentation (p>0.05).
PMA measurements were different between people with and without COPD (p=0.01) and correlated with
FEV1 % predicted (p<0.05).
Conclusion A fully automated CT PMA extraction pipeline was developed and validated for use in
research and clinical practice.

Introduction
COPD is a lung condition characterised by airflow limitation. Recent studies show extrapulmonary
comorbidities, such as involuntary loss of muscle mass (sarcopenia), begin to manifest in at-risk
individuals [1] and have been linked with all-cause mortality [2]. In people diagnosed with COPD, low
fat-free muscle mass (FFM) measurements are associated with impaired exercise tolerance [3] and increase
the risk of mortality, irrespective of pulmonary function [4]. However, FFM measurements are not
typically acquired as part of COPD clinical care.
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Computed tomography (CT) images are routinely collected in at-risk individuals who smoke as part of
lung cancer screening trials [5] and in people with pulmonary abnormalities [6]. The pectoralis muscle area
(PMA) is a measure that can be extracted from chest CT, and has been correlated with FFM [7] and
associated with prognosis in a variety of populations, such as at-risk for [8] and with COPD [9], and
interstitial lung disease (ILD) [10]. The established methodology to extract PMA measurements is: 1)
manually identify the slice containing the aortic arch; and 2) perform semi-automated segmentation of the
pectoralis at that slice [7–10]. Although the PMA has been manually extracted in large cohorts such as
COPD Genetic Epidemiology study (COPDGene) [11] and ECLIPSE (Evaluation of COPD Longitudinally
to Identify Predictive Surrogate End-points [12]) [7–9, 13], and is a target biomarker for unexplored
cohorts, such as CanCOLD (Canadian Cohort of Obstructive Lung Disease [14]), it is impractical to
perform segmentation in routine clinical care as the process is time-consuming and introduces intra/
interobserver variability. Therefore, a fully automated method to extract the PMA is required for use in
routine clinical care.

Convolutional neural networks (CNNs) are deep learning-based tools that are capable of generating
predictions using image inputs. Specifically, the U-Net model is a commonly used CNN architecture that
specialises in image segmentation and produces highly accurate segmentation results as compared to
manual segmentations [15, 16]. Multiple studies have trained such models to automatically extract body
composition measurements in abdominal CT with high accuracy [17, 18]. However, few studies have
developed an automated method to quantify the PMA from chest scans [19, 20], and no studies have
performed both automatic identification of the aortic arch and pectoralis segmentation.

Therefore, our primary objective was to develop a fully automated pipeline using the CanCOLD study of
people with or without primarily mild COPD and test its performance in an external group of research
study participants with COPD [21]. To accomplish this objective, we aimed to: 1) create an algorithm to
automatically identify the aortic arch slice; and 2) train a deep learning model to automatically segment the
pectoralis muscle in the identified slice. Our secondary objective was to investigate the discriminative and
concurrent validity of the automated PMA measurements by quantifying differences between subgroups
and correlations to pulmonary function test variables respectively.

Materials and methods
Dataset
CanCOLD is a multi-centre cohort of ∼1800 participants aged ⩾40 years originally sampled through
random dialling across nine sites in Canada [14]. A subset of 90 participants (10 per site) from the
baseline visit were randomly selected for the development of the automated pipeline; the participants
maintained an equal ratio of males/females, people with/without COPD, and smokers/never-smokers.
Informed written consent from the CanCOLD participants and approval by institutional review boards was
obtained at each site. All demographics, pulmonary function and chest CT scans were retrospectively
collected at baseline. CT analysis of all CanCOLD participants has been previously reported [22–29];
however, the prior studies dealt with development of lung CT measurements, whereas in this manuscript
we report development of muscle CT measurements. A group of people with COPD studied at the
University of Alberta (UofA) (iNO-NCT03679312) were used to externally test the pipeline [21]. The
UofA cohort derives from a single-centre interventional study of people 18–85 years old that focused on
examining the effects of inhaled nitric oxide on exercise capacity in COPD patients. Participants were
excluded if there was no evidence of left and/or right pectoralis minor and major muscle at the level of the
aortic arch.

Pulmonary function measurements
Spirometry was performed according to American Thoracic Society (ATS) guidelines [30–32] for
measurement of the postbronchodilator forced expiratory volume in 1 s (FEV1) and forced vital capacity
(FVC) [13]. The residual volume/total lung capacity (RV/TLC) ratio was measured using whole-body
plethysmography.

Image acquisition
Chest CT images were acquired at full inspiration using various systems across all CanCOLD sites with the
following parameters: 120 kVp, 1.0- or 1.25-mm slice thickness, and 0.52–0.90 mm2 pixel spacing. The
external test set from the UofA was acquired using a similar protocol: 120 kVp, 0.75 mm slice thickness,
and 0.55–0.75 mm2 pixel spacing. A standard or soft tissue kernel was used for image reconstruction. All
key acquisition parameters from both training and test images are listed in supplementary table E1.
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Ground truth pectoralis muscle segmentation
Two observers (A.R. Jenkins, a postdoctoral student with 1 year of experience, and N. van Noord, a PhD
student with 1 year of experience) performed ground truth pectoralis muscle segmentations (45 per
observer) using the Chest Imaging Platform extension in 3D Slicer (https://cip.bwh.harvard.edu/index.
html) [7]. Briefly, the observers manually identified the axial slice containing the aortic arch. The
pectoralis muscle was then segmented five slices below to five slices above the aortic arch using a manual
brush tool, creating 11 slices/participant (990 slices total) for deep learning model training. Both observers
then repeated segmentations from a random subset of 15 participants to quantify intra- and interobserver
variability. In the external dataset, each observer segmented the pectoralis muscle at the aortic arch slice
from 16 CT scans (32 slices total) for testing.

Aortic arch slice determination
Aorta segmentation
All proceeding pipeline development was performed in MATLAB R2021a (v. 9.10). First, all CT volumes
were resized to a resolution of 1 mm3 using bicubic interpolation. The lungs were then automatically
segmented using thresholding and volumes cropped to localise the top of the heart. In the remaining slices,
contrast was rescaled and images were smoothed of high-frequency artefacts using a median filter. Ray
casting was used to extract the heart cavity between the lungs. The heart muscle was then automatically
segmented using K-means segmentation (n=4 centres) and cleaned of peripheral blood vessels, creating 90
aorta atlases. A visual representation of the aorta segmentation process is shown in supplementary figure
E1. The observers also manually delineated the aortic arch from the aorta segmentations to create 90 aortic
arch atlases using the “VolumeSegmenter” application, as visualised in supplementary figure E2. A more
detailed description is provided in the online supplementary material.

Aortic arch detection
The aortic arch was detected in the aorta segmentations using an image-registration-based approach. A
candidate aorta segmentation was compared to all aorta atlases using a cross-correlation of their voxel
counts per slice, as shown in supplementary figure E3. The five most correlated atlas aortas were registered
to the candidate using an affine algorithm. Resulting warp matrices were used to register the corresponding
aortic arch atlases to the candidate. The top-most slice from the consensus volume, created using a
majority vote of the warped atlases, was labelled as the top of the aortic arch.

Deep learning model
Image preprocessing
The input images and ground truth segmentations were resized to a matrix dimension of 256×256 for
model training using bicubic and nearest neighbour interpolation, respectively. Any pixels below −190 HU
and above 150 HU were set to those thresholds, and the result was rescaled to [0,1].

Network architecture
A diagram of pipeline development during training and evaluation is shown in figure 1. The 2D U-Net
architecture was selected for the deep learning model [15]. The convolutional path for the model contained
four down-sampling and four up-sampling blocks. A 1×1 kernel convolution followed by sigmoid
activation was used to create pectoralis muscle probability maps. At the start of each epoch, data
augmentation was applied to mimic natural variations in pectoral anatomy. 10-fold cross-validation was
implemented during training, with convergence occurring once validation performance failed to improve
compared to the previous epoch. A more detailed listing of the hyperparameters is available in
supplementary table E2. The model was trained using an NVIDIA RTX A2000 12 GB GPU.

Image postprocessing
A diagram of the complete automated pipeline is shown in figure 2. The resulting probability maps were
resized back to their 1 mm3 matrix size. A threshold of 0.4 was used to binarise the maps into pectoralis
segmentations. Any objects <0.5 cm2 or one-third of the mean area of all components was treated as noise
and removed. As a final measure, the resulting segmentations were morphologically closed
(structure=square, radius=2 mm). The PMA was defined as the total area of all remaining structures. The
code used for the development of the complete pipeline is available upon request.

Statistical analysis
Statistical analyses were performed using MATLAB R2021a (v. 9.10). Group differences were evaluated
using the Mann–Whitney U-test or the Kruskal–Wallis test (Tukey correction). Aortic arch detection error
was assessed through a difference in millimetres between the slice predicted by the pipeline and the human
observers. The Sorensen–Dice Coefficient (DSC) and Jaccard index are two metrics that are typically used
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to evaluate predicted segmentation overlap with manual segmentation as the ground truth (0: no overlap; 1:
complete overlap). Therefore, intra- and interobserver variability was evaluated using the DSC, Jaccard
index and absolute (cm2)/relative (%) PMA difference. Deep learning performance at the slice labelled by
the observers (PMAModel) and predicted by the pipeline (PMAPipeline) were compared to the ground truth
(PMATrue) using the same metrics and a Bland–Altman analysis. Differences in the PMAPipeline

measurements for various subgroups (male versus female, body mass index (BMI) >25 kg·m−2 versus
BMI ⩽25 kg·m−2, COPD versus no COPD) in the entire dataset (n=122) were quantified using the Mann–
Whitney U-test or an ANCOVA to evaluate discriminant validity. Correlations between PMATrue and
PMAPipeline with BMI, FEV1 % predicted, FEV1/FVC and RV/TLC were assessed using the Spearman’s
rank correlation coefficient to evaluate convergent validity. Statistical significance was evaluated at a type I
error of 5%.

Results
Participant characteristics
A single participant was excluded from the UofA test cohort due to the absence of a pectoralis muscle, and
no participants in either cohort had visible breast implants at the level of the aortic arch. The demographics
and pulmonary function measurements for the training and testing cohorts are reported in table 1. Age,
sex, race and BMI were similar between training and test sets (p>0.05). However, compared to the
CanCOLD training cohort, the UofA test cohort had a greater history of smoke exposure, with evidence of
airflow obstruction, and pulmonary gas trapping (p<0.05). The demographics and pulmonary function for
participants stratified by Global Initiative for Obstructive Lung Disease (GOLD) stage [33] in the
combined cohorts are shown in supplementary table E3.

Inter- and intraobserver variability
Supplementary table E4 shows the intra- and interobserver variability for the manual PMA measurements.
The mean intra- and interobserver absolute slice difference between the aortic arch labels were 0.2±0.6 mm
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FIGURE 1 Deep learning model training and evaluation data flow diagram. a) Model training: 90 CanCOLD participants had the aortic arch slice
labelled by human observers, and ground truth segmentations were performed between the five slices before and after the aortic arch slice
(creating a total of 990 slices). 10-fold cross-validation was implemented during model training; b) Model evaluation: model performance was then
strictly evaluated on the aortic arch slice labelled by the human observers on the 90 CanCOLD and 32 UofA participants. CanCOLD: Canadian
Cohort Obstructive Lung Disease study; UofA: University of Alberta; PMA: pectoralis muscle area.
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FIGURE 2 The complete fully automated pectoralis segmentation pipeline: a) Aortic arch slice detection: first,
the aorta is automatically segmented from the contrast rescaled chest computed tomography (CT). Next, the
five most matching atlas arches are registered to the segmented aorta. Majority voting between the five
registered atlases is used to quantify the top of the aortic arch. b) Pectoralis muscle area (PMA) extraction: the
CT slice identified in the earlier step is then fed into the trained deep learning model to obtain the pectoralis
muscle segmentation and subsequent pectoralis muscle area measurement.

TABLE 1 Demographics and pulmonary function for the participants used during model training (CanCOLD)
and external testing (UofA)

CanCOLD UofA

Participants n 90 32
Demographics
Age years 67.0±9.9 68.6±7.4
Female sex 43 (48) 16 (50)
Caucasian 86 (96) 31 (97)
BMI kg·m−2 27.7±4.6 27.9±5.7
Smoking pack-years 14.2±18.2 43.2±25.5#

COPD 44 (49) 32 (100)#

GOLD I 26 (29) 10 (31)
GOLD II+ 18 (20) 22 (69)#

Pulmonary function
FEV1 L 2.5±0.7 1.7±0.5#

FEV1 % pred 92.6±21.0 64.5±16.5#

FVC L 3.6±0.9 3.4±0.9
FVC % pred 100.9±17.5 99.5±17.9
FEV1/FVC 0.69±0.10 0.50±0.09#

RV L 2.4±0.7 3.1±1.2#

TLC L 6.1±1.3 6.5±1.4
RV/TLC 0.40±0.10 0.47±0.13#

Data are shown as n (%) or mean±SD. CanCOLD: Canadian Cohort Obstructive Lung Disease study; UofA:
University of Alberta; BMI: body mass index; COPD: chronic obstructive pulmonary disease; GOLD: Global
Initiative for Obstructive Lung Disease; FEV1: forced expiratory volume in 1 s; % pred: per cent predicted; FVC:
forced vital capacity; RV: residual volume; TLC: total lung capacity. #: significantly different from CanCOLD
(p<0.05).
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and 0.5±0.6 mm, respectively. Intra- and intersegmentation overlap was 0.96±0.02 and 0.95±0.02 as
measured by the DSC. The intra- and interabsolute (and relative) PMA error was 0.88±0.57 cm2 (2.4
±1.5%) and 1.50±0.97 cm2 (4.3±2.5%), respectively.

Deep learning segmentation model performance
During training
All deep learning models trained using the data successfully reached the conversion criteria. The time for
training the models for 10-fold cross-validation was 19.4±0.4 min per fold, with a total training time of
193.7 min. Convergence during training occurred at 6.1±1.3 epochs. Lastly, the final model mean DSC
was 0.94±0.01 for both the training (n=891 slices) and validation (n=99 slices) sets across all 10-folds.
The best performing model over the training and validation folds was chosen to proceed with final pipeline
creation.

After postprocessing
Figure 3 visually represents the trained model’s segmentation capabilities on three representative
participants with varying sex and COPD status in all three training, validation and testing sets. The deep
learning model performance for PMAModel measurements was compared to PMATrue measurements on the
single slice containing the aortic arch as labelled by the human observers (table 2). The model obtained an
average DSC of 0.94±0.02 and 0.94±0.01 on the training and validation data, respectively. Absolute (and
relative) PMA error was 1.33±1.42 cm2 (4.1±4.1%) and 0.99±0.51 cm2 (2.8±1.2%) on the training and
validation data, respectively. The test data obtained slightly lower performance metrics, with a DSC of
0.90±0.04 and absolute (and relative) PMA error of 1.39±1.30 cm2 (5.5±5.7%). Comparison between

CT slice Ground truth segmentation Automated segmentation

T
ra

in
in

g
V

a
li

d
a

ti
o

n
Te

st
in

g

FIGURE 3 Deep learning model performance for an example participant from all three training, validation and
testing sets. From left to right: contrast rescaled chest computed tomography (CT) containing the aortic arch
as labelled by the human observers. Ground truth pectoralis muscle segmentation. Fully automated
segmentation using the developed pipeline (red), ground truth segmentation (blue) and overlap between the
two (green). Top row: 66-year-old male with COPD from the training cohort; Sorensen–Dice coefficient (DSC):
0.94, Jaccard: 0.89, pectoralis muscle area (PMA) error: 1.69 cm2 (4.4%). Middle row: 67-year-old female without
COPD from the validation cohort; DSC: 0.94, Jaccard: 0.89, PMA error: 1.16 cm2 (3.2%). Bottom row: 62-year-old
male with COPD from the test cohort; DSC: 0.93, Jaccard: 0.88, PMA error: 2.27 cm2 (5.7%).
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PMAModel and PMATrue measurements in all participants (n=122) is shown in figure 4. The PMAModel and
PMATrue measurements were similar (p=0.94), highly correlated (ρ=0.98, p<0.01) and had negligible bias
(b=0.49 cm2, 95% confidence interval (CI) −3.1–4.1 cm2). Individual training and test cohort comparisons,
as well as model performance stratified by sex and CanCOLD centre ID, are shown in supplementary
figure E4 and tables E5 and E6. We note that the pipeline performance was comparable between the sexes
and between CanCOLD centres.

Complete pipeline performance
Supplementary table E7 describes the time taken to complete each step of the pipeline for the training and
testing cohorts. The average absolute slice error for the aortic arch detection algorithm was 1.2±1.3 mm
and 1.6±1.5 mm for training and testing sets, respectively. Performance for PMAPipeline measurements
using the automated detection algorithm in comparison to PMATrue measurements is also shown in table 2.
The absolute (and relative) PMA error was 1.56±1.36 cm2 (4.6±4.1%), 1.11±0.80 cm2 (3.1±2.0%) and
1.50±1.43 cm2 (6.2±6.8%) on the training, validation and test data, respectively. Comparison between
PMAPipeline and PMATrue measurements for all participants (n=122) is shown in figure 4. The PMAPipeline

and PMATrue measurements were similar (p=0.93), highly correlated (ρ=0.98, p<0.01), and had negligible
bias (b=0.23 cm2, 95% CI −3.7–4.2 cm2). Figure E5 summarises comparisons between PMAPipeline and
PMAModel measurements.

Group PMA differences: discriminant validity
Using the fully automated PMA measurements generated by the pipeline, a comparison between
participants stratified by sex, BMI and COPD status is shown in figure 5. PMA measurements were
significantly greater in males than females (p<0.01), people with BMI >25 kg·m−2 versus BMI
⩽25 kg·m−2 (p<0.01), and people without versus with COPD (p=0.01, after adjusting for age, sex and
BMI). Supplementary figure E6 shows that PMA decreased significantly across the COPD continuum:
from non-COPD to GOLD II+ (p<0.05, after adjusting for age, sex and BMI). Finally, PMA was
significantly lower in people with a greater amount of airflow limitation and pulmonary gas trapping
(p<0.05; supplementary figure E7).

PMA correlations: concurrent validity
Increased PMA was significantly correlated with increased BMI (PMATrue: ρ=0.18, p<0.05; PMAPipeline:
ρ=0.21; p<0.05), increased FEV1/FVC (PMATrue: ρ=0.37; PMAPipeline: ρ=0.32, p<0.05) and reduced RV/
TLC (PMATrue: ρ=−0.33, p<0.05; PMAPipeline: ρ=−0.31, p<0.05) (table 3). Correlations between PMA
with the rest of the variables and in various subgroups of the data are shown in supplementary tables E8
and E9.

Discussion
We developed a fully automated PMA extraction pipeline from chest CT images. Our deep learning model
was able to segment the pectoralis muscle with high accuracy in both the validation and external test sets.
Our aortic arch detection algorithm was accurate to <2 slices, and the PMAs generated by the complete
pipeline on the predicted aortic arch slice was highly correlated, not significantly different and showed
negligible Bland–Altman bias in comparison to the ground truths. Our fully automated PMA
measurements were validated discriminately (by reporting significant differences between participants

TABLE 2 Deep learning model segmentation performance after postprocessing in comparison to the ground
truth (PMATrue) for the single slice containing the aortic arch as labelled by the observers (PMAModel) and as
predicted by the aortic arch detection algorithm in the complete automated pipeline (PMAPipeline)

DSC Jaccard Index Absolute PMA error cm2 Relative PMA error %

PMAModel
Training (n=81) 0.94±0.02 0.88±0.04 1.33±1.42 4.1±4.1
Validation (n=9) 0.94±0.01 0.88±0.02 0.99±0.51 2.8±1.2
Testing (n=32) 0.90±0.04 0.82±0.06 1.39±1.30 5.5±5.7

PMAPipeline
Training (n=81) N/A N/A 1.56±1.36 4.6±4.1
Validation (n=9) N/A N/A 1.11±0.80 3.1±2.0
Testing (n=32) N/A N/A 1.50±1.43 6.2±6.8

Data are shown as mean±SD. DSC: Sorensen–Dice coefficient; PMA: pectoralis muscle area.
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stratified by sex, BMI and COPD status) and concurrently (by reporting significant correlations with lung
function indices).

The deep learning model generated pectoralis segmentation with high accuracy in comparison to the
ground truth segmentation. The performance of the model was also similar to the interobserver variability
of the segmentation performed by the human observers (Observers: 0.95±0.02; Model: 0.94±0.02). When
combined with the significant time-savings provided by the automated segmentation in comparison to the
human observers, it provides substantial evidence for the use of this pipeline to analyse large cohorts, such
as CanCOLD. In addition, our model accuracy was either similar (magnetic resonance imaging-based;
DSC: 0.94±0.01) [20] or slightly higher (CT-based; DSC: 0.93±0.04) [19] than other state-of-the art
pectoralis segmentation networks from the literature. Unlike the previously published work, we also
quantified model performance on an external never-before-seen dataset of research study participants with
COPD, which is important for testing generalisability. Furthermore, we believe the slight decrease in
average absolute PMA error (−1.4%) on the test cohort may be explained by the variable CT scan settings
relative to the training data. This is moreover evidenced by the increased systematic bias in the Bland–
Altman plots for the test cohort PMAModel measurements as compared to the training cohort (1.1 cm2

versus 0.28 cm2). Nonetheless, we believe the high model-ground truth DSC and low absolute PMA error
on all datasets confirm the utility and generalisability of our deep learning model.

70

60

50

40

30

20

10

P
M

A
 (

cm
2
)

Group

True Model

p=0.94

70

60

50

40

30

20

10
P

M
A

 (
cm

2
)

Group

True Pipeline

p=0.99

30

20

10

0

–10

–20

–30

M
o

d
e

l P
M

A
 -

 t
ru

e
 P

M
A

 (
cm

2
)

Mean true PMA and model PMA (cm2)

20 50

a) CV: 5.4%

0 10 30 40 60 70

4.1 cm2

–3.1 cm2

0.49 cm2

30

20

10

0

–10

–20

–30

P
ip

e
li

n
e

 P
M

A
 -

 t
ru

e
 P

M
A

 (
cm

2
)

Mean true PMA and pipeline PMA (cm2)

20 50

b) CV: 6.0%

0 10 30 40 60 70

4.2 cm2

–3.7 cm2

0.23 cm2

70

50

40

30

20

10

0

M
o

d
e

l P
M

A
 (

cm
2
)

True PMA  (cm2)

20 50

n=122

�=0.98 (p<0.01)

y=0.97x+1.49

0 10 30 40 60 70

60

70

50

40

30

20

10

0

P
ip

e
li

n
e

 P
M

A
 (

cm
2
)

True PMA (cm2)

20 50

n=122

�=0.98 (p<0.01)

y=0.95x+1.80

0 10 30 40 60 70

60
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b) PMA predicted by the complete automated pipeline on the detected aortic arch slice (PMAPipeline) versus PMA segmented by the observers
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with the p-value from the measurement differences.
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Our study was the first to create and report on a fully automated algorithm and complete pipeline for
identifying the chest CT image slice containing the aortic arch. Similar slice localisation techniques for
automated body composition measurements in abdominal CT have reported average errors of 4–5 mm
using deep learning-based methods [17, 18]. In our work, the average error was <2 mm, indicating that our
simpler atlas-matching approach was comparable to the state-of-the-art and sufficiently accurate to identify
the aortic arch slice. Furthermore, we found that the average PMA error increased slightly when
implementing the complete pipeline on the train (+0.5%) and test (+0.7%) sets. However, this did not
necessarily reflect a worsening in measurement accuracy; there may have been natural minor variations in
pectoral anatomy between the predicted and true aortic arch slice. In addition, PMAPipeline measurements
were highly comparable to PMATrue as indicated by the Bland–Altman analysis and nearly linear positive
correlation. These findings indicate that our aortic arch detection algorithm did not significantly affect the
final model performance.

Finally, the results showed that PMA measurements generated by the complete pipeline were able to detect
significant differences between various subgroups. In agreement with DIAZ et al. [34] and McDONALD et al.
[7], we showed that PMA was significantly lower in: females versus males; and people with compared to
without COPD. We also showed that PMA was significantly greater in people with BMI >25 kg·m−2

versus BMI ⩽25 kg·m−2. Both PMATrue and PMAPipeline measurements showed similar and significant
correlations with FEV1 % predicted, FEV1/FVC and RV/TLC for all participants, indicating that pipeline
automation captures the same trends in the data as manual segmentation performed by human observers.
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FIGURE 5 Box-and-whisker plots (median, 95% confidence intervals) of fully automated pectoralis muscle area (PMA) measurements for various
subgroups in the combined CanCOLD and UofA datasets (n=122): male (n=59), 41.1±9.4 cm2 versus female (n=63), 25.5±5.6 cm2, p<0.01; BMI
>25 kg·m−2 (n=85), 35.3±11.7 cm2 versus BMI ⩽25 kg·m−2 (n=37), 29.3±8.0 cm2, p<0.01; no COPD (n=46), 35.5±10.9 cm2 versus COPD (n=76),
32.3±11.0 cm2, p=0.02. CanCOLD: Canadian Cohort Obstructive Lung Disease study; UofA: University of Alberta; BMI: body mass index. COPD group
differences were adjusted for age, sex and BMI. *: indicates a significant difference (p<0.05).

TABLE 3 Spearman correlations between BMI and pulmonary function indices with the true pectoralis muscle
area (PMA) measured by the human observers (PMATrue) and the predicted PMA measured by the automated
pipeline (PMAPipeline)

Parameter PMATrue PMAPipeline

ρ p-value ρ p-value

Demographics
BMI 0.18 0.04 0.21 0.02

Pulmonary function
FEV1 % pred 0.22 0.01 0.18 0.04
FEV1/FVC 0.37 <0.01 0.32 <0.01
RV/TLC −0.33 <0.01 −0.31 <0.01

BMI: body mass index; FEV1: forced expiratory volume in 1 s; % pred: per cent predicted; FVC: forced vital
capacity; RV: residual volume; TLC: total lung capacity.
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Several limitations of our work must be acknowledged. Our model was trained on a relatively small
number of participants with and without COPD (n=90), which could potentially limit the generalisability
for future use. However, the countermeasures undertaken by the pipeline (data augmentation, hold-out
validation sets and testing on a never-before-seen external dataset) helped offset this supposed limitation.
Nonetheless, future work should look to expand the pipeline using more participants with varying
anatomy, including those with breast implants. We acknowledge that the pipeline’s predictions may deviate
from the manual observer’s segmentations. However, the fully automated pipeline would reduce any
measurement variability, which may allow for more subtle changes over time to be measured. The intra-/
interobserver variability for a manual PMA segmentation undertaken by the same (0.9±0.6 cm2 or
2.4±1.5%) or different observer (1.5±1.0 cm2 or 4.3±2.5%), as reported in this study, would introduce
measurement error, thereby reducing the potential to measure longitudinal change. For example, with
manual segmentation, the reproducibility coefficient was found to be 3.5 cm2, therefore, any longitudinal
change detected that is <3.5 cm2, as measured by different observers, could be attributed to measurement
error [35]. Additionally, MASON et al. [13] showed that PMA longitudinal change over a 5-year span was
−1.8 cm2 (−6.0%) in women and −2.8 cm2 (−6.0%) in men. This longitudinal change is within the
measurement error for manual segmentation of the PMA as reported in our study. Therefore, although our
pipeline slightly deviates from the ground truth, a fully automated approach reduces measurement variation
error and therefore allows for smaller changes to be measured over time. We also acknowledge that other
deep learning segmentation models such as YOLO [36] and DeepLab [37] should be explored. Future
work should investigate the performance of each for this application. We acknowledge that there are
further improvements to a fully automated PMA measurement pipeline that can potentially increase speed
and accuracy. For example, developing an automated method to segment the aorta directly would remove
potential errors introduced during atlas registration [38, 39]. A 3D deep learning network could bypass
slice detection altogether, allowing for the entire segmentation of the pectoralis muscle volume. However,
the current standard in the field is 2D segmentation at the aortic arch slice, and therefore such work would
be an avenue of future research.

Limitations notwithstanding, our work is an important step forward in automated PMA extraction from chest
CT scans. For example, this pipeline can be used in research settings to dichotomise people into low versus
high skeletal muscle mass, to assess the efficacy of interventions or drug trials, and significantly decrease the
manual burden when analysing large cohorts. Clinically, this pipeline can be used to assess longitudinal
changes in skeletal muscle mass over time, evaluate the efficacy of pulmonary rehabilitation and assess the
effectiveness of therapeutic intervention on skeletal muscle mass (e.g., nutrition, exercise training, anabolic
steroids). Future research should develop age, sex and BMI-specific normal reference values and prediction
equations for PMA so that researchers and/or clinicians can better assess the (ab)normality of individual
measurements. Other potential future directions include automated pectoralis sub-muscle segmentation, and
measurements of different muscle groups, such as the paraspinals. Finally, future work should explore the
application of this tool in individuals with other respiratory-related diseases where measurements of skeletal
muscle have been associated with outcomes, such as ILD [10] and lung cancer [40].

Conclusions
We developed a fully automated pipeline for aortic arch localisation and PMA segmentation from routinely
collected chest CT scans. Our pipeline was accurate and highly generalisable to an external
never-before-seen set of CT images from a group of clinical research study participants with COPD. Our
findings motivate the use of this fully automated pipeline for pectoralis segmentation in both clinical and
research settings.
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