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Nephrolithiasis, urolithiasis, and nephrocalcinosis (NC) have become common causes 
of hospitalization and referral to pediatric outpatient clinics. It is of utmost importance to 
start with diagnostic evaluation directly after the first passage of a kidney stone, or if NC 
is diagnosed, in each pediatric patient. This is necessary, as in about 80% of children 
a metabolic reason for stone disease is detected. Current treatment options are scarce 
and mainly include general measures like an increased fluid intake or elevating the sol-
ubility of a lithogenic substance. According to the given lithogenic risk factor(s), specific 
treatment options are available and are being summarized in this review. Furthermore, 
an outlook on potential future treatment options, including innovative strategies such as 
mRNA-based or recombinant enzyme substitution therapy, is given.

Keywords: nephrolithiasis, urolithiasis, nephrocalcinosis, treatment, therapy

iNTRODUCTiON

Nephrolithiasis (NL) and urolithiasis (UL) describe solid stones appearing in the kidney (NL) or in 
the lower urinary tract (UL). The term nephrocalcinosis (NC) expresses deposits of calcium salts 
within the renal tubules, the tubular epithelium, and/or the interstitium (1). NC is also classified 
ultrasonographically due to the anatomic area involved: cortical and diffuse NC or medullary NC, 
respectively, the latter subdivided according to the degree of echogenicity as medullary NC grade 
I-III (2). All three entities have become common causes of hospitalization and presentation in pedi-
atric outpatient clinics (3). Although exact numbers for prevalence and incidence rates are still not 
known, it is said, that numbers increase in pediatrics, as it was shown in the adult population. For 
example, in the US, the incidence of NL is estimated to be 36–57 per 100,000 population (4). Since 
in up to 40% of children the diagnosis is made incidentally (for example, after a first or recurrent 
urinary tract infection) due to the high proportion of unspecific symptoms, the accurate incidence 
might be underestimated.

Nephrolithiasis affects children of all ages. During the first decade of life, boys are more frequently 
prone to develop NL, while girls are more frequently observed to develop kidney stones in the second 
decade of life (5). Clinical presentation is highly variable and depends on the age of affected children, 
e.g., failure to thrive in infants, or typical flank pain in the older child/adolescent patient (6). If 
present, newly diagnosed microhematuria or macrohematuria can be the first clinical sign for NL.

Decision-making on treatment regimens should be based on thorough evaluation of the under-
lying risk factors, as metabolic disorders are found in ~80% of children with kidney stones/NC 
(7). Diagnostic evaluation thus includes examination of metabolic disorders leading to elevated 
urinary excretion of a lithogenic factor, or to decreased excretion of an anti-lithogenic substance, 
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but also anatomical abnormalities, urinary tract infections and 
prematurity, insufficient fluid uptake (8), and, with increasing 
importance, obesity (9). The 24-h urine is the most important 
tool in diagnostic workup of NL/NC, since blood examination 
usually remains unremarkable.

Overall, treatment options are scarce and include general 
measures such as increased fluid intake and a balanced diet with 
avoidance of excessive sodium intake. According to the given 
lithogenic risk factor(s), specific treatment options are already 
available. However, the current armament to treat the (pediatric) 
patient with a metabolic disease, thereby resulting in severe risk 
of kidney stone development or progressive NC, is minor.

GeNeRAL RiSK FACTORS

Dietary excesses, e.g., for oxalate containing food, or simply as 
hypercaloric diet (“metabolic syndrome”), may also influence the 
development of NL. While increased sodium intake can lead to 
an increased urinary calcium excretion, low calcium diet might 
promote increased intestinal oxalate absorption and thus result-
ing in secondary hyperoxaluria (10, 11).

General Measures
Fluid and Diet
A MUST for all stone patients is a high fluid intake: more than 
1.5–2 L × 1.73 m2 body surface area per day, distributed over the 
entire day, is recommended. This prevents peaks of high concen-
tration levels of a given soluble. However, dietary recommenda-
tions should be handled carefully. Excessive dietary sodium 
uptake has to be avoided, as it promotes calcium excretion (12). 
Calcium restriction can lead to an increased intestinal oxalate 
absorption and hence urinary oxalate excretion. Because of that 
and since calcium restriction might lead to low bone mineral 
density, this is an obsolete procedure in patients with hyper-
calciuria (13). Protein restriction, as well as excessive protein 
uptake, should of course be avoided, as it leads to hypercalciuria 
and hypocitraturia, due to an increased acid load. Keep in mind 
(in the pediatric patient) that restriction of protein includes the 
risk of growth retardation! A diet including the risk of metabolic 
syndrome (high fat and fructose intake) showed an increased risk 
of NL in epidemiologic studies (14). Vegetables and fruits provide 
a good source of citrate and potassium (both stone inhibitors) 
and by that decrease the risk of NL (15). Summing up, children 
with the risk of NL should stick to a normal and balanced diet.

Crystallization Inhibitors
Citrate and magnesium effectively increase urinary solubility 
especially of cystine, calcium oxalate and uric acid at given urinary 
pH levels (uric acid and calcium oxalate > 6.2 < 7.4, cysteine >8). 
Citrate is metabolized in the liver into bicarbonate, which elevates 
urinary pH, resulting in a reduced tubular citrate reabsorption. 
Urinary citrate reduces calcium excretion by 30% and it binds to 
urinary calcium forming a soluble complex, which reduces the 
precipitation of calcium with other lithogenic substances (16). 
Citrate is best delivered as potassium citrate or as sodium potassium 
citrate. The adequate increase of citrate excretion can be achieved 

by a dosage of 0.1–0.2  g/kg body weight (0.3–0.6  mmol/kg).  
Patients with distal RTA usually require higher dosages 
(0.2–0.3 g/kg body weight), and the dosage has to be adapted to 
urine pH (17). Since very high urinary pH levels promote calcium 
phosphate precipitation, urine alkalization therapy has to be  
monitored!

HYPeRCALCiURiA

The most common risk factor for NL in childhood is hypercal-
ciuria (18), which can arise from idiopathic hypercalciuria (19), a 
multifactorial disease, as well as from genetic disorders (7) or other 
underlying diseases, such as (primary) hyperparathyroidism.

An example for a genetic reason (for more information, see 
Table S1 in Supplementary Material) is autosomal dominant 
hypocalcemic hypercalciuria (ADHH), which is caused by muta-
tions in the calcium-sensing receptor (CaSR) gene, and genes 
connected to that receptor pathway (Gα11). Electrolytes in these 
patients show elevated serum phosphate along with low serum 
calcium and magnesium (20). ADHH is associated with calcifica-
tion of brain and kidney and with cataract. Other genetic diseases 
resulting in hypercalciuria is familial hypomagnesemia hypercal-
ciuria and nephrocalcinosis syndrome or are the different types 
of Dent Disease (Dent 1 and 2). In the latter, a diagnostic hint 
can be male gender (x-chromosomal recessive) accompanied by 
low molecular weight proteinuria and severe hypercalciuria (21).

Secondary hypercalciuria can result from medication (e.g., 
furosemide, vitamin D) or parenteral nutrition [higher daily 
intake of protein, sodium, phosphorus, and ascorbic acids, 
leading to significantly increased urinary calcium and oxalate, 
but lowish citrate excretion and hence urinary calcium oxalate 
supersaturation (22)].

Current Treatment
When severe hypercalciuria is present, thiazides reduce the 
urinary calcium excretion, since they increase calcium reabsorp-
tion in the distal and proximal tubule (23). Thiazides also are 
capable of encountering a reduced bone density in patients with 
hypercalciuria (24). Daily dosage is 0.5–1  mg/kg body weight, 
twice a day. Side effects include hypotension and hypokalemia. 
In case of hypokalemia, amiloride (a potassium-sparing and 
calcium-lowering diuretic) should be added (25).

Future Treatment Options
Experimental (Animal) Studies
In knock-in mutant mice of the calcium-sensing receptor (CaSR), 
which mimics ADHH, calcilytic therapy has been shown to 
reduce urinary calcium excretion, which was able to prevent 
renal calcification. Calcilytics are CaSR antagonists capable of 
improving serum calcium and phosphate, due to stimulating 
PTH secretion (26).

In Dent disease, first experience with bone marrow trans-
plantation in Clcn5 knockout mice, a model for Dent disease, 
showed an improvement of protein-, calci-, and glucosuria as well 
as reduced polyuria. This most likely results from bone marrow-
derived cells engaged in kidney interstitium (27).
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FiGURe 1 | Schematic figure of the mode of action of two new experimental 
drugs for primary hyperoxaluria I. CRID 3 inhibits inflammasome-mediated 
inflammation in dendritic cells of the kidney and thus reducing kidney fibrosis. 
R-7050 is a TNF-receptor inhibitor, delaying the progression of 
nephrocalcinosis since it seems to prevent adhesion of calcium oxalate 
(Ca-Ox) crystals to renal tubules.
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Recently, Rendu et  al. were able to restore normal mRNA 
and protein levels in fibroblasts of a patient with a deep intronic 
mutation in the OCRL gene (Lowe syndrome, Dent II), showing 
RNA-based [mRNA or RNA interference (RNAi)] therapy might 
be a future approach in these patients (28).

Case Series
For patients with CYP24A1 mutations, leading to idiopathic 
infantile hypercalcemia (IIH, Table S1 in Supplementary 
Material), single reports of treatment with rifampicin have been 
published. Rifampicin acts as a potent inductor of CYP3A4, an 
inactivator of many xenobiotics, and it was shown that it is capa-
ble of reducing urinary calcium excretion, serum calcium levels, 
and 1,25 (OH)2 D3 (29).

HYPeROXALURiA

There are three types of genetic hyperoxaluria: type I (PH I), sec-
ondary to mutation in the alanine/glyoxylate aminotransferase 
(AGT), is characterized through increased urinary excretion of 
oxalate and glycolate (30), type II (PH II), secondary to muta-
tion in the glyoxylate/hydroxypyruvate reductase (GRHPR), 
is characterized by elevated oxalate and l-glyceric acid urinary 
excretion (31) and type III (PH III), secondary to mutation in 
the 4-hydroxy-2-oxoglutarate aldolase (HOGA 1), characterized 
by raised urinary excretion of oxalate and hydroxy-oxo-glutarate 
and/or hydroxy-oxo-glutamate (32). Secondary hyperoxaluria 
results from an increased intestinal oxalate uptake, due to malab-
sorptive states such as short bowel disease or chronic inflamma-
tory bowel disease, by increased dietary oxalate intake, or lack of 
intestinal oxalate degrading bacteria (33).

Current Treatment
There are no approved drugs for the treatment of primary hyper-
oxaluria (PH). Since most of the oxalate is produced endogenously by 
the liver, an oxalate-restricted diet is often of limited use to these 
patients. Treatment in supra-physiological doses (5–20  mg/kg  
body weight per day) of pyridoxal-phosphate (vitamin B6), as 
the cofactor for the defective enzyme AGT in type I PH, reduces 
the endogenous oxalate production and the urinary excretion in 
about one-third of all PH I patients, especially those with missense 
mutations (34). Known side effects are polyneuropathy, acne and 
bullous skin eruptions. For all other PH I and those patients with 
PH types II and III the current measures, high fluid intake and 
citrate medication are the only further treatment possibilities.

Patients with PH (I) and end-stage renal failure (ESRF) should 
be transplanted as soon as possible since no renal replacement 
therapy is able to remove oxalate adequately. In PH I, combined 
liver and kidney, or two-timed transplantation, e.g., kidney after 
liver, are recommended based on the systemic oxalate burden of 
the patient. Patients with PH II shall only receive kidney trans-
plantation since the defect enzyme is ubiquitous (7). However, just 
recently a combined liver–kidney transplantation was reported in 
a PH II patient (35). In PH III only, one patient with ESRF was so 
far reported (PH III seems to be the mildest and therefore easiest 
to handle type of PH); hence, transplant strategies were not yet 
established (36).

Future Treatment Options
Experimental (Animal) Studies
In hyperoxaluric mice, the TNF receptor inhibitor R-7050 was 
able to delay the progression of NC. The TNFR signal pathway 
seems to be essential in the adhesion of calcium oxalate crystals 
(see Figure 1) to the luminal membrane of renal tubules (37).

A currently identified and obviously major player in oxalate-
induced kidney inflammation is the activation of the inflamma-
some pathway (38). The inflammasome is a protein complex, 
which, when activated, activates IL-1β and IL-18 production 
and thus promoting local inflammation (see Figure 1). In mice 
with crystal-induced kidney fibrosis, which was induced by an 
oxalate or adenine-rich diet, a specific inhibitor, CP-456,773  
(or CRID3), of the NLRP3 inflammasome pathway was able to 
delay the progress of kidney fibrosis (39).

In a certain PH I mutation (P11LG170R allele), the functional 
AGT is mistargeted into mitochondria instead into peroxisomes. 
Dequalinium chloride (DECA) inhibits mitochondrial protein 
import into the mitochondrium and restores transportation of 
AGT into the peroxisome, where it regains its regular function (see 
Figure 2). This reduces oxalate accumulation, similar to pyridoxal 
phosphate and even has additive effects with that therapy (40). 
If other AGT variations lead to a mislocation of the enzyme and 
could, therefore, be applicable for DECA therapy, is not known yet.

Ongoing Human Clinical Trials
Oral therapy with Oxalobacter formigenes (Oxabact, Oxthera AB, 
Sweden), an anaerobic bacterium that degrades oxalate for its 
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FiGURe 2 | Schematic figure of the mode of action of experimental drugs for primary hyperoxaluria (PH) I. ALN-GO1 and DCR-PH I are RNA interference 
(RNAi)-based drugs, preventing the translation of glycolate oxidase (GO) and thus reducing endogenous oxalate production. DCR-PHXC as well is an RNAi-based 
drug targeting the liver-specific lactate dehydrogenase A (LDHA), also reducing endogenous oxalate production. Dequalinium chloride (DECA) prevents the 
misslocation of alanine:glyoxylate aminotransferase (AGT). This is only applicable for a certain PH I mutation (P11LG170R allele), since other mutations do not cause 
a misslocation of AGT.
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sole carbon source (41), promotes the removal of endogenously 
produced oxalate via the intestinal tract (see Figure 3). Activation 
of the intestinal oxalate transporter and a high concentration 
gradient from blood to intestinal lumen induces an oxalate shift 
with the possibility that oxalate can be metabolized by intestinal 
Oxalobacter. First, data showed conflicting results. A Phase I 
study led to a significant reduction in urinary oxalate excretion 
(42), whereas other studies over a longer period of time showed 
no significant results (43, 44). Since the interpersonal effect of 
O. formigenes seems to be variable, and especially depending on 
patient’s compliance, further studies according to the efficacy of 
O. formigenes are currently being conducted. Nevertheless, ad hoc 
interpretation of study results showed a positive effect on kidney 
function over time. In addition, all recent Oxalobacter trials made 
obvious that urinary oxalate excretion might not be the perfect 
endpoint for a treatment study in patients with PH. Therefore, a 
further study will evaluate a variety of parameters, mostly focus-
ing on plasma oxalate follow-up and amelioration or prevention 
of systemic oxalate deposition. A study with PH I patients on 
maintenance hemodialysis is ongoing and preliminary results 
show improvement of plasma oxalate levels, as well of systemic 
oxalate burden of those patients being compliant.

ALLN-177 (Allena Pharmaceuticals, USA) is a recombinant, 
microbial enzymatic oxalate decarboxylase, which degrades 
oxalate in the gastrointestinal tract (see Figure  3). It has been 
shown that ALLN-177 is able to reduce the urinary oxalate excre-
tion in healthy persons (45). If ALLN-177 can help patients with 
primary or secondary hyperoxaluria is currently under investi-
gation. Degrading of dietary oxalate will obviously be possible; 
however, removal of endogenously produced oxalate via the 

intestinal tract might be tricky to achieve with such a medication. 
On overt, concentration gradient of oxalate (blood vs. intestinal 
tract) might lead to secretion of oxalate into the intestinal lumen; 
however, an activation of the intestinal oxalate transporter, as it is 
seen with Oxalobacter treatment, is still under debate.

Another therapeutic approach is the administration of 
ALN-GO1 (Alnylam Pharmaceuticals, USA), an investigational 
RNAi medication. RNAi function is based on small RNA 
molecules (small interfering RNA, siRNAi), which bind to cyto-
plasmatic enzymes and form a highly specific working complex, 
that decomposes mRNA and thus prevents the translation of 
that mRNA into the subsequent protein (46). ALN-GO1 targets 
the glycolate oxidase (GO) mRNA (see Figure  2), preventing 
the translation from mRNA into the working protein and 
thus reducing the development of glyoxylate and hence the 
production of oxalate. A study on animals showed a reduction 
of urinary oxalate excretion in mice and non-human primates 
by up to 98%, after multiple subcutaneous administrations (47). 
Initial results of a phase I Study of ALN-GO1, as presented at 
the 17th Congress of the International Pediatric Nephrology 
Association (IPNA), ALN-GO1 was able to silence up to 80% 
of the GO mRNA, without serious adverse events in healthy 
subjects (48). Preliminary results of the ongoing phase I/II study 
of ALN-GO1, presented at the American Society of Nephrology 
(ASN) annual meeting in 2017, showed a reduction of urinary 
oxalate excretion, up to 50%, in PH I patients without treatment-
related serious adverse events (48).

Another RNAi, which was initially investigated in a phase I 
study, is DCR-PH1 (Dicerna Pharmaceuticals, USA). DCR-PH1 
also prevents the translation of GO (see Figure 2). After having 
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FiGURe 3 | Schematic figure of the mode of operation of experimental drugs for primary hyperoxaluria I. Oxalobacter formigenes uses oxalate as its sole carbon 
source. Orally administered, it degrades intraluminal oxalate in the intestine. By a concentration gradient and through activation of the intestinal oxalate transporter, 
oxalate is transported from the blood into the intestinal lumen. ALLN-177 is a recombined, microbial oxalate decarboxylase leading to the same intraluminal effect as 
O. Formigenes, however, maybe unable to increase the shift of blood oxalate into the intestinal lumen, as it cannot directly activate the intestinal oxalate transporter.
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shown its capability of reducing urinary oxalate in animal models, 
both healthy volunteers and human patients with PH I are now 
being enrolled in a Phase II study (49), which was later inter-
rupted. Dicerna Pharmaceuticals just recently applied for a phase 
I study of DCR-PHXC, another RNAi-based therapy, targeting 
the lactate dehydrogenase A (LDHA) (see Figure 2). In animal 
models, DCR-PHXC was able to silence the liver LDHA and thus 
preventing an excessive oxalate production (50). This medication 
would hence be able for treatment of patients with all types of PH.

CYSTiNURiA

Cystinuria, one of the most frequent autosomal-recessive inher-
ited genetic disorders (prevalence: 1:7,000), is responsible for 
about 5–10% of all pediatric kidney stones. A defective tubular 
reabsorption leads to an increased urinary excretion of the diba-
sic amino acids cystine, ornithine, lysine, and arginine, but only 
cystine is able to promote stone formation since the other acids 
are highly soluble in urine (51).

Current Treatment
The main goal of therapy for patients with cystinuria is urine alkali-
zation. Cystine has a higher solubility at a pH above 8. Chelating 
agents such as d-penicillamine and alphamercaptopropionyl-
glycine (MPG) destroy the bond between two cysteine molecules, 
which separately have a higher solubility than combined with 
cystine. Both are equally effective and should be administered 
with 20–40  mg/kg body weight (52). Side effects include rash, 
exanthema, arthralgia, thrombocytopenia, polymyositis, and 
nephritic syndrome. MPG seems to have fewer side effects than 
d-penicillamine (53), which furthermore reduces the level of 
pyridoxine and therefore has to be replaced during therapy. The 
ACE inhibitor captopril has a similar effect like MPG, but fewer 
side effects (54). A urinary cystine excretion above 720  mg/
day justifies a treatment with 75–150  mg of captopril per day, 
although the effect is variable (55). Ascorbic acid in high doses 
(3–5 g/day) not only can decrease the urinary cystine excretion 
but can increase endogenous oxalate production and therefore 
urinary oxalate excretion, so no clear dosage recommendation 

https://www.frontiersin.org/Pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/Pediatrics/archive


6

Weigert and Hoppe Childhood NL and NC

Frontiers in Pediatrics | www.frontiersin.org April 2018 | Volume 6 | Article 98

can be given for that therapy (56). A careful protein reduced diet 
is recommended since the contained methionine is metabolized 
to cystine.

Future Treatment Options
Experimental (Animal) Studies
In cystinuria, several substances have been examined on their 
ability to inhibit cystine crystal growth. One of the first was  
l-cystine dimethyl ester (CDME), which was able to reduce cystine 
stone size, but not urinary cystine excretion in a knockout mouse 
model (57). The l-cystine diamides l-cystine bismorpholide and 
l-cystine bis (N′-methylpiperazide) were in  vitro more power-
ful in increasing cystine solubility, than CDME. l-cystine bis 
(N′-methylpiperazide) has shown its ability to reduce stone for-
mation in cystinuria knockout mice and thus providing a possible 
new treatment option in cystinuria (58).

Another substance that was able to increase cystine solubility 
in a knockout mouse model is α-lipoic acid. Zee et al. report a 
reduction of stone formation due to α-lipoic acid as nutritional 
supplementation (59). The effect of α-lipoic acid on kidney 
stone recurrence is now being evaluated in a human clinical trial 
(NCT02910531) (60).

Ongoing Human Clinical Trials
A currently recruiting phase II trial is investigating the safety and 
effectiveness of bucillamine (NCT02942420). Bucillamine is a 
drug developed from tioprinin, currently used as an antirheu-
matic agent and, acting as a Thiol donor, which might be capable 
of binding cysteine from urine and thus reducing the risk of  
stone formation (61).

A pilot study (NCT02538016) on the effect and safety of 
tolvaptan, a vasopressin antagonist, is also currently being con-
ducted (62).

PURiNe STONeS

Purine stones can result from hyperuricosuria secondary to tumor 
lysis syndrome, or rarer, from genetic defects (e.g., Lesch–Nyhan 
syndrome), or enzymatic defects such as 2,8-dihydroxadeninuria 
(63) or xanthinuria, which is based on xanthine oxidase defi-
ciency (64).

Current Treatment (Uric Acid, 
2,8-Dihydroxyadenine, Xanthine)
Uric acid stones can also be treated best with urine alkalinization. 
Urine pH should be kept above 6.5 and excessive protein intake 
should be avoided. In severe cases, Allopurinol, an inhibitor of 
xanthine oxidase, can be applied, since it reduces serum uric acid. 
Dosage must be carefully triggered since it can lead to relevant 
xanthinuria. Fluid intake, leading to a urinary output of at least 
2–3  l per day is recommended (65). Allopurinol also can be 
used in 2,8-Dihydroxyadeninuria, as well as hyperhydration and 
dietary restriction of adenine and purine. If allopurinol is not 
applicable, e.g., due to allergic reactions, single cases with suc-
cessive treatment with febuxostat have been reported (66) and 
clinical experience supports these reports.

Patients suffering from xanthinuria do not benefit from urine 
alkalization. Increased fluid uptake still remains the only effective 
therapeutic measure (64).

iNFeCTiOUS STONeS

Urinary tract infections with urease-producing bacteria (e.g., 
proteus species) lead to the formation of struvite stones. The 
bacteria are capable of hydrolyzing ammonia into ammonium 
ions, resulting in an elevated urinary pH (67). This promotes 
the formation of carbonate ions and the production of trivalent 
phosphate ions, both major components of struvite stones.

Current Treatment
Children suffering from infectious stones must be treated with 
adequate antibiotics. Formatted stones require an extraction pro-
cedure. If the stone stays in situ, it provides an optimal nidus for 
bacterial growth and therefore increases the risk of re-infection.

HYPOCiTRATURiA

Hypocitraturia is known to be a common risk factor in preterm 
infants (68). In older children, it is most prevalent in some parts 
of the world (e.g., Turkey). It is also a characteristic finding in 
complete distal renal tubular acidosis (d-RTA) and can be found 
in patients with metabolic acidosis, hypokalemia, urinary tract 
infections, and malabsorption syndromes (69).

Current Treatment
Hypocitraturia can be encountered by giving potassium citrate 
(1 mEq/kg daily). This treatment successfully reduces stone reoc-
currence (70). Since hypocitraturia is often accompanied by other 
abnormal urine findings, these must be treated according to their 
entity.

ReNAL TUBULAR ACiDOSiS (RTA)

Renal tubular acidosis is characterized by an impaired H+ excre-
tion, hypercalciuria, and hypocitraturia (17). This leads to early 
onset of NL and is accompanied by loss of hearing. Incomplete dis-
tal RTA causes kidney stones without clear acidosis being present.

Nephrolithiasis in children is seldom purely drug related (71), 
but certain drugs increase the risk of NL. Two pathomechanisms 
might lead to NL: drugs excreted by the kidney with poor solubility 
(e.g., indinavir, acyclovir, TMP or sulfadiazine) can either provide 
a direct nidus for stone formation (72) or increase the excretion 
of urinary lithogenic substances (e.g., furosemide induces hyper-
calciuria in preterm infants, carboanhydrase inhibitors result in 
hypocitraturia and hypercalciuria) (73).

Current Treatment
The continuous supplementation of alkali is the only therapeutic 
approach in all forms of RTA. This can be achieved by admin-
istration of sodium and potassium bicarbonate, or citrate salts. 
Therapeutic goal is a serum bicarbonate above 20  mEq/L in 
infants an >22 mEq/L in children, keeping in mind the amount 
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of required alkali decreases with coming of age: 5–8 mEq/kg/day 
for infants, 3–4 mEq/kg/day for children, and 1–2 mEq/kg/day 
for adults (74).

Future Treatment Options
Ongoing Human Clinical Trials
Six-month data presented at the ASN annual meeting in 2017 
showed promising results of a phase III trial for ADV7103 
(bicarbonate and citrate in 2-mm granules), a new agent in the 
treatment of dRTA. ADV7103 is a slow release medication of 
alkaline citrate, which provides equilibrate alkali dosing over 
12 h. A dosage of ADV7103 twice a day was able to maintain a 
normal blood bicarbonate level and improved quality of life in 
patients with dRTA (75). This is in contrast to the current alkaline 
medication, where both blood bicarbonate, as well as urine citrate 
excretion may fluctuate over the day and depend much more on 
the timing of medication (here >2 times a day). Advicenne phar-
maceuticals is now seeking market authorization for ADV7103 
and was granted orphan drug designation already by the EU in 
06/2017. In addition to the potential treatment in dRTA, a phase 
II/III trial for the use of ADV7103 in patients with cystinuria is 
currently being initiated (76).

CONCLUSiON AND OUTLOOK

The current therapeutic possibilities for patients with NL or 
NC are minor, promising research is on the rise to evaluate new 
treatment options. They range from therapeutic manipulation of 
a substance’ urine solubility (e.g., in cystinuria), mRNA-based 
approaches (e.g., PH and Lowe syndrome) to soluble degrad-
ing enzymes or bacteria (in PH). Many of these therapeutical 
chances have only been tested in vitro or in animal models. The 
way to get them into human use still may be long, but patients’ 
distress is urging scientist to proceed with their work (20, 21, 
77–93).
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