
Frontiers in Oncology | www.frontiersin.org

Edited by:
Daniel Hector Grasso,

Consejo Nacional de Investigaciones
Cientı́ ficas y Técnicas (CONICET),

Argentina

Reviewed by:
Daniela Laura Papademetrio,
University of Buenos Aires,

Argentina
Clarissa Ribeiro Reily Rocha,

Federal University of São Paulo,
Brazil

*Correspondence:
Silvina Bustos

silvinabvg@gmail.com
Roger Chammas

rchammas@usp.br

Specialty section:
This article was submitted to

Molecular and Cellular Oncology,
a section of the journal
Frontiers in Oncology

Received: 14 September 2020
Accepted: 22 October 2020

Published: 25 November 2020

Citation:
Bustos SO, Antunes F, Rangel MC
and Chammas R (2020) Emerging
Autophagy Functions Shape the

Tumor Microenvironment and Play a
Role in Cancer Progression -

Implications for Cancer Therapy.
Front. Oncol. 10:606436.

doi: 10.3389/fonc.2020.606436

REVIEW
published: 25 November 2020

doi: 10.3389/fonc.2020.606436
Emerging Autophagy Functions
Shape the Tumor Microenvironment
and Play a Role in Cancer
Progression - Implications
for Cancer Therapy
Silvina Odete Bustos*, Fernanda Antunes, Maria Cristina Rangel and Roger Chammas*

Instituto do Cancer do Estado de São Paulo, Faculdade de Medicina de São Paulo, Brazil

The tumor microenvironment (TME) is a complex environment where cancer cells reside
and interact with different types of cells, secreted factors, and the extracellular matrix.
Additionally, TME is shaped by several processes, such as autophagy. Autophagy has
emerged as a conserved intracellular degradation pathway for clearance of damaged
organelles or aberrant proteins. With its central role, autophagy maintains the cellular
homeostasis and orchestrates stress responses, playing opposite roles in tumorigenesis.
During tumor development, autophagy also mediates autophagy-independent functions
associated with several hallmarks of cancer, and therefore exerting several effects on
tumor suppression and/or tumor promotion mechanisms. Beyond the concept of
degradation, new different forms of autophagy have been described as modulators of
cancer progression, such as secretory autophagy enabling intercellular communication in
the TME by cargo release. In this context, the synthesis of senescence-associated
secretory proteins by autophagy lead to a senescent phenotype. Besides disturbing
tumor treatment responses, autophagy also participates in innate and adaptive immune
signaling. Furthermore, recent studies have indicated intricate crosstalk between
autophagy and the epithelial-mesenchymal transition (EMT), by which cancer cells
obtain an invasive phenotype and metastatic potential. Thus, autophagy in the cancer
context is far broader and complex than just a cell energy sensing mechanism. In this
scenario, we will discuss the key roles of autophagy in the TME and surrounding cells,
contributing to cancer development and progression/EMT. Finally, the potential
intervention in autophagy processes as a strategy for cancer therapy will be addressed.
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INTRODUCTION

The autophagy process has been explored for almost 60 years, from
morphological studies since early 70’s to molecular studies initiated
in the 1990s (1–3). During this period, several studies were
conducted to understand the genetic mechanisms of autophagy,
leading to the discovery of autophagy-related genes (ATG) in yeast
(4, 5). Subsequently, ATG homologs were identified in various
organisms, and new ATG genes were described in mammals (6).
Building upon these findings, efforts to delve into the molecular
mechanisms involved in the degradation of intracellular
constituents have grown rapidly. However, several issues remain
unsolved regarding the molecular regulation of autophagy, its
integration and control at the tissue and systemic levels and its
role in cancer pathophysiology. Three main types of autophagy have
been described, depending on the morphology and mechanisms:
microautophagy, chaperone-mediated autophagy and the best
characterized macroautophagy (hereafter referred as autophagy).

Autophagy is an evolutionarily conserved process responsible for
removing intracellular molecular aggregates of misfolded proteins
and damaged organelles, through the sequestration of these
substrates in a double-membrane vesicle, which fuses with
lysosomes, where degradation of the macromolecular machines or
complexes takes place. Multiple proteins are involved in the
sequential stages of autophagy consisting in initiation, elongation
of isolated membranes decorated by microtubule-associated protein
1A/1B-light chain 3 (LC3) to form an autophagosome, and its
fusion with the lysosome to cargo degradation. Autophagy is
stimulated in physiological and pathological conditions regulating
cell metabolism and homeostasis (7). In cancer cells, stressors, such
as hypoxia or nutrient deprivation, induce autophagy to support the
high energy demand of cells with dysregulated proliferation. Many
Frontiers in Oncology | www.frontiersin.org 2
tumor suppressor and oncogene products are elements of
autophagy pathways, pointing to the relationship between
autophagy and tumorigenesis. Moreover, it is well known that
many cancer cells have high basal levels of autophagy. Although
autophagy contributes to cancer promotion in advanced stages, it is
also capable to inhibit tumor initiation in early stages (8, 9). The
molecular circuitry controlling autophagy is therefore complex, as it
can either induce cell-death or promote cell survival (Figure 1) (10,
11). Understanding the mechanisms for the protective role of
autophagy in cancer is essential for the identification of novel
targets to the control of resistance of tumors to treatment.

The process of recycling cellular components performed by
autophagy has been well characterized. Beyond self-eating and
recycling damaged organelles, new roles for autophagy and the
ATG genes have been ascribed (12, 13). Indeed, autophagy
interferes in a wide range of cellular processes. Interestingly,
components of autophagy can influence dynamic cellular processes
and lead to tumor microenvironment (TME) reprogramming. Here,
we discuss the novel roles of the autophagy machinery in tumor
secretion, immune response, migration, and invasion capacity of
tumor cells undergoing the epithelial to mesenchymal transition
(EMT) (14, 15). These processes may occur simultaneously or not,
affecting not only tumor cells, but also tumor microenvironmental
components. These processes may also be interconnected and thus
interfering with tumor progression, amplifying the roles of
autophagy in tumor development and heterogeneity.

AUTOPHAGY AS A MECHANISM OF
PROTEIN SECRETION
Among the diverse functions triggered by autophagy, “autophagy
secretion” has received attention for its ability to alter the
FIGURE 1 | Dual role of autophagy in cancer. Autophagy is implicated in several stages of tumorigenesis executing different processes. The extensive and opposite
functions in cancer makes autophagy an important target to develop new therapies. A deeper knowledge about this complex feature of autophagy in cancer
research is essential to find more accurate therapeutic approaches.
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secretory profile of the tumor microenvironment, participating
in the modulation of processes related to cancer progression (16,
17). Since the term autophagy secretion does not culminate in
degradation into lysosomes, we adopt here, like some authors,
the term autophagy-dependent secretion (ADS) (18). Nowadays,
it is well established that some components of the autophagy
route are involved in both conventional and unconventional
secretion pathways (19). The conventional secretion route is the
best-studied route for protein secretion; it can be regulated
positively and negatively by autophagy components, for instance
during protein recycling or through the selective clearance of
secretory vesicles (20, 21). Unlike proteins exported through the
conventional secretory pathway, the cargo delivered to the
extracellular space or the plasma membrane by unconventional
secretion (UPS) lacks the specific signal peptide and bypasses the
classical Endoplasmic Reticulum (ER)-to-Golgi pathways of
protein secretion (22). Usually, this pathway is activated by
cellular stress, being an alternative route to proteins that use the
conventional secretion (23).

Over the last few years, various studies have shown that
autophagy takes part in the secretion of several proteins that
critically contribute to tumor development. Among them are
included different types of cargo, such as High Mobility Group
Box 1 (HMGB1), IL1-b and other cytokines, immune mediators,
and RNAs (18, 24, 25). Although the major complexes of
classical autophagy and their molecular machinery have been
clarified, novel and specific autophagy-dependent processes are
still under investigation. Despite that, some evidence about
the mechanism of intracellular traffic in ADS has emerged by
Frontiers in Oncology | www.frontiersin.org 3
the examination of unconventional secretion in yeast and the
alternative route of IL1-b extracellular secretion (Table 1) (26,
49). Thereby, the results revealed that some markers involved in
this pathway are shared with the classical autophagy program,
but there are others exclusive to ADS. Findings of the machinery
implicated in cargo selection and release have been suggested
three different pathways.

First, the ATG genes stimulate the generation of an
intermediate membrane, not a regular autophagosome,
required to LC3I lipidation (LC3II) and the cargo contained
within the inner membrane is subsequently delivered
extracellularly instead to the lysosomes (50). Second, leaderless
proteins are translocated to the intermembrane space of an
autophagosome and released directly by fusion with the plasma
membrane or with multivesicular bodies (MVBs). The last
process proposed consists of an MVB/amphisome intermediate
(late endosome-MVB and autophagosome fusion) and the
secretion of material in small extracellular vesicles (51).

Considering all strategies, recent studies have been shown
that the ADS needs SNARE (soluble N-ethylmaleimide-sensitive
fusion protein attachment protein receptors) proteins, as
SEC22B, to prevent the fusion with lysosomes and drive the
select target to the plasma membrane (52). Besides the regulation
by ATG proteins, for instance, ATG5/ATG12/ATG16L1
complex and ATG3, the unconventional secretion also requires
of cargo receptors as TRIM (Tripartite motif family) proteins,
specifically TRIM16, as well as LC3, GRASP65 (Golgi
reassembly-stacking protein)and the GTPase Rab8A of the Ras
family, necessary for sorting the target to the plasma membrane
TABLE 1 | Evidence summary of studies related to molecular mechanisms and components of autophagy implicated in the three topics covered in this review:
secretion, epithelial to mesenchymal transition (EMT) and immunity.

Process Interfacing mechanisms References

Autophagy-
dependent
secretion

• TASCC is Rag guanosine triphosphatase–dependent, necessary to recruit mTOR and favor protein secretion.
• Atg9L and LC3 cooperate to expand the protein secretion compartment. GRASP, Sec, Atg5 and Vsp proteins are

required in the process.
• Specialized SNAREs, as Sec22b and receptors, like TRIM16, coordinate secretory autophagy. ESCRT components

also are involved in autophagy secretion pathway.

Narita et al. (20)
Duran et al. (26)
Dupont et al. (16)
Gee et al. (23)
Kimura et al. (27)
Noh et al. (28)
Rabouille (29)

Epithelial -
Mesenchymal
Transition

• TGFb activates autophagy in early phases of cancer progression; in later phases inhibits ULK1 promoting EMT.
Autophagy attenuates EMT by degradation of SNAIL, TWIST and SLUG and activation of ROS-NFkB-HIF1a pathway.

• ROS-NFkB-HIF1a pathway stimulates SNAIL, N-cadherin expression and thus EMT.
• Autophagy increase HMGB1 expression and TGF-b/Smad3 signaling enhancing EMT markers.
• Beclin-1 signaling inhibits EMT by down- regulation of WNT1, ZEB1, and NF-kB. Accelerates EMT increasing Twist

and Vimentin.

Gugnoni et al. (30)
Zi et al. (31)
Wang et al. (32)
Li et al. (33)
Bao et al. (34)
Li et al. (35)
Cicchini et al. (36)
Catalano et al. (37)

Immunity • LAP: ULK and Rab7 independent. Activated by membrane receptors like TLR2. Dependent of Rubicon and NADPH
oxidase (NOX2) to produce ROS and recruit LC3.

• T cell function involves autophagy activation by TCR or IL-2 receptor, SQSTM1/p62 and Bcl10 degradation.
Autophagy controls T homeostasis due expression of ATG3, Vps34, ATG7, ATG5.

• MHC antigen presentation: Dribbles formation via SQSTM1/p62 and LC3.
• Macrophages differentiation: Involves beclin-1 release from BCL-2 and ATG5 cleavage.
• Immune cells differentiation and function regulation.

Heckmann et al. (38)
Botbol et al. (39)
Murera et al. (40)
Merkley et al. (41)
Munz (42)
Zhang et al. (43)
Pua et al. (44)
Xu et al. (45)
Salio et al. (46)
Clark and Simon (47)
Sil et al. (48)
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(27, 53). Curiously, proteins implicated in extracellular vesicle
secretion, like VCP and Rab7, were also found in autophagy
pathways and conversely, key ATG proteins, such as ATG12/3
and ATG5, were identified as crucial regulators of exosome
biogenesis (54–57). Thus, this data demonstrated a potential
link between autophagy and extracellular vesicles (EVs)
machinery, processes that contribute to cellular communication
and signaling in the tumor microenvironment acting as
modulators of tumor progression and aggressiveness. All data
collected until now expose the relevance of the set of proteins
released by ADS to contribute with some of the hallmarks of
cancer (58).

Most of the proteins released by ADS can activate invasion
and metastasis, induce resistance to cancer therapies and/or
promote inflammation, helping tumor cells to mitigate stress.
Such set includes cytokines that use unconventional routes, as
TGF-b and IL1-b, both responsible for playing antagonistic roles
within the tumor microenvironment, depending on the cellular
context (59, 60). Despite that, many studies support their
functions as tumor promotors influencing in the inflammatory
response of immune cells and contributing to immune
suppression, tumor growth, angiogenesis, and metastasis, as
observed in breast cancer cells, where the secretion of IL1-b
drives colonization of the bone microenvironment, establishing a
metastatic niche and cell proliferation (61, 62).

Similar responses were observed in HMGB1 and ATP
secretion. Extracellular HMGB1 induces pro-inflammatory
cytokines and regulates other genes leading to cell migration
and metastasis. HMGB1exerts pro-tumoral functions favoring
prostate cancer cells survival and cancer progression (63).
Simultaneously, HMGB1 is also responsible for autophagy
induction. Regarding ATP, recent studies support its role in
tumor survival by switching the ATP-gated receptor P2x to
nfP2X7, a non-pore functional, that impairs the membrane
permeability and the subsequent cell death (64). In addition,
IL-6 and IL-8 secreted by autophagy are key determinants of the
senescence-associated secretion phenotype (SASP), characteristic
of senescence activated by DNA damage-mediated signals (65–
67). High levels of both cytokines secreted by tumor cells and
other cells such as cancer-associated fibroblasts (CAF) establish a
senescent microenvironment and increase tumor aggressiveness
showing a correlation with cancer progression and poor prognosis
in many tumor types (68, 69). For example, in colorectal cancer, it
was showed that peritoneal mesothelial cells control metastasis in
SW480 cells and stimulate proliferation by the activation of
senescence along with the secretion of mediators as IL-6 and IL-
8 (70). Based on these findings and the prominent role of
autophagy in cancer, various researchers have hypothesized a
link between autophagy and senescence induction (71).

The Dual Interface of Autophagy
and Senescence
One of the first evidence of autophagy acting as an effector
mechanism of senescence came from Young et al. (12), who
demonstrated, in an oncogene-induced senescence model (OIS),
that up-regulation of ATG genes induced autophagy and
Frontiers in Oncology | www.frontiersin.org 4
senescence, while the inhibition of ATG7 and ATG5 by shRNA
delayed senescence. The OIS program is a dynamic process
consisting of an initial phase of rapid proliferation and mTOR
activation, a transition phase where diverse changes in
morphology, signaling, translation and mTOR activity occur,
culminating in a senescence phase, achieved by diverse
senescence programs. Thus, autophagy is activated by stress,
oncogenic stress, helping to shift the proliferative cell state to a
senescent state through the fast protein remodeling and the
synthesis/secretion of proteins as IL-6 and IL-8. Later, the
same group demonstrated that autophagy is involved in IL-6,
IL-8 secretion in a posttranslational manner since the mRNA
levels remain stable in ATG knockdown cells. Secretion of these
cytokines was further associated with a new type of autophagy
called TOR- autophagy spatial coupling compartment (TASCC),
which is located at the trans side of Golgi apparatus of senescent
cells to accumulate autolysosomes, and mTOR1 facilitating the
biosynthesis and secretion of proteins (20, 72). These secretion
events were related to survival in tumor cells dependent on
autophagy (73, 74). Moreover, several studies in different cell
types endorsed the connection between these processes, but the
mechanisms are not completely understood and occasionally
contradictory, making it crucial to assess what type of autophagy
program has been activated (75, 76). Collectively, there is
evidence supporting pro-senescence and anti-senescence
mechanisms induced by autophagy, including those promoting
senescence under different conditions (77, 78).

As a pro-senescence program, a set of studies of Caparelli et
al. (79–81), validated an autophagy-senescence transition (AST)
process which consists of autophagy activation, metabolism
alteration and the subsequent senescence induction in CAFs,
responsible to promote tumor growth. They also showed that
overexpression of CDK inhibitors (p16/p19/p21) was able to
induce autophagy and senescence in CAFs and breast cancer
cells favoring tumor promotion. Another study illustrated the
notion that p53-mediated senescence is regulated by autophagy,
which leads to the degradation of a p53 isoform capable of
inhibiting the whole protein, and thereby inducing senescence
(82). Likewise, the loss of p53 function can boost SASP in cells
and promote tumor growth (83). However, the induction of
senescence by wild type p53 has also been reported in different
cellular contexts (84, 85). In a different approach, Knizhnik, and
collaborators demonstrated that temozolomide triggers
autophagy in glioma cells through the generation of DNA
adducts, leading to senescence and not apoptosis, thus playing
a role in cell survival rather than cell death (86). Besides,
exposure of cancer cells to either chemotherapeutic agents or
irradiation-induced autophagy is followed by cellular senescence.
The entry to senescence has been described as a tumor
suppressor mechanism limiting the replication of premalignant
cells (75, 87). Although therapy-induced senescence has the
intent to suppress cancer cell growth, senescent cells can also
contribute with the survival of non-damaged neighboring cells.
This protumoral effect of senescence, a bystander effect by SASP
activation, may consequently stimulate invasion and tumor
progression (88). Alternatively, studies in human fibroblasts
November 2020 | Volume 10 | Article 606436
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showed that autophagy impairment by ATG7, ATG12
knockdown induces premature senescence mediated by
activation of p53 and the generation of reactive oxidative
species from dysfunctional mitochondria (89). In line with this,
a work using a glioma model driven by oncogenic KRAS
observed that autophagy inhibition using KRAS:shAtg7 cells
predisposes cell to senescence, characterized by b-galactosidase
activity and SASP markers (90). A similar outcome came from
data of miR-212 in prostate cancer. Interestingly, the authors
found that miR-212 is upregulated in benign regions compared
with PCa tissues and responsible to negatively modulate
autophagy, inducing premature senescence by inhibiting
SIRT1. Thus, miR-212 controls senescence induction, acting as
a tumor suppressor (91).

Over the last years, senescence has been considered an
important process to fight cancer, encouraging the search for
anti-cancer therapies based on the induction of cell senescence
(92–94). However, studies based on therapy-induced senescence
(TIS) indicated the emergence of adverse effects on cancer
treatment (95, 96). Chemotherapy-induced SASP drives bone
loss in breast cancer and its regulation by p38-MAPK-MK2
inhibition could preserve bone, improving the quality of life of
patients (97). TIS may contribute to unwanted outcomes
through the stimulation of inflammation by increased secretion
of SASP factors, the induction of senescence-associated stemness
phenotype or senescence cell scape and further proliferation
recovery (98–100). Together, these findings attracted interest to
autophagy-modulated senescence and the therapeutic responses
associated with both processes since senescence has been
implicated with maintaining tumor dormancy, and thus
mediating cancer relapse (101, 102). Then, senescence has a
potential pro-tumorigenic role supporting aggressiveness,
survival responses and shorter recurrence-free survival in
patients (103). Finally, regarding its pro-tumorigenic role, there
is increasing evidence that SASP components are involved in the
establishment of an immunosuppressive environment and in the
induction of EMT in TME (104–107). Further studies addressing
these novel functions of autophagy and senescence in the tumor
microenvironment are warranted and may pave the way to novel
targeted therapies that increase the efficacy of the existing cancer
treatment modalities.

The Effects of Autophagy on Epithelial-to-
Mesenchymal Transition
Besides being involved in the regulation of protein secretion and
tumor cell immunogenicity, autophagy has also been implicated
in the process of tumor cell invasion. One of the first associations
between autophagy and the invasion process was evidenced by
the capacity of epithelial cells to evade anoikis via autophagy,
what enabled cancer cells migration and invasion (108). More
recently, autophagy has been connected to epithelial-to-
mesenchymal transition (EMT), a critical multistep process
required for cancer cells to invade and metastasize (109, 110).
During EMT, epithelial cells undergo profound molecular and
biochemical changes to be transiently converted into
mesenchymal cells to gain motility, invasiveness, stemness
Frontiers in Oncology | www.frontiersin.org 5
characteristics, and chemoresistance. Multiple embryonic signaling
pathways cooperate in the initiation and progression of EMT,
including TGFb, WNT, Hedgehog, and Notch (109, 111).

Notably, there is a multifaceted link between autophagy-
correlated and EMT-correlated signaling pathways, reflected by
an intricate web of regulatory signaling pathways that converge
on the regulation of EMT and autophagy, and that may alter the
reciprocal equilibrium between these two processes (30). These
pathways often activate EMT-transcription factors and are
initially triggered by extracellular signals (112). Probably, the
best characterized EMT inducer is TGFb, known to trigger EMT
through the activation of SMAD, PI3K/AKT, MAPK, and Rho-
GTPases (112). During cancer progression, cells that undergo
EMT require autophagy activation to survive the metastatic
spreading. On the other hand, autophagy tends to inhibit the
early phases of metastasis, contrasting the activation of the EMT
mainly by selectively destabilizing crucial mediators of this
process, such as TGFb (Table 1). As part of the tumor-
suppressive program dependent of TGFb, it would promote
autophagy in the early phases of tumor formation. On the
other hand, later in tumor progression, TGFb would restrain
autophagy while inducing EMT and promoting metastatic
spreading of cancer cells (30). Regarding TGFb and the
convergence of signaling pathways between both processes, it
was identified recently that the autophagic activity mediated by
the transcription factor EB regulates TGFb signaling in
melanoma. Blockage of the BRAFi-induced autophagy function
led to an augment of EMT activation and metastasis by
enhancing TGFb signaling, which was responsible for driving
tumor progression (113).

Based on the complex relationship between autophagy and
EMT, controversies have emerged in the literature regarding the
role of autophagy inhibition on EMT: while several studies
implicate autophagy in the promotion of EMT, others have
suggested the inverse, indicating that inhibition of autophagy
could promote EMT and consequently induce cancer cell
invasion. Although considerable evidence suggests that the
inhibition of autophagy will improve cancer therapy and
despite early phase clinical trials show promising results for the
use of hydroxychloroquine for this purpose (114), others have
highlighted possible undesirable effects of the inhibition of
autophagy in cancer therapy (31, 115, 116). Supporting the
beneficial effect of autophagy inhibition during cancer progression,
there are several compounds and/or microenvironmental conditions
that activate the EMT program, and can also induce an autophagic
response in different types of cultured cancer and non-cancerous
cells, impairing EMT. It has been suggested that EMT impairment
could benefit the treatment efficacy of renal cell carcinoma with
existing therapeutic regimen when combined to the autophagy
inhibitor chloroquine, supporting the evidence that an EMT-like
phenotype corresponds to a higher autophagic flux (15). In this
regard, it has been also suggested that autophagy is required for EMT
induction and metastasis in hepatoblastoma cells (117) and for
TGFb1-induced EMT in non-small-cell lung carcinoma cells
(118). Additionally, autophagy induced by starvation was able to
activate migration, invasion, and EMT marker expression upon
November 2020 | Volume 10 | Article 606436
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rapamycin induction, and BECN1 knockdown reverted this
phenotype. (119). Also, following mTOR signaling inhibition,
which is known to induce autophagy, the migration, invasion and
EMT marker expression were reduced in colorectal cancer cells
(120). Moreover, autophagy is critical for hepatocellular carcinoma
cells invasion through the induction of EMT and activation of TGF-
b/Smad3-dependent signaling, which plays a key role in regulating
autophagy-induced EMT (33), as well as is required for TGFb2-
induced EMT and reactive oxygen species (ROS) modulation in
these cells (34). Another model of hepatocellular carcinoma revealed
that inhibition of autophagy did not alter cell migration, invasion or
EMT marker expression in vitro, however sensitized cells to anoikis
and decreased lung metastases in vivo (121). Therefore, the role of
autophagy in EMT seems context-dependent and indicates that the
effects of autophagy inhibition in the establishment of metastasis are
not necessarily due to its effects on EMT, but rather on its effects on
other steps of the metastatic process or in the promotion of cell
death. In this regard, autophagic stimulation of metastasis could be
simply a consequence of its pro-survival activity against the apoptotic
signals coming from changes in adhesion and cytoskeleton
reorganization (121).

Ultimate evidence has indicated that autophagy activation
could rather induce a reversion of the EMT phenotype and
several anticancer compounds that induce autophagy also inhibit
EMT (Table 2) (37, 122–129, 135). By its dual role in cancer, the
effect of autophagy on EMT appears controversial and likely
dependent on the cellular type and/or stage of tumor progression
(130–134). Thus, at early stages of metastasis, autophagy could
inhibit the EMT program mainly by destabilizing EMT crucial
players. Later, metastatic cells could require sustained autophagy
to survive environmental and metabolic stressful conditions
encountered (30). Therefore, our efforts should be concentrated
in selecting the precise approaches needed to stimulate or block
autophagy in a time/context-dependent manner, to primarily
suppress EMT and control cancer progression.
Frontiers in Oncology | www.frontiersin.org 6
Autophagy Plays an Essential Role in
Metastatic Dormancy
Once the transformation has occurred, autophagy can maintain
cellular senescence to avoid the proliferation of transformed cells
(109). Accumulating evidence indicates that autophagy is also a
fundamental characteristic of stem cells, including cancer stem
cells (CSCs). As CSCs are likely to play a central role in
tumor dormancy, it appears that autophagy could contribute
to the capacity of these cells to survive for extended periods of
time in a dormant state and eventually give rise to recurrent
tumors that are determinants of morbidity and mortality in
cancer patients. Hence, once a tumor is established, tumor cells
use autophagy as a survival mechanism to metabolic stress and
hypoxia, to maintain tumor-related inflammation, CSCs survival
and resistance to therapy.

The ‘reawakening’ of tumor cells at distant sites leading to the
outgrowth of metastatic disease many years after primary tumors
were treated has led to the concept of metastatic dormancy (136–
138). Several studies have shown a role for autophagy in
promoting cancer cells survival during dormancy (139).
Autophagy may promote the dormancy of disseminated tumor
cells simply by supplying key amino acids and other nutrients or,
autophagy may play a more instructive role by eliminating
mitochondria, modulating redox balance, and actively
promoting the CSC state (136, 140, 141). However, it has been
suggested that dormant tumor cells are CSCs that depend upon
autophagy to survive at distant sites over extended periods of
time to expand later as metastatic lesions composed of both CSCs
and non-CSCs, representing the full heterogeneity of rapidly
growing tumors (136, 139). Indeed, dormant disseminated
cancer cells can survive for several years before recurring as
extremely aggressive metastatic tumors. There are relevant
observations providing insights into the connection between
autophagy and dormancy. Despite the autophagy-associated
dormancy has not been fully elucidated and some results seem
TABLE 2 | Examples of autophagy modulation and its role in epithelial-mesenchymal transition (EMT) in cancer.

Autophagy Cell/tissue Function References

Induction by the overexpression of DEDD (death effector domain-
containing protein)

Breast cancer tissues EMT inhibition Lv et al. (122)

Induction by AZD2014 (mTOR inhibitor) Hepatocelullar carcinoma EMT inhibition Liao (123)
Induction by Alisertib (Aurora Kinase A inhibitor) Osteosarcoma

Colorectar cancer cells
EMT inhibition Niu (124)

Ren (125)
Induction by Metformin (AMPK activation) Thyroid cancer EMT inhibition Han et al. (126)
Induction by Danusertib (Aurora Kinase A/B/C inhibitor) Ovarian cancer EMT inhibition Zi (31)
Induction by Rapamycin or PP242 (mTORi) Glioblastoma cells Reverse EMT, inhibit invasion Catalano et al. (37)

Mecca et al. (127)
Induction by Brusatol (Nrf2 inhibition) Hepatocelullar carcinoma Suppress invasion capacity and

EMT
Ye et al. (128)

Induction by SB202190 and SP600125 (p38-JNKi) Ovarian cancer cells EMT inhibition Chen et al. (129)
Inhibition by cloroquine Hepatocarcinoma cells EMT inhibition Hu et al. (130)
Inhibition by Cudraxanthone D Oral squamous cell

carcinoma
Suppress EMT Yu et al. (131)

Induction by Rapamycin Acidic gastric cancer cells Antimetastatic effect, Reverse
EMT

Wang et al. (132)

Induction by Cisplatin (DNA damage) Nasopharyngeal carcinoma
cells

Promote EMT Su et al. (133)

Induction by Alteronol (Akt/mTORi) Melanoma cells Promote invasion Bao et al. (134)
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controversial or related to specific phenomena, several studies
recognize its crosstalk with cancer relapse (142). Findings in
dormant breast cancer cells support that autophagy is crucial to
promote their metastasis and survival, probably preventing the
accumulation of ROS and damaged organelles (143).
Additionally, increased unfolded protein response (UPR)
markers have been found in dormant cells. Considering the
established link between autophagy and UPR under stress
conditions, it has been suggested that UPR-induced autophagy
activation in dormant cells to sustain tumor survival (144, 145).
Breast cancer stem cells (BCSCs), which undergo tumor initiation
and unlimited self-renewal, also exhibit dormancy-associated
phenotypes by upregulating autophagy during metastatic
dormancy to survive environmental stress and nutrient poor
conditions. Consequently, therapeutic targeting of autophagy is
actively being pursued as an attractive strategy to alleviate
metastatic disease and the recurrence of dormant BCSCs (146).

In conclusion, dormant cancer cells are especially dependent
on autophagy for survival, which provides a rationale for
combining autophagy inhibition with conventional therapeutic
strategies to eliminate these cells and prevent subsequent
metastatic outgrowth (147).

Autophagy and Immune System
As mentioned before, autophagy has an important role in innate
and adaptative immunity and can act in several steps of the immune
response, leading to its activation or inhibition, depending the
context, taking part in tumor immunosurveillance. Besides the
ability to modulate the TME through its secretory function,
autophagy regulates cellular components (natural killer (NK) cells,
dendritic cells (DC), macrophages and lymphocytes (T and B cells))
of immune response, acting on differentiation, proliferation,
activation, survival and homeostasis of these cells (Table 1).
Moreover, autophagy acts on cytokines (interleukins (IL),
interferons (IFN), transforming growth factors (TGF)) and
antibodies production as well as phagocytosis. Interestingly,
cytokines can act as autophagy stimulators or autophagy
inhibitors (148).

Autophagy also has a role in tumor response to immunotherapy
and a better understand of autophagy-modulation of innate and
adaptative immune response could contribute to better strategies to
circumvent immunotherapy resistance. For example, autophagy
enhances antigen delivery to immune cells (antigen-presenting
cells (APCs) and CD8+ cytotoxic T lymphocytes) and in this way
can initiate an immune response against tumor cells and enhance
immunotherapy efficacy. However, in the case of cancer
development, autophagy is a double edge sword for immunity
since it can inhibit immune response and attenuate immunotherapy
outcomes (149, 150).

Autophagy and Innate Immunity
Innate immunity is the first defense of eukaryotic cells against
invading pathogens and autophagy participates in the process
with autophagy adaptor proteins that interact with pattern
recognition receptors and activates immune response together
with elimination of intracellular invaders (47). The activation of
innate immune receptors as Toll-like receptors (TLRs) and
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nucleotide oligomerization domain-like receptors (NLRs)
induces innate-immunity-mediated autophagy upregulation
(150–152). TLRs interact with pathogens on the cell surface
and usually are also expressed in cancer cells, inducing cytokines
production together with NF-kB andMAPK pathways activation
(151–153). TLRs are proposed to activate autophagy as
demonstrated for TLR2 that enhances innate immunity
through ERK and JNK signaling pathways after autophagy
stimulation, and also boosts autophagy in glioma cells being
correlated with poorer patients outcome (154, 155). For TLR4,
the autophagy induction is mediated by TRIF (Toll-IL-1 receptor
adapter-inducing IFN)/RIP1 (receptor-interacting protein)/p38-
MAPK axis (156). TLR4 and TLR3 activation after LPS
(lipopolysaccharides) treatment induces autophagy by TRIF
pathway, which contributes to TRAF6 ubiquitination followed
by MAPK and NF- kB activation and harmful cytokine
production, leading to lung cancer cell migration and invasion
(157). In p62 knockout cancer cells, stimulation of TLR4 induced
activation of the TRAF6-BECN1-autophagy axis leads to cancer
cell migration and invasion (158). Additionally, in patients with
luminal breast cancer, higher levels of TLR4 and accumulation of
LC3II were observed in CAFs. These features were associated with
a more aggressive relapse and poorer prognosis in the cohort of
patients studied (159). Taken together, TLR and autophagy
activation can contribute to tumor development since it enhances
survival and proliferation of cancer cells and also triggers the
release of cytokines and immunosuppressive factors, contributing
to immune evasion and tumor cell resistance (160).

NLR family members, such as NOD1 and NOD2, that
recognize intracytoplasmic pathogens, can also activate NF-kB
and MAPK pathways and produce immunosuppressive
cytokines, as well as induce autophagy by recruiting ATG16L1
(161, 162). Both NOD1 and NOD2, altering the balance of anti-
and pro-inflammatory cytokines, can modulate the risk of cancer
development (163). For example, in triple negative breast cancer
(TNBC), the expression of NOD1 and NOD2 is associated with
cancer progression and a global proteome profiling of TNBC-
derived cells overexpressing these receptors demonstrated
disrupted immune-related pathways such as NF- kB and
MAPK signaling and autophagy (164).

Autophagy and Adaptive Immunity
Autophagy participates in adaptative immune response such as
thymus selection, lymphocyte development and homeostasis,
antigen presentation and cytokine release, exerting anti-tumor
effects (47, 165). Adaptative immunity occurs when extracellular
or intracellular peptide epitopes are presented by APCs through the
major histocompatibility complex (MHC) class I and II to CD8+
and CD4+ T cells, respectively. The interaction of antigen and T cell
receptors triggers cellular (cytotoxic lymphocytes) and humoral
(antibody-producing B cells) adaptative immune response (42,
166). The efficient antigen presentation requires proteasomal or
lysosomal antigen degradation and delivery of resulting peptides to
MHC molecules and this step can be enhanced by autophagy, for
example, in APCs upon uptake of extracellular antigens (e.g. tumor
antigens) and in antigen processing for MHC I cross- presentation.
Autophagosomes facilitate intracellular trafficking of these antigens
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to endosomes to be degraded by cathepsins followed by peptide load
onto MHC II molecules that mature and get translocated to the
plasma membrane and present antigens to CD4+ T cells (42, 166).
A non-canonical regulation of phagocytosis by ATG proteins can
also be used to engulfment of extracellular antigens, which is known
as LC3-associated phagocytosis (LAP), characterized by a single
membrane vesicle decorated with LC3-II instead of double-
membrane autophagosome as in autophagy (Table 1) (42, 167).

Autophagy and Immune Cells
Autophagy has multiple roles on immune cells acting during their
differentiation, proliferation, activation, and homeostasis
maintenance and in this setting can also promote or inhibit
tumor development (150). Dendritic cells link the innate and
adaptative immune system as they are powerful professional
APCs. Autophagy is involved in different DC functions both in
physiological and pathological conditions (168). The inhibition of
autophagy impacts the ability of DCs to process and present
cytoplasmic antigens through the MHC II pathway and cytokines
secretion, which increases their immunostimulatory phenotype
(169–171). Macrophages are also APCs that require autophagy
during the differentiation process in monocytes from the bone
marrow into macrophages in tissue site (43, 172). Granulocyte-
macrophage colony-stimulating factor (GM-CSF) is a signal to
maturation and prevents monocytes apoptosis together with
autophagy induction. When autophagy is downregulated either by
BECN1 knockdown or pharmacological inhibition using 3-
methyladenine (3-MA) and chloroquine, caspases are activated
and cytokine production is prevented (43). Autophagy is also
involved in macrophage polarization with its inhibition leading to
the classical activation profile and augmented pro-inflammatory
cytokines secretion, and its induction promoting macrophage
alternative activation, resulting in increased production of anti-
inflammatory cytokines (173).

T cells use basal autophagy to maintain organelle homeostasis
and it can be induced after T cell antigen receptor (TCR)
stimulation. Moreover impaired autophagy after deletion of
ATG proteins (ATG3, ATG5, and ATG7), BECN1 or Vps34
can hinder T cell survival, proliferation, differentiation, and
activation (150, 174–176). Autophagy proteins may also be
involved in other functions besides autophagy as demonstrated
for memory CD8+ T cell, in which UVRAG (ultraviolet radiation
resistance-associated protein) deletion does not impair
autophagy but affects proliferation (177). On CD4+ T cells,
autophagy impairment after BECN1 deletion leads to apoptosis
upon TCR stimulation (178). On the other hand, blockage of
mTOR signaling after rapamycin treatment in effector CD8+ T
cells can enhance memory CD8+ T cells in lymphoid tissue or
inhibit them in mucosal tissue (179). In antigen-specific memory
CD8+ T cells, deficient autophagy leads to the accumulation of
damaged mitochondria and increased apoptosis (180).
Moreover, mTOR status can also interfere with T cell
differentiation since its induction lead to activated T cell to
differentiate into Th cells and its downregulation together with
AMPK induction cause naïve T cells differentiation into
regulatory T (Treg) cells (181). The metabolic profile also
influences the dependence on autophagy since cells as memory
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lymphocytes and Treg cells, that use more oxidative phosphorylation
(OXPHOS), are more dependent on autophagy for homeostasis than
effector T cells that use preferentially aerobic glycolysis (45, 181, 182).
On Treg cells, impaired autophagy induces mTORC1 and MYC
signaling pathways, contributing to apoptosis induction (182).

For B cells, autophagy participates during cell development to
support extremely high metabolic demands for their
differentiation and reaches maximal levels during the earliest
stages of development and diminish as B cells mature. It is also
important, at basal levels, to maintain peripheral B cell numbers
as required to cell survival after LPS stimulation, as well as for
IgM production after immunization. However, autophagy is not
essential for transition of pro- to pre-B cell stages in the bone
marrow and B cell activation after BCR stimulation (183).
Mature B cells with impaired autophagy (Atg5-/-) accumulate
damaged organelles and have enlarged endoplasmic reticulum
together with ER stress, more antibody secretion and plasma cells
apoptosis (184).

Autophagy is also required for NK cell differentiation, since it
regulates the number and quality of mitochondria on
proliferating NK cells and enhances memory NK cells in an
ATG3 dependent manner (185). In invariant natural killer cells
(iNKT), it is observed a high level of autophagy during iNKT cell
thymic differentiation into memory cells to regulate
mitochondrial content and ROS production. A conditional
deletion of Atg7 gene in T-cell compartment blocked iNKT
development and maturation, as well augmented its
susceptibility to apoptosis (46). In another study, the deletion
of Atg5 or Atg7 decreased iNKT mature cells and IL-4 and IFN-g
levels accompanied by an increase in apoptosis (186).

In neutrophils, autophagy deficiency has no impact on their
morphology, migration, granular content, apoptosis or effector
functions, but in autophagy-deficient mice, neutrophil proliferation
and differentiation is augmented, indicating an inverse correlation
between autophagy and neutrophil differentiation (187).

As mentioned previously, there are feedback loops between
autophagy and different cytokines. For IL-1 (IL-1a and IL-1b),
autophagy limits its secretion although it is observed autophagy
induction by these cytokines, indicating a negative feedback
mechanism (188, 189). The interferon family (IFN types I and
II) also induces autophagy in epithelial, immune, and tumor cells
(190, 191). IL-2, IL-12, and TGF-b also stimulate autophagy
(192–194). On the other hand, IL-6 has an anti-autophagic effect
in starvation-induced autophagy in U937 cells (195) but
stimulates autophagy in B cells (196). IL-10 also inhibits
starvation-induced autophagy in DCs (197).

Autophagy can also act in immune tolerance mediated by
immunotherapy strategies since immunologic molecules such as
indoleamine 2,3-dioxygenase (IDO), PD-1 and CTLA-4 can be
regulated by autophagy pathways. IDO is found in tumor sites
and has anti-tumor immunity effects through interference with a
cytotoxic T-cell response, DC maturation and increase in Treg
population, promoting immunologic tolerance and tumor
development, but its production can be inhibited by autophagy
stimulation (198, 199). PD-1 from tumor cell surface interacts
with PD-L1 on T-cells and acts as an inhibitory checkpoint
molecule, preventing recognition of tumor cells, suppressing T
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cell proliferation, development, and anti-tumor immunity. It has
been reported that the interaction of PD1 with its ligand limits
nutrients availability to nearby T-cells, promoting autophagy
induction (200). Treatment with Sigma1 can induce autophagy
in co-cultured T-cells and tumor cells, leading to degradation of
PD-L1 and suppression of PD-1 and PD-L1 interaction, which
could favor immunotherapy effects due to immune
microenvironment modulation (201). However, the expression
of PD-L1 affects several genes involved in mTOR signaling and
autophagy. When PD-L1 is lost, it is observed autophagy
upregulation and less sensitization to autophagy inhibitors to
reduce tumor cell proliferation (202). CTLA-4 is another
immune tolerance checkpoint and an effective target for tumor
treatment. In human melanomas, over-expression of MAGE-A,
a cancer-germline antigen, is associated with CTLA-4 blockade
resistance and can downregulate autophagy, suggesting
autophagy induction as a potential therapeutic approach to
improve CTLA-4 inhibitors efficacy (203).

Autophagy in Immune Cells: Dual
Functions Shaping Tumor Response
Increasing data suggest that autophagy can interfere with
antitumor immunity together with tumor development and
survival (149, 150). Knockdown of ATG5 in cancer cells was
followed by increased induction of DC maturation, production
of IL-6 and IFN-g along with the proliferation of CD4+ and
CD8+ T-cells after an immunogenic cell death inducer treatment
(204). In Treg cells, autophagy is an important and active
process to support their homeostasis contributing to their
immunosuppressive profile. Suboptimal NK cell activity
induces autophagy in surviving tumor cells, leading to
treatment resistance (205). As mentioned before, many pro-
inflammatory cytokines contribute to tumor growth, metastasis
and can induce autophagy (206). Although the treatment with
high-dose-IL-2 has antitumor effects it is limited by severe side
effects, as multiorgan dysfunction that is accompanied by
systemic autophagic syndrome induced by cytokines. In a
murine model of metastatic liver tumor, the combined
treatment of high-dose-IL2 and chloroquine increased
antitumor effects along with decreased toxicity, increased long-
term survival and enhanced infiltration of immune cells in liver
(207). In a renal cell carcinoma model, autophagy inhibition also
improved HDIL-2 anti-tumor effects due to apoptosis induction
and immune system stimulation together with increased activity
of DCs, T-cells, and NK cells (208). Inhibition of autophagy
through 3-MA treatment also potentiates apoptosis induced by
IL-24 in oral squamous cell carcinomas, demonstrating that
autophagy inhibition can be explored as a promising approach
to increase immunotherapy efficacy (209). The phytochemical
shikonin can induce necroptosis accompanied by autophagy
enhancement that directly contributes to DAMP upregulation
in tumor cells. However, if autophagy flux is blocked by
chloroquine treatment, there is an even greater upregulation of
ectoDAMPS, resulting in DC activation. In the context of DC
vaccines, the pretreatment of tumor cells with chloroquine and
shikonin potentiated antimetastatic activity and reduced
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chemotherapy doses in vivo (210). Autophagy can also reduce
immunotherapy effect by impairing cytotoxic T-lymphocyte
(CTL)-mediated tumor cell lysis when autophagy is induced
under hypoxia conditions, activating STAT3 signaling in target
cells which in turn favors tumor cell survival, proliferation, and
immune escape. If autophagy is blocked in this context and CTL-
response is boosted with a vaccination strategy, vaccination
efficacy is improved, leading to tumor regression in vivo (211).
Hypoxia-induced autophagy also impairs NK cells function by
degradation of NK-derived granzyme B in autophagosomes of
hypoxic breast cancer cells, leading them less susceptible to NK
killing and immunotherapy effects. However, if autophagy is
blocked by deletion of BECN1, granzyme B levels are restored
and favors tumor regression in vivo due to tumor cell death by
NK-mediated lysis (212). Pancreatic ductal adenocarcinoma
(PDAC) is known for immune checkpoint blockade resistance
and frequently altered MHC-I expression that facilitates immune
evasion trough NBR1 selective autophagy downregulation of
MHC-I. If autophagy is inhibited, there is recover in MHC-I
expression and augmented immunotherapy response along with
enhanced T-cell immunity in tumor models in vivo (213). In a
cohort of gastric cancer (GC) patients, the expression of CXCL10
has a positive correlation with patient prognosis and induces T
lymphocyte migration and infiltration into the GC 3D cell
culture model. It is also observed in basal conditions that GC
cells have increased autophagy, and the knockdown of essential
autophagy genes (Atg5 and Atg7) or their pharmacological block
in these cells augmented CXCL10 expression under normal and
hypoxic conditions facilitating T cell lymphocyte migration and
potentiating tumor immunity (214). Recent studies
demonstrated that autophagy activation in tumor cells is one
of the main reasons for decreased antitumor immune response,
reinforcing the concept of autophagy inhibition as a valuable
approach to increase immunotherapy results. One of the
autophagic proteins that have been recently described as drug
targetable is Vps34, whose inhibition with genetic or
pharmacological approaches decreased tumor growth along
with increased mice survival due to infiltration of immune cells
(NK, CD8+ and CD4+ T effector cells) within the tumor
microenvironment, which could turn cold tumors into hot
inflamed tumors to enable immunotherapy treatments.
Moreover, the combined treatment of Vps34 inhibitor and
anti-PD-L1/PD-1 in melanoma and colorectal cancer models
prolonged mice survival and enhanced immunotherapy benefits
(215). Impairment of autophagy with BECN1 ablation is also
beneficial to increase NK infiltration and inhibit tumor growth in
a melanoma tumor model. In addition, NK infiltration in the
tumor microenvironment is mediated by CCL5 chemokine
overexpression in autophagy-deficient cells trough c-Jun/JNK
activation. Similar results were also obtained after deletion of
other autophagic genes as Atg5 and SQSTM1/p62 and
pharmacological inhibition by chloroquine. In conclusion,
targeting autophagy may be a valuable approach to improve
immunotherapy mediated by NK cells (216).

On the other hand, autophagy has also anti-tumoral effects
since its induction contributes to a better response of helper T
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lymphocytes (HTLs) against head and neck squamous carcinoma
cells and its inhibition decreases HTLs recognition of tumor cells
(217). Tumors can act as antigen donor cells that require
autophagy to form tumor-derived autophagosomes (Dribbles)
which contain tumor-associated antigens. Dribbles can stimulate
efficient cross-presentation of T-cells (218) and induce B cell
activation along with cytokine release and antibody production
(219) which can contribute to tumor control and elimination. For
vaccination strategies, in contrast to whole-cell tumor vaccine,
Dribbles prime T cells by enhancing costimulatory molecules as
well as MHCI, and reduce tumor formation on hosts challenged
with nonhomologous tumors, effect limited if there is depletion of
the autophagic protein SQSTM1/p62 (220, 221). For efficient
immunotherapy, tumor antigens should be immunogenic,
essential only for tumor cells and overexpressed in tumors
compared to normal tissue. Recently, it was demonstrated that
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SQSTM1/p62 fits all these requisites and a DNA-vaccine encoding
this protein had antitumor and antimetastatic effect against several
tumor models in dogs, suggesting that this can be a useful strategy
for immunotherapy (222). Inactivation of ATG5 in non-small cell
lung carcinoma favors carcinogenesis and its development is
accelerated in KRASAtg5(fl/fl) autophagy-deficient mice. In these
mice, a higher expression of ENTPD1/CD39 was observed,
culminating in an immunosuppressive environment along with
increased Treg infiltration that contributes to tumor development
(223). As discussed previously, autophagy plays a role in
monocytes/macrophages recruitment, what decreases infiltration
in liver tissues accompanied by autophagy reduction and
hepatocarcinogenesis (224). Immunotherapy can also be
potentiated by autophagy. For instance, in murine tumor models,
the treatment with chemotherapy or radiotherapy induced
autophagy, which favored translocation of the mannose-6-
FIGURE 2 | Overview of autophagy roles in the tumor microenvironment. The scheme summarizes the role of autophagy in secretion (left), immune system (middle),
epithelial-mesenchymal transition (EMT) and tumor dormancy (right). There is an intricate and dynamic network of signaling circuits that drive tumor development and
progression within the tumor microenvironment. The connectivity among various processes may regulate the fate of the microenvironment components, indicating
the importance of viewing this as an emerging system, where the resulting interactions are larger than the sum of the individual parcels. Autophagy can act in many
ways in different types of cells displaying anti-tumoral (shown in blue) or pro-tumoral functions (shown in red). Protein secretion by CAF or tumor cells can modulate
cellular states inducing or inhibiting senescence, which ultimately can control tumor survival, immune cell response and interfere with the epithelial-mesenchymal
transition, affecting tumor invasion capacity. In the context of the immune system, autophagy has a key role in immune cell differentiation, proliferation, activation and
effector function, covering the range of homeostatic to reactive functions of the immune system. At the same time, autophagy is also connected with the innate
immune response being controlled by receptors such as TLRs. Importantly, in advanced stages, the autophagy system in tumor cells is involved with EMT and the
consequent ability of cancer cells to invade tissues and metastasize. The interplay among these functions contributes to tumor aggressiveness. Moreover, autophagy
was also appointed as a characteristic of cancer stem cells (CSC) playing a central role in tumor dormancy. Altogether, the myriad of connected process regulated
by autophagy in the TME modulate tumor response and may determine its regression or progression. Altogether, understanding the integrated mechanisms that
regulate autophagy within the TME constitute a niche for development of novel strategies for combination therapy.
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phosphate receptor (MPR) from autophagosomes to tumor cells
surface, rendering the cells more sensitive to granzyme B from
activated CTLs, potentiating CTLs killing and immunotherapy
(225, 226). In another example, autophagy elicited by alpha-
tocopheryloxyacetic acid (a-TEA) on tumor cells improved
cross-presentation of tumor antigens for MHCI and MHCII,
which can be use as an adjuvant strategy to improve anti-tumor
immune responses and strength immunotherapy (227, 228).
Treatment of ovarian cancer models with farletuzumab, a
humanized monoclonal antibody against folate receptor a, also
induced autophagy and reduced proliferation, which was reversed
by autophagy pharmacological blockage (229). Finally, studies
indicate that although statins have no protective effect on breast
cancer incidence, they can be used as adjuvant therapy to increase
apoptosis and radio-sensitivity along with proliferation and
invasion inhibition of cancer cells. Fluvastatin belongs to the
statin family and when used in vitro to treat breast cancer cells, it
induced autophagy but with impaired lysosome function which
may contribute to cell death. Moreover, a decrease of pro-
inflammatory cytokines, such as IL-6 and TNF-a, was observed
along with autophagy consequent effect in tumor immunity (230).
CONCLUDING REMARKS

Given the dual role of autophagy in cancer and its involvement in
cancer therapeutic responses, the process of autophagy has been
pointed as an important theme in cancer research (Figure 1). The
interconnection of autophagy to the regulation of several biological
processes in the TME indicates that autophagy has key roles in
tumor progression. Thus, in addition to its primary function of
Frontiers in Oncology | www.frontiersin.org 11
degradation and recycling, most of the components of the
autophagy machinery also mediate numerous non-autophagic
functions. This suggests that autophagy operates in many ways,
establishing an intricate network of signaling, along with other cell
elements, integrating diverse signals within the TME and regulating
the fate of cancer and other microenvironmental cells (Figure 2).
Integrative approaches, which address the impact of autophagy
inhibition in complex systems, are therefore necessary for the
development of strategies that exploit the autophagy machinery as
a target to control tumor growth, without impeding the generation
of a long-lasting memory cytotoxic immune response or the
induction of a stemness phenotype in residual cancer cells.
Models of the intricated and dynamic network of cancer cells and
the tumor microenvironmental cells are warranted for filtering
compounds that may control tumor growth and increase the
efficacy of many known therapeutic regimens.
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