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A B S T R A C T

How can we learn more about pain without causing pain in humans or animals? This short review focuses on neuro-glial primary cell cultures as models to study 
neuro-immune interactions in the context of pain and discusses their advantages and limitations.

The field of basic pain research places scientists in an ethical dilemma. We aim to understand underlying mechanisms of pain for an improved pain therapy for 
humans and animals. At the same time, this regularly includes the induction of pain in model animals. Within the field of psychoneuroimmunology, the examination 
of the complexity of neuro-immune interactions in health and disease as well as the bi-directional communication between the brain and the periphery make animal 
experiments an inevitable part of pain research. To address ethical and legal considerations as well as the growing societal awareness for animal welfare, scientists 
push for the identification and characterization of complementary methods to implement the 3R principle of Russel and Burch. As such, methods to replace animal 
studies, reduce the number of animals used, and refine experiments are tested. Neuro-glial primary cell cultures of structures of the nociceptive system, such as dorsal 
root ganglia (DRG) or the spinal dorsal horn (SDH) represent useful in vitro tools, when research comes to a cellular and molecular level. They allow for studying 
mechanisms of neuronal sensitization, glial cell activation, or the role of specific inflammatory mediators and intracellular signaling cascades involved in the 
development of inflammatory and neuropathic pain. Moreover, DRG/SDH-cultures provide the opportunity to test novel strategies for interventions, such as 
pharmaceuticals or cell-based therapies targeting neuroinflammatory processes. Thereby, in vitro models contribute to a better understanding of neuron-glia-immune 
communication in the context of pain and in the advancement of pain therapies. However, this can only be one piece in a large puzzle. Our knowledge about the 
complexity of pain will depend on studies in humans and animals applied in vitro and in vivo and will benefit from clear and open-minded interdisciplinary 
communication and transparency in public outreach.

“Pain research thus places us between horns of a troublesome ethical 
dilemma. We appear obligated to do something - pain research on 
animals - that will sometimes involve doing something else - causing 
pain - that we are generally obligated not to do.”(Tannenbaum, 
1999)
Jerrold Tannenbaum: “Ethics and Pain Research in Animals”, 1999

1. Basic pain research in the field of psychoneuroimmunology 
(PNI)

Pain is one of the most common reasons why people seek medical 
care (Goldberg and McGee, 2011). Therefore, it represents not only a 
significant socio-economic challenge of global outreach, but even more 
importantly an enormous personal physiological and psychological 
burden affecting patients independent of age, gender or ethnicity with 
an estimated 20% of the global population suffering from pain 

(Goldberg and McGee, 2011). In 2021, one in five U.S. citizens reported 
pain on most or every day during the previous 3 months, referred to as 
chronic pain (Rikard et al., 2023). The Global Burden of Disease (GBD) 
study 2017 identified low back pain and headache disorders as the top 
two leading Level 3 causes of years lived with disability worldwide (GBD 
2017 Disease and Injury Incidence and Prevalence Collaborators, 2018). 
More diseases that are directly or indirectly associated with pain appear 
in this list and include depressive and anxiety disorders, as well as drug 
and alcohol use disorders. While there is a rising awareness of recog-
nizing pain as a global health priority, adequate options to sufficiently 
treat pain need to be improved (Sessle, 2011). Therefore, increased ef-
forts in pain research are warranted to uncover mechanisms of pain 
modulation for an advanced pain relief.

In recent decades, psychoneuroimmunology (PNI) has evolved into 
an outstanding interdisciplinary field of research connecting basic and 
clinical scientists to foster our understanding of immune-brain 
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interactions in health and disease (Rummel et al., 2022; Peters et al., 
2023). The bi-directional communication between the nervous and 
immune system is of pivotal importance in the context of pain and 
associated comorbidities (Zouikr and Karshikoff, 2017; Karshikoff et al., 
2019). Several endogenous inflammatory mediators released by im-
mune and glial cells modulate the neuronal excitability of primary 
nociceptors (peripheral sensitization) or second-order neurons in the 
spinal dorsal horn (central sensitization). At the same time, activation of 
nociceptors induces the release of inflammatory neuropeptides, such as 
substance P or calcitonin-gene-related peptide (CGRP) in the periphery, 
as well as in the dorsal horn of the spinal cord. Thereby, nociceptive 
stimulation promotes peripheral (neurogenic) inflammation and (neuro) 
inflammation in the spinal cord (Matsuda et al., 2019). Thus, pain and 
inflammation are directly linked to each other.

Neuroinflammatory processes in dorsal root ganglia (DRG) and the 
spinal dorsal horn (SDH) are important components in the development 
of inflammatory and neuropathic pain. Dorsal root ganglia contain cell 
bodies of pseudounipolar sensory neurons, which innervate the pe-
riphery and transmit the information to the SDH (Dubin and Pata-
poutian, 2010). These neurons express channels of the TRP-family 
(transient receptor potential), like TRPV1, TRPA1, TRPM3 and others 
that can detect noxious stimuli (Julius, 2013). Inflammation induces a 
rapid nociceptor sensitization via posttranslational mechanisms, like 
phosphorylation of TRPV1 channels (Bhave and Gereau, 2004). Cell 
bodies of nociceptors are surrounded by satellite glial cells, which not 
only have essential functions in controlling the neuronal environment, 
but are activated in animal models of inflammatory and neuropathic 
pain and contribute to peripheral sensitization by releasing inflamma-
tory mediators (Hanani and Spray, 2020; McGinnis and Ji, 2023). 
Moreover, DRG contain immune cells, like macrophages and lympho-
cytes that are activated under inflammatory conditions and contribute 
to the development and resolution of neuropathic pain (Krukowski et al., 
2016; Zhang et al., 2016; Laumet et al., 2020; Yu et al., 2020). Inter-
estingly, recent studies indicate that cellular mechanisms to induce pe-
ripheral sensitization are modulated in a sex-dependent manner (Yu 
et al., 2020; Szabo-Pardi et al., 2021; Alexander et al., 2023; Stratton 
et al., 2024). Overall, the close interaction between immune and glial 
cells with nociceptive neurons in the DRG is essentially involved in the 
induction of pathological pain states and represents a particularly 
interesting target for novel interventions to treat pain.

Within the spinal dorsal horn, nociceptive information is transmitted 
to secondary afferent neurons and integrated by resident excitatory and 
inhibitory interneurons, which represent the majority of SDH neurons 
(Todd, 2017). In addition, a top-down control within the nociceptive 
system is mediated by descending inputs from brain regions, such as the 
periaqueductal gray to control the spinal synaptic transmission 
(Heinricher et al., 2009). Spinal mechanisms of neuroinflammation 
include the activation and proliferation of resident glial cells (e.g., 
microglia, astrocytes), infiltration of immune cells (e.g., macrophages, 
T-cells, neutrophils), upregulated production and release of 
pro-inflammatory mediators (e.g., cytokines, chemokines, prostaglan-
dins) and alterations in neuronal excitability and synaptic plasticity (Ji 
et al., 2014). Similar to DRG, targeting spinal (neuro)inflammatory 
processes seems to be an extraordinary promising approach to achieve 
advanced pain relief. This does not necessarily implicate the pharma-
cological inhibition of pro-inflammatory signaling cascades. Interest-
ingly, it may also involve the activation of endogenous 
anti-inflammatory mechanisms, such as specialized pro-resolving me-
diators (e.g., resolvins) (Ji, 2023) and, thereby, shifting an organism’s 
endogenous balance from a more pro- to an anti-inflammatory direction.

While a lot of research has been performed to understand neuro-
inflammatory processes in DRG and SDH, our knowledge about the 
contribution of neuron-glia-immune interactions to modulate pain is 
still limited. In this context, animal models represent invaluable tools to 
gain novel insights into underlying mechanisms and opportunities for 
intervention. Nevertheless, experiments in animals can be effectively 

supplemented using in vitro approaches to acknowledge ethical consid-
erations and the 3R principle (see Chapter 2: Ethical considerations in pain 
research).

2. Ethical considerations in pain research

While there is an obviously urgent need for more research to gain 
deeper insights into mechanisms of pain, scientists are confronted with 
substantial ethical and legal restrictions, which are undoubtedly for 
good reasons. Experimental modeling of pain in humans is hardly 
justifiable in terms of ethics and requires strict regulations. To this point, 
only a limited number of tests exist with which to study acute pain in 
humans, such as visceral and somatic pain (Kleine-Borgmann et al., 
2022). Moreover, models of experimentally induced endotoxemia are 
applied in humans to study mechanisms of sickness behavior, including 
inflammation-induced hyperalgesia (Benson and Karshikoff, 2023). 
Such models are instrumental in translational science to transfer 
knowledge between studies in animals and humans and to investigate 
entities of pain, which are difficult to assess in animals, such as the role 
of expectation in nocebo and placebo effects or connections to comorbid 
psychological disorders (Benson and Karshikoff, 2023).

Compared to humans, the legislation for research on animals is less 
strict in most countries, but fortunately, public awareness for animal 
welfare is constantly rising. In Germany, the protection of animals has 
been elevated to a national goal of constitutional status since 2002 
(Constitutional protection for animals, 2002). However, what 
strengthens animals welfare, confronts researchers with further re-
strictions. This results in an ethical dilemma between the obligation to 
improve pain management by studying mechanisms of pain and at the 
same time respecting humans and animals welfare (Tannenbaum, 
1999).

In 1959, Russel and Burch published the Principles of Humane 
Experimental Technique and introduced the principle of the 3R 
(Replacement, Reduction, Refinement) (Russel and Burch, 1959), which 
was also implemented in national and international legislations, like the 
European Directive 2010/63/EU on the protection of animals used for sci-
entific purposes (Art. 4) (European Parliament and the Council, 2010). 
While the directive acknowledges that ‘the use of live animals continues 
to be necessary to protect human and animal health’, ‘it seeks to facil-
itate and promote the advancement of alternative approaches’ 
(European Parliament and the Council, 2010). Therefore, it encourages 
researchers to identify and apply novel ‘alternative’ opportunities to 
realize the 3Rs in their experimental approaches.

An additional point that has been traditionally underappreciated and 
only recently received the attention it deserves in the context of ‘Culture 
of Care‘ is the welfare of those individuals, who care for research animals 
(Ferrara et al., 2022; von der Beck et al., 2024). This includes not only 
scientists, but moreover the caregiving staff, technicians, veterinarians 
and animal welfare officers as well as responsible authorities. They all 
have to cope with this ethical dilemma, the associated emotional stress 
in the workplace and public stigmatization of their work (von der Beck 
et al., 2024). Thus, the aim to identify innovative strategies in pain 
research is of eminent intrinsic interest for scientists and not only a 
political-societal intention.

3. Neuro-glial primary cultures to study cellular mechanisms of 
pain in vitro

To study the diverse facets of pain on a cellular level, scientists 
established an enormous variety of in vitro approaches. These include 
primary cultured tissues and dissolved cells from animals (Caterina 
et al., 2000; Vriens et al., 2011; Biggs et al., 2014; Leisengang et al., 
2018b, 2020a) or humans (Chrysostomidou et al., 2021; Middleton 
et al., 2021) as well as induced pluripotent stem cell (iPSC)-derived 
neurons (Chrysostomidou et al., 2021; Labau et al., 2022) or immor-
talized DRG cell lines (Haberberger et al., 2020). Moreover, there has 
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been a rapid progress in the generation of three dimensional organoid 
models of peripheral and central nervous structures involved in pain 
processing (Kofman et al., 2022; Zhou et al., 2024). All of these in vitro 
methods are applied with a specific justification to answer distinct sci-
entific questions and exert advantages or disadvantages with regard to 
practicability, reproducibility, complexity, transferability and, as 
mentioned before, ethical concerns.

Primary cell cultures of dorsal root ganglia played an essential role in 
the identification and characterization of receptors involved in the 
transduction and transmission of sensory information. These include 
channels of the TRP-channel family, such as TRPV1 (Caterina et al., 
2000), TRPA1 (Story et al., 2003), TRPM3 (Vriens et al., 2011), or 
TRPM8 (McKemy et al., 2002; Peier et al., 2002) and their capability to 
respond to noxious, thermal, mechanical or chemical stimuli. Sensiti-
zation of TRP-channels represents a key mechanism in the development 

of thermal and mechanical hyperalgesia and allodynia in states of in-
flammatory and neuropathic pain (Huang et al., 2006; Basbaum et al., 
2009). Primary cultures of DRG are regularly utilized to study modu-
latory effects of inflammatory mediators on nociceptor excitability. 
Exogenous pathogen-associated molecular patterns (PAMPs) directly 
activate or sensitize channels involved in transduction and transmission 
of nociceptive stimuli via toll-like-receptors (TLRs) (Qi et al., 2011; 
Boonen et al., 2018; Agalave et al., 2020). Moreover, endogenous sub-
stances released under inflammatory conditions have been applied in 
DRG primary cultures to investigate sensitizing capacities and under-
lying cellular pathways. This includes cytokines, such as interleukin 
(IL)-6 (Segond von Banchet et al., 2005; Obreja et al., 2005; Andratsch 
et al., 2009; Ebbinghaus et al., 2015) and tumor necrosis factor (TNF)-α 
(Nicol et al., 1997; Hensellek et al., 2007; Richter et al., 2010), as well as 
prostaglandin (PG)E− 2 (Pitchford and Levine, 1991; Linhart et al., 

Fig. 1. Neuro-glial primary cell cultures of dorsal root ganglia (DRG) and the spinal dorsal horn (SDH) to study neuro-immune interactions on a cellular level 
Noxious stimuli are detected by peripheral free nerve endings of nociceptive neurons (A þ B; red). In the spinal dorsal horn, nociceptive stimuli are synaptically 
transmitted to secondary neurons (A þ B; blue) that forward the information to superior brain regions. Cell bodies of sensory neurons are located in the dorsal root 
ganglia (DRG; D: MAP-positive). Nociceptors express TRP-channels (e.g., TRPV1) in peripheral nerve endings, in cell bodies in the DRG (D) and their central nerve 
endings in the SDH (C.1). In E and F glial and neuronal elements of DRG and SDH primary cultures as well as potential applications for studying inflammation- 
induced nuclear translocation of transcription factors or expression of cytokines are exemplarily illustrated with the respective markers. E: (a) MAP-positive 
neuron (green); (b) GFAP-positive astrocyte (green) and STAT3 (red); (c + d) CD68-positive microglia (green) and NFκB (c) or TNFα (d) (red); F: (a) MAP- 
positive neuron (green) and GFAP-positive satellite glial cells (red); (b) MAP positive neuron (green) and STAT3 (red); (c) CD68-positive macrophage (green) 
and NF-IL6 (red). 
CD68: cluster of differentiation 68 (marker for activated macrophages/microglia); DAPI: 4′, 6-Diamidino-2-phenylindole dihydrochloride (nuclear staining); DRG: 
dorsal root ganglia; GFAP: glial fibrillary protein (marker for astrocytes and satellite glia); Iba1: ionized calcium binding adaptor molecule 1; MAP: microtubule- 
associated protein (neuronal marker); NF-IL6: nuclear factor interleukin 6; NFκB: nuclear factor kappa B; SDH: spinal dorsal horn; STAT3: signal transducer and 
activator of transcription 3; TNFα: tumor necrosis factor alpha; TRPV1: transient receptor potential vanilloid 1. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.)
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2003; Lin et al., 2006), or nerve growth factor (NGF) (Bonnington and 
McNaughton, 2003; Zhang et al., 2005) to mention only a number of 
examples. Besides these inflammatory mediators, DRG primary cultures 
are applied to study effects of substances that are administered upon 
medical indication and impact the sensory system, such as 
platinum-based chemotherapeutics in terms of peripheral neuropathy 
(Leisengang et al., 2018b; Leo et al., 2020, 2021; Schmitt et al., 2020). 
While most studies focus on sensory neurons in DRG cultures, more and 
more researchers also assess the role of resident glial and immune cells. 
Satellite glia are the predominant cellular component in naïve rat DRG 
cultures (Fig. 1F–a) (Leisengang et al., 2018b). Moreover, resident im-
mune cells (e.g., macrophages) exist within these cell cultures 
(Fig. 1F–c). Therefore, primary DRG cultures can also be utilized to 
study neuron-glia-immune interactions. Inflammatory stimulation with 
lipopolysaccharide (LPS), a potent agonist on TLR-4 results in activation 
of DRG macrophages and enhanced expression and release of the 
pro-inflammatory cytokines TNFα and IL-6, which is attenuated in the 
absence of macrophages (Leisengang et al., 2018b). Sensitization of 
nociceptors upon stimulation with capsaicin, an agonist of the TRPV1 
channel is detected after in vitro LPS-treatment in a dose-dependent 
manner (Nürnberger et al., 2022a). The elevated neuronal excitability 
is accompanied by an enhanced nuclear translocation of transcription 
factors STAT3 (signal transducer and activator of transcription 3) and 
NF-IL6 (nuclear factor interleukin 6) in DRG neurons (Fig. 1F–b). 
Interestingly, similar effects are observed, when DRG cultivation is 
performed after an in vivo LPS-challenge (Nürnberger et al., 2022b). 
Intraperitoneal injection of LPS results in systemic inflammation 
accompanied by symptoms of sickness behavior, including hyperalgesia 
(Harden et al., 2015). Within the DRG, the systemic LPS-challenge in-
duces an upregulation of pro-inflammatory mediators (TNFα, IL-6, 
IL-1β) as well as elevated capsaicin responses in ex vivo cultured noci-
ceptors (Nürnberger et al., 2022b). Moreover, LPS-induced nuclear 
translocation of NF-IL6 is detectable in ex vivo cultivated DRG macro-
phages and STAT3 in neurons (Nürnberger et al., 2022b). Therefore, an 
in vitro stimulation of DRG primary cultures with LPS shares important 
characteristics with processes that are induced by an in vivo 
LPS-challenge within the DRG.

The spinal dorsal horn represents the first main site of pain trans-
mission and integration (Fig. 1C). Primary cultures of the SDH consist of 
neuronal as well as glial elements, including astrocytes, microglia and 
oligodendrocytes (Fig. 1E) (Leisengang et al., 2020a). Exposition of SDH 
cells to LPS leads to an enhanced expression and release of 
pro-inflammatory cytokines (e.g., TNFα, IL-6, IL-1β) as well as an acti-
vation of transcription factors (NFκB, STAT3, NF-IL6) that is predomi-
nantly observed in microglial cells or astrocytes (Fig. 1E–b + c) 
(Leisengang et al., 2020a). Moreover, LPS-stimulated SDH neurons show 
elevated Ca2+-responses upon stimulation with glutamate, indicating a 
central sensitization (Leisengang et al., 2020a). Interestingly, 
pre-incubation with a lower LPS-dose attenuates a second LPS-induced 
inflammatory response in DRG and SDH cultures, as depicted by a 
reduced expression and release of cytokines and suppressed activation of 
inflammatory transcription factors, termed LPS tolerance (Nürnberger 
et al., 2021).

Neuro-glial primary cell cultures of the DRG and SDH are not only 
useful to assess pathophysiological mechanisms of neuroinflammatory 
processes, but can be further applied to study novel therapeutic ap-
proaches, including pharmacological substances or cell-based therapies. 
Gabapentin and pregabalin are drugs to treat neuropathic pain via in-
hibition of the

α2δ-1 subunit of voltage-gated Ca2+-channels at the presynapses 
resulting in a reduced release of excitatory neurotransmitters (Maneuf 
et al., 2003). However, treatment of DRG and SDH primary cell cultures 
with gabapentinoids also attenuated LPS-induced IL-6 expression and 
release, which most likely contributes to long-term analgesic effects 
(Leisengang et al., 2020b; Nürnberger et al., 2023). Interestingly, the 
immunomodulatory capacities of stem cells via release of exosomes and 

anti-inflammatory mediators represent a further promising tool to tackle 
neuroinflammation in the context of pain (Huh et al., 2017). 
Co-cultivation of SDH primary cultures with adipose tissue derived 
medicinal signaling cells (AdMSCs) results in a significant reduction in 
the inflammatory response of SDH cells by means of an attenuated 
LPS-induced cytokine expression and release and suppressed activation 
of the NFκB-pathway in SDH microglial cells (Leisengang et al., 2022).

Overall, neuro-glial primary cell cultures of the DRG and SDH 
represent useful tools to study neuroinflammatory processes in struc-
tures of the nociceptive system and are applicable to identify novel 
potential options for interventions.

4. Advantages and limitations of primary cell culture models

Neuro-glial primary cell cultures improve our knowledge of under-
lying cellular and molecular processes and are useful tools to study the 
impact of pro- and anti-inflammatory stimuli on specific cell types, 
intracellular signaling cascades, or the production of inflammatory 
mediators (see Chapter 3). Compared to other in vivo or in vitro ap-
proaches to study mechanisms of pain, there exist several advantages 
and limitations: The dissolved cells share characteristics with cells in the 
intact tissue regarding their physiological composition, like the number 
of nociceptive neurons in DRG (Leisengang et al., 2018b) as well as 
temperature responsive neurons in the SDH (Leisengang et al., 2020a) or 
in brain regions of the hypothalamus involved in thermoregulation 
(Leisengang et al., 2018a). Moreover, the existence of neuronal and glial 
components allows the investigation of intercellular communication via 
secretion of mediators, such as cytokines, and their actions on other cell 
types. Application of neuro-glial primary cultures is one opportunity to 
implement the 3R-principle (Replacement, Reduction, Refinement) by 
Russel and Burch into the field of pain research. Such in vitro models lead 
to a Reduction in the number of research animals because one animal can 
serve for several primary cultures, which are used for different treatment 
groups and methodological approaches. Other organs of the same ani-
mal can help to address further biomedical research questions. More-
over, tissue for cultivation can also be harvested from non-experimental 
animals as well as humans and thereby, represent an exciting approach 
in translational research (Herzberg and Bustamante, 2021). The use of 
cell culture models also represents a strategy of Refinement. It allows the 
investigation of cellular and molecular processes involved in pain 
modulation without the induction of pain in living animals in in vivo 
models. Finally, primary cell cultures allow an extraordinarily efficient 
workflow by means of time and costs.

However, it has to be noted that cell culture models only provide 
answers to a limited field of scientific questions and contribute some 
components toward identifying mechanisms of pain modulation. 
Compared to more complex three-dimensional cultivation systems, such 
as organotypic cultures, the physiological cell morphology and compo-
sition of intercellular connections is disrupted upon enzymatic digestion 
and trituration of the tissue. This cultivation process can result in al-
terations in the expression levels of ion channels and receptors and 
induce expression of inflammation-associated genes, leading to an 
injury-like phenotype of DRG cells (Wangzhou et al., 2020). Immune cell 
infiltration in DRG and SDH is one important mechanism of neuro-
inflammation in intact organisms, but can hardly be simulated in vitro. 
At some point, all in vitro models lack the presence of intact organ-organ 
interactions via cellular, humoral, endocrine and neuronal pathways, 
which are essential in the bi-directional communication between the 
brain and the immune system (Pflieger et al., 2018). Finally, the pro-
cessing of nociceptive information on spinal cord level includes an 
endogenous inhibitory system that modulates transmission via 
descending tracts from superior brain regions (Ossipov, 2012). There-
fore, in vitro models are not capable of replacing animal studies in terms 
of the 3R principle. The term of Replacement is regularly over-interpreted 
as a complete replacement and ‘alternative’ for in vivo studies. Indeed, 
this would overestimate the current opportunities of applicable in vitro 
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tools and could be misleading for the non-scientific community.

5. Conclusions and perspectives

To improve pain therapy for the billions of patients in human as well 
as in veterinary medicine, we depend on more research in basic and 
clinical sciences. A better understanding about the physiology and 
pathophysiology of pain is essential to identify novel targets that are of 
potential interest for pharmacological studies. Studying the complexity 
of neuroinflammatory processes in the dorsal root ganglia (DRG) and the 
spinal dorsal horn (SDH) represents an important component in this 
progress. Neuro-glial primary cell cultures represent valuable tools to 
study cellular mechanisms of nociception. Together with other in vitro 
tools, primary cultures promote the implementation of the 3R principle 
into pain research. Scientists are ethically and legally obliged to consider 
‘alternative’ approaches when they design a project. However, it has to 
be acknowledged that - to date - animal experiments are not completely 
replaceable and still, represent an essential component of biomedical 
research (Domínguez-Oliva et al., 2023). Therefore, an integrated 
strategy combining in vitro and in vivo experiments is crucial for a 
comprehensive understanding of modulatory mechanisms of pain. If we 
aim to advance our understanding of pain, an open-minded exchange 
within the research community will be of tremendous importance. 
Furthermore, scientists need to improve public outreach and become 
more active members in a societal debate on animal research to 
communicate the advantages and limitations of ‘alternative’ approaches 
and inform about animal research (Link et al., 2024).
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