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 Abstract: Alzheimer's disease (AD) affects the elderly and is characterized by progressive neuro-
degeneration caused by different pathologies. The most significant challenges in treating AD in-
clude the inability of medications to reach the brain because of its poor solubility, low bioavailabil-
ity, and the presence of the blood-brain barrier (BBB). Additionally, current evidence suggests the 
disruption of BBB plays an important role in the pathogenesis of AD. One of the critical challenges 
in treating AD is the ineffective treatments and their severe adverse effects. Nanotechnology offers 
an alternative approach to facilitate the treatment of AD by overcoming the challenges in drug 
transport across the BBB. Various nanoparticles (NP) loaded with natural products were reported to 
aid in drug delivery for the treatment of AD. The nano-sized entities of NP are great platforms for 
incorporating active materials from natural products into formulations that can be delivered effec-
tively to the intended action site without compromising the material's bioactivity. The review high-
lights the applications of medicinal plants, their derived components, and various nanomedicine-
based approaches for the treatment of AD. The combination of medicinal plants and nanotechnology 
may lead to new theragnostic solutions for the treatment of AD in the future. 
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1. INTRODUCTION 

Alzheimer's disease (AD) is the most frequent cause of 
dementia in the world, and its prevalence is on an increasing 
trend due to the world's aging population [1]. AD is an irre-
versible, progressive and degenerative brain disease that 
causes moderate memory loss in its early stage [2]. The dis-
ease gradually erodes memory and thinking abilities, eventu-
ally rendering patients unable to carry on a conversation or 
respond to their surroundings in the later stage [2]. Accord-
ing to the 2016 World Alzheimer Report, there are approxi-
mately 46.8 million individuals worldwide, who suffer from 
AD. The number of AD patients is anticipated to nearly 
quadruple every 20 years, bringing the total population of 
AD to 74.7 million in 2030 and 131.5 million by the year 
2050 [3]. After cardiovascular and cerebrovascular disorders 
and malignant tumors, AD is considered as the third leading 
cause of disability and mortality among aged individuals.  
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Till date, the pathophysiology of AD is still not fully under-
stood because of the complexity of human brains, lack of 
acceptable animal models, and research tools. 

AD can be classified by the onset of symptoms: early 
(between a person 30’s and mid-60s) or late onset (first ap-
pearing in their mid-60s). In patients with early-onset AD, a 
non-memory phenotype is typical and patients present with 
common symptoms of apraxia or visuospatial impairment 
[4]. Dementia is the most frequent form of late-onset AD. 
Unlike early-onset autosomal dominant AD, which is con-
nected to amyloid-β (Aβ) abnormalities, the pathophysiology 
of late-onset AD is yet unknown [5]. According to the cur-
rent research, late-onset AD is a polygenic illness involving 
abnormal interactions among numerous molecular pathways. 
Age is the most significant risk factor for AD, followed by 
the ε4 allele of apolipoprotein E gene (APOE*ε4), cardio-
vascular and lifestyle risk factors [5]. The clinical manifesta-
tion of age-related neurodegenerative illness includes a pro-
gressive loss of memory and other cognitive skills. The clin-
ical presentation that meets numerous criteria, as well as 
fluid and imaging indicators, are used to make a diagnosis in 
AD [1]. 
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Fig. (1). The disruption of the BBB and dysregulated transport networks contribute to the development of neurodegenerative alterations, the 
accumulation of Aβ and tau pathology, and neuronal death, as shown in this graphical abstract of AD animal model. Breakdown of the BBB 
causes perivascular buildup of blood-derived neurotoxic chemicals which lead to oxidant stress in neurons (1) and eventually contributing to 
hypoperfusion, edema and tissue hypoxia (2). BBB disintegration is caused by degradation of BBB tight connection and basement membrane 
molecules (3). A loss of equilibrium between Aβ efflux and influx over the BBB occurs when BBB transport is disrupted (4). The downregu-
lation of BBB GLUT1 transporter hastens the breakdown of the BBB and the development of Aβ pathology, as well as tau pathology and 
neuronal death (5). The elevated RAGE expression at the BBB also contributes to Aβ buildup in the brain (6). (A higher resolution/colour 
version of this figure is available in the electronic copy of the article). 
 
2. ROLE OF BBB IN THE PATHOGENESIS OF AD 

An important neuropathological feature of AD is the ac-
cumulation of toxic oligomers, such as hyperphosphorylated-
tau in neurofibrillary tangles, and Aβ in plaques [6]. The 
pathogenesis of AD was suggested to be initiated by the 
formation of Aβ oligomers in cortical neurons, which would 
catalyze the formation of tau oligomers. Both Aβ oligomers 
and the toxic tau oligomers lead to synaptic and neuronal 
dysfunction, and eventually neuronal loss [7]. 

Currently, there is also increasing evidence demonstrat-
ing numerous alterations in cerebral vasculature and the 
blood-brain barrier (BBB) occur in AD. Recent neuroimag-
ing investigations in individuals with mild cognitive impair-
ment and early AD revealed a disruption of the BBB in the 
hippocampus and various grey and white matter regions be-
fore brain atrophy or dementia [8]. Additionally, cerebrospi-
nal fluid analysis of pericyte damage and BBB integrity 
breakdown were related to the severity of AD pathology [9]. 
The BBB is a dynamic interface made up of capillary endo-
thelial cells that are intimately connected by tight intercellu-
lar junctions and have a high trans-endothelial electrical re-
sistance [10]. The BBB regulates the composition of the in-
ternal milieu of neurons, which is necessary for appropriate 
neuronal and synaptic function. The breakdown of the BBB 
causes perivascular build-up of blood-derived neurotoxic 
chemicals in the brain, such as free iron (Fe2+), which pro-

duces reactive oxygen species (ROS) and causes oxidant 
stress; plasma proteins such as fibrinogen, plasminogen, 
thrombin, and autoantibodies, which may lead to neuronal 
injury, and inflammatory response; and albumin, which may 
contribute to the development of oedema, hypoperfusion, 
and tissue hypoxia [11]. The detachment of pericytes inhibits 
the proinflammatory cyclophilin A (CypA)-matrix metallo-
peptidase-9 (MMP-9) pathway on MMP-9 via low-density 
lipoprotein receptor-related protein-1 (LRP1), resulting in 
BBB tight junction and basement membrane protein degra-
dation [12]. On the other hand, the balance between Aβ ef-
flux (decreased LRP1 receptor expression) and influx (in-
creased receptor for advanced glycation end products 
(RAGE) expression) via the BBB was shown to be dysregu-
lated in AD [13]. Glucose uptake in the brain across the BBB 
is also decreased in AD due to the downregulation of 
GLUT1 transporter at the BBB, which exacerbates AD cere-
brovascular degeneration and cognitive function [14]. The 
disruption of the BBB contributed to the development of 
neurodegenerative alterations in AD are shown in the Fig. 
(1). 

3. TREATMENT MODALITIES OF AD 

Several hypotheses have been used to produce anti-AD 
medications, including a cascade hypothesis, tau theory, in-
flammation theory, cholinergic and oxidative stress theory, 
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and glucose hypometabolism theory [15]. Since the first AD 
patient was identified a century ago, the Food and Drug Ad-
ministration (FDA) has approved six medications to treat the 
disease. However, these approved medications provide only 
transient and ineffective symptomatic relief, as well as se-
vere adverse effects. The marginal benefits were insufficient 
to delay the progression of AD. Furthermore, some of these 
drugs are unable to pass through the BBB. This emphasizes 
the need for tailored combination therapy for discovering 
medications that are more effective in treating AD.  

3.1. Current Approved Drug Therapy for AD 

Although Aβ plaques and neurofibrillary tangles remain 
to be the hallmark of AD, numerous drugs targeting the pro-
duction, aggregation, and clearance of Aβ and tau oligomers 
have failed in clinical trials [16]. The first five drugs ap-
proved by the FDA are classified either as cholinesterase 
inhibitors (CIs) or N-Methyl-D-aspartate (NMDA) antago-
nists [17]. Drugs categorized under CIs include tacrine 
(Cognex, First Horizon), donepezil (Aricept, Eisai/Pfizer), 
rivastigmine (Exelon, Novartis), and galantamine (Razadyne, 
formerly Reminyl, Ortho-McNeil) [18]. The fifth drug is 
known as memantine (Namenda, Forest) and categorized 
under NMDA antagonists that block the NMDA receptors by 
opposing glutamate activity [17]. FDA has recently granted 
approval for aducanumab, a human IgG1 anti-Aβ monoclo-
nal antibody (Aduhelm, Biogen), the first disease-modifying 
therapy for AD as per notification on June 7, 2021 [19]. 
However, the approval of this drug has been debated since it 
was based on the reduction of Aβ and not on clinical efficacy 
of the drug [19, 20]. 

These approved drugs improved the clinical signs of AD. 
The average effects of CIs on cognition and function are 
moderate, and response rates are diverse, with about a third 
of patients showing no benefits and a smaller proportion 
(about one-fifth) exhibiting a greater benefit [21]. Addition-
ally, many studies have reported numerous adverse effects of 
AD drug therapies such as liver damage, gastrointestinal 
based adverse reactions, sleep disorders, dizziness, headache, 
somnolence, constipation, and hypertension [17, 22-25]. 

Approximately 8% of hospital admissions in the United 
States of America are caused by adverse effects of synthetic 
drugs [26]. It was also reported that approximately 100,000 
individuals die each year due to drug toxicity [27]. In com-
parison, the cases of toxicity and death are rare with con-
sumption of herbal product. This has prompt researchers to 
search for alternative to synthetic drugs therapies from natu-
ral resources. Clinical drug treatment merely relieves the 
symptoms of any disease rather than preventing its progres-
sion [28]. In contrast, the active components present in natu-
ral product are hypothesized to act in an additive or synergis-
tic manner on several molecular targets [29]. Hence, there is 
an urgent need to look for alternative to the existing synthet-
ic drugs. 

3.2. Complementary and Alternative Therapies for AD 

Other therapies for AD include non-cholinergic therapeu-
tic approaches such as vitamin therapy [30], antioxidants 
[31], antihypertensive or lipid-lowering medications [32], 
stem cell therapy [33], hormonal therapy [34], selective 
phosphodiesterase inhibitors [35] and nonsteroidal anti-

inflammatory drugs (NSAIDs) [36]. Other neurotransmitter-
based therapies such as GABAergic modulators, serotonin 
receptor modulators, histaminergic modulators, and adeno-
sine receptor modulators have also been researched [37]. 
Stimulatory therapies such as physical workouts, psycho-
therapy, socialization and music have been explored as well 
[38].  

Selective phosphodiesterase inhibitors have been pro-
posed as another potential new therapy for preventing the 
course of AD and related dementia caused by pharmaceutical 
drugs, aging, and mutations in human amyloid precursor 
proteins (APP) [35]. In transgenic mouse models, inhibitors 
of β-secretase (BACE)-1 were shown to reduce brain Aβ and 
improve cognition [39]. Although γ-secretase enzyme inhibi-
tors were also proposed as anti-AD therapy, they showed 
substantial side effects in experimental animals [40]. Fur-
thermore, primary and secondary natural antioxidants have 
been shown to reduce neuronal cell death in AD, and thus 
can be exploited in the development of antioxidative drugs to 
combat the disease [41]. Antihypertensive medicines were 
found to lessen the risk of AD and dementia in a clinical trial 
[42]. Another study found no conclusive evidence for the use 
of lipid lowering medications in the treatment of cognitive 
decline and memory impairment [43]. 

AD patients presented significantly lower blood levels of 
vitamins B2, C and A compared to the healthy controls [44]. 
Additionally, AD was reported to be associated with low 
serum vitamin E level in older individuals [45]. Although 
nutrition supplements such as antioxidants, inositol, medi-
um-chain triglyceride, omega-3 and vitamins were reported 
to lower AD risk variables; however, meta-analysis demon-
strated that these isolated nutrient supplementations showed 
no evidence of providing significant benefits related to the 
clinical manifestations of AD [46-48]. 

Aromatherapy using various essential oil as complemen-
tary therapies is an effective non-pharmacological treatment 
for neurodegenerative diseases [49]. AD mice exposed to a 
mixture of rosemary and lemon oil at night-time, and a mix-
ture of lavender and orange oil in the day-time showed im-
proved cognitive function, and reduced Aβ and phosphory-
lated tau levels in the brain [50]. Similarly, aromatherapy 
diffused by rosemary and lemon essential oils in the morning 
or lavender and orange essential oils in the evening was 
found to improve symptoms and cognition in people with 
dementia and AD [51]. Hand massage aromatherapy using a 
mixture of lemongrass essential oil and eucalyptus oil, or 
aromatherapy inhalation with lavender essential oil was able 
to improve agitation and neuropsychiatric symptoms signifi-
cantly in patients with dementia [52]. On the other hand, 
aromatherapy did not reduce belligerent and resistive behav-
iors in dementia patients in another trial study [49]. To fur-
ther assess the efficacy of aromatherapy against dementia 
and AD, a larger sample size as well as the inclusion of sev-
eral types of aromatherapy and dementia, are required in 
clinical trials [49]. 

3.3. BBB as the Limiting Barriers in Drug Delivery in AD  

The brain is the most important organ in the body, with 
the BBB as its protective barrier [10]. The BBB separates the 
brain from the systemic circulation and serves as the major 
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route for medications to reach the central nervous system 
(CNS). The BBB's major function is to provide nutrients to 
the brain, maintain ionic homeostasis for neuronal activities, 
and protect the brain from dangerous or toxic chemicals 
through selective transport systems [53]. The BBB is also the 
major obstacle to effective therapeutic medication transport 
to the CNS [10]. 

Furthermore, the CNS has other functional barriers, such 
as influx and efflux transporters, that allow xenobiotics to 
enter and exit the CNS [54]. Enzymes in the brain such as 
peptidase and cholinesterase also act as a barrier to drug de-
livery, degrading them and reducing their concentration in 
the brain. The general consideration for any neurotherapeu-
tics should be lipid soluble have a relatively small molecular 
weight of less than 500 Da, have a partition coefficient (pKa) 
between 0.5 and 6.0, and be either neutral or generally neu-
tral (i.e. uncharged) at physiological pH in order to easily 
cross the BBB by passive diffusion [55]. However, a recent 
study found numerous outliers to this generalised pattern. 
Large molecules such as CINC-1 can penetrate the BBB via 
transmembrane diffusion, but very lipophilic compounds 
may not be able to do so at sufficient concentrations [56]. 
Molecules with a polar surface area more than 80, high H-
bonding affinity, and a chemical structure that is heavily 
branched are poor candidates for crossing the BBB [57]. As 
a result, it is critical to consider these factors while develop-
ing possible new drugs for the treatment of AD.  

Numerous new approaches for therapeutic drug groups 
and drug delivery systems are being developed to overcome 
the BBB restriction to provide a more effective delivery of 
medications into the CNS [58]. One of the approaches is the 
use of nano-drug delivering systems. In the case of nano 
particles (NPs)-based pharmacotherapy for AD, certain at-
tempts have been made to encapsulate various types of neu-
rotherapeutics into NPs for targeted delivery to the CNS 
[59]. Other studies focused on developing NPs to help amy-
loid clusters avoid toxicity by boosting systemic clearance or 
altering their aggregation dynamics in the brain and blood 
[59]. In fact, the "sink effect", or peripheral treatment with 
neurotherapeutics that have a substantial affinity for Aβ, can 
diminish the level of Aβ in the brain. Sequestered plasma Aβ 
is then guided to hepatic and splenic macrophages for de-
struction by surface engineered/targeted NPs with a consid-
erably high affinity for Aβ [59]. 

4. NATURAL PRODUCT-DERIVED NANOPARTI-
CLES AND THEIR THERAPEUTIC EFFECTS ON AD 

Traditional medicines have been used as complementary 
therapeutic agents for the treatment of various neurodegener-
ative diseases [60-63]. Holistic practitioners commonly use 
traditional medicines as they are well accepted and relatively 
safer compared to synthetic drugs. One of the key distin-
guishing attributes of traditional medicines is their affinity 
for the target protein or specific biomolecule in humans. 
Moreover, 88% of World Health Organization (WHO) 
Member States have acknowledged the use of traditional 
medicine corresponding to 170 Member States. Over the past 
decade, approximately 80% of the world population has been 
using herbal medicines to complement their basic health 
needs [64]. 

Research has been redirected to focus on the studies of 
bioactive compounds, chemical composition and therapeutic 
potentials in the anticipation of discovering active ingredi-
ents with minimal adverse effects arising from natural 
sources [65]. In contrast to synthetic compounds, the biolog-
ical compounds possess more chiral centers (more carbon, 
hydrogen and oxygen but less nitrogen); higher molecular 
weight as well as higher polarities [62]. Biological com-
pounds also contain more sp3-hybrid carbon atoms allowing 
the tetrahedron carbons to form flexible chains or cyclic 
structures, whereas the multi-functional groups make them 
bind strongly to the biological targets and increase the addi-
tional interactions with biological molecules [66]. The intrin-
sic complexity of natural products can become the substrate 
for one or more of the transporter systems for the targeted 
intracellular delivery [67]. 

Nevertheless, the discovery of natural products has been 
associated with several issues. The variability in the compo-
sition of natural products is owing to factors, such as envi-
ronmental variations, which remain a major challenge for the 
development of botanical drugs. For instance, stress and de-
fense responses stimulate metabolic changes that may result 
in a composition disparity in the biosynthesis of bioactive 
compounds having pharmaceutical or nutritional value [68]. 
In addition, high molecular weight of plant derived-
phytochemical compounds, namely phenols, flavonoids, al-
kaloids, cardiac glycosides, saponins, terpenoids, steroids 
and tannins have been a great concern in assessing therapeu-
tic efficacy due to their poor permeation through lipid bi-
layers, resulting in reduced bioavailability in humans [69]. 

Considering the emerging trends in nanotechnology, it 
has become possible to address the issues and revolutionize 
the development of formulations of natural products, allow-
ing the application of these compounds on a large scale [70]. 
Nanotechnology offers multiple advantages in treating 
chronic diseases by improving plasma bioavailability, target-
ing sites and controlled release. Accumulating evidence has 
demonstrated that nanomaterials derived from natural prod-
ucts could delay the development of drug resistance, which 
might potentially improve poor response to approaches in 
modern medicine [71]. In the present review, we highlight 
some of the phytochemicals and natural products incorpo-
rated into nanomaterials, and their potential use in the treat-
ment of AD (Fig. 2, Table 1).  

4.1. Curcumin 

Curcumin is a polyphenol that is present as the main con-
stituent of the rhizomes of turmeric Curcuma longa. In gen-
eral, curcumin was reported to possess antibacterial, anti-
inflammatory, antiseptic, antioxidant, antimalarial, hypoli-
pidemic and hepatoprotective effects [72]. Curcumin treatment 
was shown to ameliorate cognitive impairment, improve neu-
rogenesis and reduce amyloid plaque burden in AD models 
[73, 74]. However, curcumin’s structural-pharmacokinetic 
properties, e.g., low water solubility, high lipophilicity, meta-
bolic instability, and hardly being dissolved in the gastrointes-
tinal aqueous fluid, have limited its application in the pharma-
ceutical field [75]. Additionally, curcumin has poor permeabil-
ity across the BBB [76].  

Loading curcumin into NPs is one of the strategies to en-
hance the delivery of curcumin to the brain. Curcumin 
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Fig. (2). Phytochemical for the natural product involved in AD. 
 
loaded to polylactide-co-glycolic-acid (PLGA) NPs and chi-
tosan-bovine serum albumin NPs was shown to improve the 
penetration of curcumin across the BBB, compared to free 
curcumin [77, 78]. Furthermore, curcumin-loaded NPs 
treatment significant decreased Aβ aggregates, and improved 
spatial learning and memory capability in in vitro and in vivo 
AD models [79-81]. Gao et al. [82] developed a curcumin-
loaded red blood cell membrane-coated PLGA NPs to stabi-
lize and promote sustained curcumin release, thus providing 
improved biocompatibility to treat AD. The concentration of 
curcumin in the brain was six-fold higher in the intravenous-
ly administered NPs group, compared to that of the free cur-
cumin treated group [82]. More importantly, no toxicity ef-
fects were observed in the NPs-treated mice [82, 83]. 

In addition to the widely used intravenous and intraperi-
toneal administration of curcumin-loaded NPs, the intranasal 
route may be an alternative for the delivery of curcumin to 
the brain. While using 2% crosslinked starch curcumin-
loaded amylolipid nanovesicles, curcumin was detected in an 
average of 140 ng/g brain levels and 12 ng/mL plasma con-
centrations following one hour after intranasal administration 
of 160 μg/kg of curcumin [84]. Similarly, curcumin-
encapsulated chitosan-coated PLGA NPs administered in-

tranasally also showed a much higher concentration of cur-
cumin in the brain compared to the plasma [85]. These stud-
ies suggested that intranasal administration would allow the 
majority of the curcumin to be transported to the brain via 
olfactory and trigeminal pathways, compared to the systemic 
circulation [85]. 

4.2. Quercetin 

Quercetin is a common flavonoid present ubiquitously in 
fruits and vegetables. It has been shown to exhibit cardiopro-
tective, neuroprotective, gastroprotective, anticarcinogenic, 
antimicrobial, anti-malarial, anti-inflammatory, antioxida-
tive, immunomodulatory and bone-conserving properties 
[86, 87]. Quercetin treatment was shown to inhibit Aβ ag-
gregation, tau hyperphosphorylation, and ameliorate neuro-
genesis through the modulation of multiple signaling path-
ways, such as PI3 kinase, AKT/PKB tyrosine kinase and 
protein kinase C in AD [88]. Similar to curcumin, querce-
tin’s instability, low aqueous solubility and poor permeabil-
ity has limited the application of developing quercetin as a 
clinical drug [89]. 

NPs can protect unstable phytochemicals against degra-
dation. Quercetin loaded into lipid NPs (solid lipid NPs and 
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nanostructured lipid carriers) were shown to be protected 
against UV-induced photodegradation, where 55% of free 
quercetin was photodegraded, compared to only 10% of 
quercetin loaded lipid NPs degraded [90]. Additionally, the 
quercetin loaded lipid NPs showed no cytotoxicity effects 
and good permeability through human cerebral microvascu-
lar endothelial hCMEC/D3 cells, a widely used BBB in vitro 
model [90, 91]. 

Free quercetin has low bioavailability in the brain [92]. 
Animals treated with quercetin loaded to zein NPs showed a 
significant increase in brain concentration of this flavonoid, 
compared to free quercetin-treated mice [92]. The increase in 
bioavailability of quercetin was also shown in other types of 
NPs, e.g., superparamagnetic iron oxide NPs [93] and plas-
ma exosomes [94]. 

In vivo experiments showed that quercetin-loaded NPs 
exhibited potent anti-amyloid and antioxidant activity as 
evident via inhibition of Aβ aggregation, decreased Aβ-
induced oxidative stress and protected cells from Aβ-
mediated cytotoxicity [89, 95-97]. Similarly, intravenous and 
oral administration of quercetin-loaded sulphur NPs im-
proved the learning and memory deficits and inhibited neu-
ronal loss in animal AD models [94, 98, 99]. Furthermore, 
oral supplementation of superparamagnetic iron oxide NPs, 
increased the antioxidant enzymes (SOD1, GPX1 and CAT) 
and anti-apoptotic genes (BCL2 and BAX) genes expression 
in aluminium chloride (AlCl3)-induced AD rats [100].  

4.3. Resveratrol 

Resveratrol is a polyphenol present in red wine, grapes, 
berries, pomegranates and peanuts, that has been reported to 
possess pharmacological activities such as antioxidant, anti-
inflammatory, anti-aging and anti-cancer effects [101, 102]. 
Numerous studies have demonstrated consistent neuroprotec-
tive effects of resveratrol in AD models due to mechanisms 
such as inhibition of Aβ plaque accumulation and hyper-
phosphorylation of tau protein [103].  

Resveratrol coated onto solid lipid NPs and selenium 
NPs showed no cytotoxicity on the cells and was able to 
permeate well through BBB in vitro models [104-106]. Ad-
ditionally, the antioxidative effect of resveratrol coated sele-
nium NPs protect cells from Aβ-induced cell apoptosis and 
prevents ROS generation [105]. 

Free resveratrol is rapidly metabolized in the liver and in-
testine, which is then eliminated within 2 hours following 
intravenous injection, greatly limiting its pharmacological 
benefits [107]. With the advantage of physicochemical prop-
erties of NPs and red blood cell (RBC) membrane, resvera-
trol loaded onto RBC membrane-coated nanostructured lipid 
carriers (NPs@RBCm) improved resveratrol biocompatibil-
ity and long-term circulation. High accumulation of 
NPs@RBCm was detected in the brain, after 30 mins of its 
intravenous administration [108]. Furthermore, treatment 
with 2�mg/kg body weight of RSV NPs@RBCm every two 
days for a total of 30 days improved memory impairments, 
reduced the lipid peroxidation damage and restored antioxi-
dant enzyme levels in transgenic APP/PS1 mice [108]. In-
tranasal administration of resveratrol-coated NPs showed a 
higher resveratrol concentration in the brain, compared to 
oral administration where the highest resveratrol concentra-

tion was observed in the liver [109]. Additionally, nanostruc-
tured hydrogel gel showed fivefold higher permeation of 
resveratrol across the nasal mucosa compared to resveratrol 
suspension-based in situ gel [110]. Most importantly, in-
tranasal administration of resveratrol-coated gold NPs 
demonstrated no toxicity in the olfactory epithelium and im-
provement in learning in the rats [111]. 

4.4. Phytol 

Phytol is a diterpene constituent of chlorophyl and is 
known for its anti-inflammatory and anticarcinogenic prop-
erties [112, 113]. Phytol-loaded PLGA NPs was shown to 
exhibit anti-cholinesterase activity, inhibit Aβ aggregation 
and protect Neuro2a cells from Aβ toxicity [114]. Transgen-
ic Caenorhabditis elegans AD model received phytol-loaded 
PLGA NPs treatment, which was shown to increase lifespan, 
suppress defect in chemotaxis behavior and attenuate intra-
cellular ROS production level [115]. Similarly, oral admin-
istration of phytol-loaded PLGA NPs (100 and 200�mg/kg) 
for 14 days was able to ameliorate the cognitive deficits 
caused by scopolamine, a muscarinic acetylcholine receptor 
antagonist, on spatial and short-term memory in Wistar rats 
[116]. The study also demonstrated that phytol-loaded PLGA 
NPs possess a strong penetration capacity to cross the BBB 
in vivo [116]. 

4.5. Thymoquinone  

Seeds of Nigella sativa, commonly known as ‘black 
seed’ have been used to treat various diseases for centuries. 
The main constituent in N. sativa seeds is thymoquinone, a 
monoterpene molecule which is known to exhibit anti-
inflammatory, antioxidant, antimicrobial, anti-cancer, antidi-
abetic, antihistaminic, anticonvulsant and wound healing 
effects [117, 118]. Preclinical studies demonstrated N. sativa 
and thymoquinone to exhibit neuroprotective effects via their 
antioxidant properties, which ameliorate neuro-inflammation 
and neurodegeneration changes in the AD models [119]. 

The bioavailability of thymoquinone is limited in the 
brain due to its high lipophilicity. Intraperitoneal administra-
tion of thymoquinone-loaded mesoporous silica NPs was 
able to enhance thymoquinone delivery to brain regions such 
as the cortex, thalamus, hypothalamus and midbrain, and 
shown to reduce oxidative stress in these regions, compared 
to free thymoquinone [120]. Similarly, treatment with poly-
sorbate-80 coated PLGA thymoquinone NPs passed through 
the BBB successfully and ameliorated protein aggregates in 
the brains of streptozotocin-induced AD mice [121]. 
Nanoemulsion of thymoquinone showed neuroprotective 
effects against high fat/cholesterol diet-rats by reducing Aβ 
production and by increasing the APP processing, Aβ degra-
dation and insulin degrading enzyme [122].  

4.6. Ginsenoside 

Ginseng derived from the roots of Panax ginseng Meyer 
has long been used as a traditional medicine and food sup-
plement. Ginseng and its active ingredients, ginsenosides, 
have been reported to exhibit various pharmacological ef-
fects such as immune-modulatory, anti-inflammatory, anti-
oxidative, anti-diabetic, anticarcinogenic, anti-aging, anti-
depression, delaying of neurodegenerative process and im-
provement of memory [123]. Treatment with red ginseng 
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Table 1.  Natural product-derived nanoparticles and their therapeutic effects on AD. 

Variety 
Nanoparticle 

(Size) 
Model Route  Finding Refs. 

Phytochemicals Loaded Nanoparticles  

Curcumin (Curcuma longa) 

 

PLGA NPs modified 
with g7 ligand 

(200 - 250 nm) 

Primary hippo-
campal cell cul-

tures treated with 

Aβ 

- 
Partially increased cell viability in cells treated 

with Aβ  

Inhibited Aβ aggregation 

[79] 
 

PLGA NPs conjugated 

with cyclic CRTIG-

PSVC peptide 
(< 150 nm) 

APP/PS1dE9 

mice 

Intraperito-

neal 

Effectively transported across BBB 
Improved spatial memory and recognition 

Decreased Aβ, reactive oxygen species (ROS), 

TNF-α and IL-6 levels Enhanced super oxide 
dismutase (SOD) activities and synapse numbers 

[77] 

PLGA-PEG NPs conju-
gated with B6 peptide 

(< 150�nm) 

APP/PS1 mice 
Intraperito-

neal 

Improved spatial learning and memory capability 
Reduced hippocampal Aβ production Decreased 

tau phosphorylation 

[80] 

Chitosan-bovine serum 
albumin NPs  

(≈ 140 nm) 

Mouse leukemic 

monocyte mac-
rophage RAW 

264.7 cells 

- 

Effectively permeate through BBB in vitro model 

Improved cellular uptake of curcumin in macro-

phage 
Induced Aβ42 phagocytosis in macrophage 

Inhibited M1 macrophage polarization  

Reduced expression of TNF-α and IL-6. 

[78] 

Selenium doped PLGA 

NPs  

(≈ 160 nm) 

5XFAD mice Intravenous Inhibited Aβ aggregation [81] 

Red blood cell mem-
brane (RBCm)-coated 

PLGA NPs bearing 

T807 molecule 

(< 200 nm) 

Okadaic acid 
(OA)-induced 

AD mice 

Intravenous 

Effectively transported across BBB 
Decreased tau phosphorylation  

Reduced cell death in the hippocampus 

Inhibited microglia and astrocytes activations 

[82] 

RBCm-coated PLGA 

NPs bearing T807 and 
triphenylphosphine 

molecules 

(< 120�nm) 

OA-induced AD 
mice 

Intravenous 
Mitigated mitochondrial oxidative stress 

Suppressed cell death 
[83] 

 

Quercetin 

Zein NPs 
(≈ 260 nm) 

Transgenic 
SAMP8 mice 

Oral  
Improved cognition and memory impairments 

Decreased hippocampal GFAP expression 
[92] 

Polysorbate 80-coated 
gold-palladium NPs 

(< 100 nm) 

Human neuro-

blastoma SH-
SY5Y cells treat-

ed with Aβ 

- 

Effectively permeate through BBB in vitro model 

Promote fusion of autophagosomes and lysosomes 
Accelerated Aβ clearance 

Protect cells from Aβ-induced cytotoxicity dam-

age 

[95] 

Solid lipid NPs and 
nanostructured lipid 

carriers (NLC) func-

tionalized with transfer-
rin 

(≈ 200 nm) 

Human cerebral 

microvascular 

endothelial 
hCMEC/D3 cells 

- 
Effectively permeate through BBB in vitro model 

Inhibited Aβ aggregation 

[90] 

 

Solid lipid NPs and 
NLC functionalized 

with RVG29 peptide 

(< 250 nm) 

hCMEC/D3 cells - 
Effectively permeate through BBB in vitro model 

Inhibited Aβ aggregation 
[91] 

(Table 1) contd…. 
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Variety 
Nanoparticle 

(Size) 
Model Route  Finding Refs. 

- 

Sulphur NPs in mi-
crobubbles 
(≈ 50 nm) 

APP/PS1 mice Intravenous  

Effectively transported across BBB. 
Reduced neuronal apoptosis, inflammatory re-

sponse, calcium homeostasis imbalance and oxi-
dative stress 

Improved learning and memory impairments 
Reduced Aβ aggregation  
Inhibited neuronal loss 

[98] 

Modified magnetic 
core-shell mesoporous 
silica nano-formulation 

(200 - 250 nm) 

Primary hippo-
campal cell cul-
ture treated with 

Aβ 

- 
Inhibit Aβ aggregation 

Protect cells from Aβ toxicity  
Reduced Aβ-induced ROS generation 

[96] 

Plasma exosomes 
(≈ 150 nm)  

OA-induced AD 
mice 

Intravenous 

Increase bioavailability and accumulation of quer-
cetin in the brain 

Attenuated OA-induced learning and memory 
deficits 

Reduced neuronal apoptosis in hippocampus 
Inhibited tau phosphorylation  

Reduced formation of neurofibrillary tangles 

[94] 

Selenium NPs 
(≈ 90 nm) 

Adrenal pheo-
chromocytoma 

PC12 cells treat-
ed with H2O2 

- 
Inhibit Aβ fibrillation 

Protected cells from H2O2-induced cell death 
[97] 

Superparamagnetic iron 
oxide NPs 

(30 - 50 nm) 

Aluminium 
chloride (AlCl3) 
induced AD rats 

Oral  

Attenuated AlCl3-induced learning and memory 
impairment  

Reduced APP gene expression 
Increase miR-101, antioxidant enzymes (SOD1, 

GPX1 and CAT) and anti-apoptotic genes (BCL2 
and BAX) expression levels 

[100] 

Resveratrol 

Solid lipid NPs func-
tionalized with anti-
transferrin receptor 

monoclonal antibody 
(≈ 180 nm) 

Endothelial cells 
derived from 
hematopoietic 

stem cells isolat-
ed from umbili-
cal cord blood 

- 
Effectively permeate through BBB in vitro model 

Inhibit Aβ aggregation 
[104] 

NLC 
(≈ 155 nm) 

Caenorhabditis 
elegans 

- 
Increased acetylcholine concentration 

Decrease AChE gene expression 
Improved memory 

[106] 

Selenium NPs 
(≈ 100 nm) 

PC12 cells treat-
ed with Aβ 

- 

Inhibit Aβ aggregation 
Protected cells from Aβ42-Cu2+ complexes-induced 

cell apoptosis 
Prevented Aβ42-Cu2+ complexes-induced ROS 

generation 

[105] 

In situ nanostructured 
hydrogel 

(≈ 150 nm) 

Scopolamine-
induced amnesia 

Wistar rats 
Intranasal Improved memory impairments [110] 

Gold NPs 
(≈ 100 nm) 

Scopolamine-
induced amnesia 

Wistar rats 
Intranasal  Improved learning and memory impairments [111] 

RBCm-coated NLC 
bearing rabies virus 

glycoprotein (RVG29) 
and triphenylphosphine 
cation (TPP) molecules 

(< 160�nm) 

APP/PS1 mice Intravenous  

Improved memory impairments 
Decreased soluble and insoluble Aβ1–42 

Restored decreased MnSOD level 
Reduced the lipid peroxidation 

Decreased GFAP and Iba-1 protein levels 

[108] 

(Table 1) contd…. 
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Variety 
Nanoparticle 

(Size) 
Model Route  Finding Refs. 

Phytol  

PLGA NPs 
(< 200 nm) 

Neuro2a cells 
treated with Aβ 

- 
Inhibited AChE 

Inhibited Aβ aggregation 
Protected cells from Aβ toxicity  

[114] 

PLGA NPs 
(< 200 nm) 

Transgenic C. 
elegans AD 

model 
- 

Increased lifespan 
Suppressed neuronal Aβ expression and ROS 

production 
Downregulated AD associated genes (Aβ, ace-1 

and hsp-4) expressions  
Upregulated gene involved in the longevity to 

nematodes (dnj-14)  
Reduced Aβ protein level 

[115] 

PLGA NPs 
(< 200 nm) 

Scopolamine-
induced amnesia 

Wistar rats 
Oral  

Enhanced biodistribution and release profile of 
phytol in the brain and plasma 

Ameliorated spatial and short term memory im-
pairment 

Inhibited AChE, BChE and BACE1 activities 
Reduced ROS and RNS level 

[116] 

Thymoquinone (Nigella sativa) 

 

Polysorbate-80 coated 
PLGA NPs 
(≈ 200 nm) 

Streptozotocin 
(STZ)-induced 

AD mice 

Intraperito-
neal  

Increased SOD 
Ameliorated proteins aggregates 

[121] 

Ginsenoside (Panax ginseng) 

 

PLGA NPs 
(≈ 100 nm) 

Rat glial C6 
cells, human 

monocytic THP-
1 cells 

- 

Effectively permeate through BBB in vitro model 
Decreased amyloid fibril formation 
Decreased ROS and RNS activity 

Reduced AβPP, TNF-α and IL-1β genes expres-
sion 

[127] 

Huperzine A  
(Huperzia serrata) 

 

PLGA NPs with surface 
modification by lac-

toferrin-conjugated N-
trimethylated chitosan 

(≈ 150 nm) 

Kunming (KM) 
mice 

Intranasal  Facilitated huperzine A distribution in the brain [131] 

Andrographolide 
(Andrographis paniculata) 

 

Human albumin NPs 
(≈ 210 nm) 

TgCRND8 mice 
Intraperito-

neal  

Crossed BBB effectively and penetrated undam-
aged and damaged brain tissues 

Ameliorated cognitive impairment 
Reduced astrocyte activation 

[133] 

(Table 1) contd…. 
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Variety 
Nanoparticle 

(Size) 
Model Route  Finding Refs. 

Nanoparticles of Phytochemical/Extract 

Hesperetin 

Evaporative precipita-
tion of nanosuspension 

(ND) 

STZ-induced AD 
rats 

Oral  

Improved memory retrieval and recognition 
memory consolidation. 

Increased antioxidant enzymes (SOD, glutathione 
GPx, GRx and CAT) activity and GSH levels 

Decreased lipid peroxidation in the hippocampus 

[137] 

Evaporative precipita-
tion of nanosuspension 

(ND) 

STZ-induced AD 
rats 

Oral  

Reversed anxiogenic-like behavior 
Reversed STZ-induced lipid peroxidation 

Elevated antioxidant enzymes (CAT, SOD and 
GRx) activities and gene expressions 

[136] 

Nanocrystal by small-
scale milling 
(< 200 nm) 

SH-SY5Y cells 
harbouring neu-
ronal amyloid 

precursor protein 
(APP695) 

- 
Increased mitochondrial ATP levels and respirato-

ry chain complex activity 
Reduced cytochrome C activity 

[138] 

Quercetin 

Pulsed laser ablation 
(≈ 50 nm) 

SH-SY5Y cells 
treated with Aβ 

- 
Inhibited Aβ aggregation 

Decreased Aβ-induced oxidative stress and Aβ-
mediated cytotoxicity 

[89] 

Antisolvent precipita-
tion under sonication  

(520 - 750 nm) 

AlCl3 induced 
AD rats 

Oral  
Reduced neuronal degenerative changes, amyloid 

plaques and neurofibrillary tangles formation  
Upregulated tyrosine hydroxylase 

[99] 

Thymoquinone  
(Nigella sativa) 

 

Nanoemulsion  
(ND) 

High 
fat/cholesterol 

diet-induced rats 
Oral  

Reduced brain Aβ40 and Aβ42 levels 
Modulated APP and PSEN2 gene 

Reduced BACE1 and RAGE protein levels  
Increased IDE and LRP-1 protein levels 

 

[122] 

Naringenin  
Nanoemulsion 

(≈ 50�nm) 
 

SH-SY5Y cells 
treated with Aβ 

- 

Alleviated Aβ-mediated cytotoxicity 
Reduced ROS production 

Downregulated APP and BACE protein level 
Decreased tau phosphorylation 

[142] 

Green Synthesized Nanoparticles 

Aqueous extract of aerial part of 
Lampranthus coccineus 

 

Silver NPs 
(≈ 30 nm) 

AlCl3 induced 
AD rats 

Intraperito-
neal  

Protection against oxidative damage 
Inhibition of AChE 

[145] 

Aqueous extract of aerial part of 
Malephora lutea 

 

Silver NPs 
(≈ 30 nm) 

AlCl3 induced 
AD rats 

Intraperito-
neal  

Protection against oxidative damage 
Inhibition of AChE 

[145] 

(Table 1) contd…. 



1508    Current Neuropharmacology, 2022, Vol. 20, No. 8 Woon et al. 

Variety 
Nanoparticle 

(Size) 
Model Route  Finding Refs. 

Aqueous extract of Millettia 
pinnata flower 

 

Silver NPs 
(≈ 50 nm) 

 
- - 

Inhibition of AChE and BChE 
Exhibited antibacterial and cytotoxicity activities 

[147] 

Aqueous extract of Nepenthes 
khasiana leaf 

 

Silver NPs 
(≈ 15 nm) 

STZ-induced AD 
rats 

Intraperito-
neal  

Ameliorated recognition and spatial memory 
impairment 

[152] 

Ethanolic extract of Terminalia 
arjuna bark 

 
 

Gold NPs 
(20 - 50 nm) 

- - 

Inhibition of AChE and BChE 
Exhibited antioxidant property 

Inhibit Aβ aggregation 
 

[146] 

Aqueous extract of Clitoria 
ternatea flower 

 

Graphene quantum dots 
(≈ 10 nm) 

Scopolamine-
induced amnesia 

Wistar rats 
ND 

Improved learning and memory capacity 
Inhibition of AChE  

Increased glutathione level  
Decreased lipid peroxide and nitric oxide levels 

[153] 

Aqueous extract of Cladospori-
um sp. 

 

Silver NPs 
(≈ 24 nm) 

- - Inhibition of AChE and BChE [149] 

(Table 1) contd…. 
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Variety 
Nanoparticle 

(Size) 
Model Route  Finding Refs. 

Aqueous extract of Flammulina 
velutipes 

 

Silver NPs 
(≈ 20 nm) 

- - Inhibition of AChE and BChE [148] 

Methanolic extracts of Sabal 
blackburniana leaves, fruits, 

and pollen grains 

 

Zinc oxide NPs 
(< 50 nm) 

- - Inhibition of AChE [151] 

Aqueous extracts of Sageretia 
thea leaves 

 

Zinc oxide, nickel ox-
ide, iron oxide, lead 

oxide and cobalt oxide 
NPs  

(≈ 20 nm) 

- - Inhibition of AChE [150] 

 
extract was shown to improve Aβ accumulation, neuroin-
flammation, neurodegeneration, and adult hippocampal neu-
rogenesis in transgenic AD mice [124]. Furthermore, treat-
ment with ginsenoside Rb1 and Rg3 was shown to improve 
cognitive and memory functions by improving the mito-
chondrial dysfunction and inhibiting the levels of pro-
apoptosis mediators in the rat brain [125, 126].  

Despite numerous studies demonstrating the potential of 
ginsenoside in the treatment of AD, there are limited studies 
using adaptations of nanoformulation of ginsenoside to treat 
AD. PLGA NPs encapsulated ginsenoside Rg3 was shown to 
be safe and permeate well through BBB in vitro model [127]. 
Furthermore, the study found that administration of Rg3-
encapsulated NPs significantly decreased Aβ fibril formation 
compared to free Rg3, and was able to decrease ROS activity 
and reduce AβPP, TNF-α and IL-1β genes expression [127]. 

4.7. Huperzine A 

Huperzine A, a potent AChE inhibitor, is an alkaloid iso-
lated from the club moss Huperzia serrata [128]. An oral dose 
of 0.2 mg twice a day for 8 weeks showed significant im-
provement in cognition and task switching abilities compared 
with baseline performance [129]. Sheng et al. [130] and Meng 
et al. [131] reported an intranasally administered huperzine A 
complex in the brain. The complex was known as huperzine A 
-loaded muco-adhesive and PLGA-NPs with external adjust-
ment by lactoferrin-conjugated N-trimethylated chitosan (Lf-
TMC NPs). The remarkable findings indicate a possible nose-
to-brain NP delivery route for the treatment of AD by facilitat-
ing the distribution of huperzine A in the brain. The drug tar-

geting index for the olfactory bulb, cerebrum (with hippocam-
pus removal), cerebellum and hippocampus were in the range 
of 1.6-2.0 [131]. Conversely, ex vivo drug release and cell 
viability assays using 16HBE and SH-SY5Y cells supported 
the controlled drug release and safety of the developed NPs 
for intranasal administration [131]. 

4.8. Andrographolide 

Andrographolide is a major diterpenoid of Andrographis 
paniculata and possesses pharmacological activities such as 
antiretroviral, antibacterial, antimalaria, anti-inflammatory 
and antioxidant [132]. Andrographolide loaded to human 
albumin NPs was shown to be able to cross the BBB and 
penetrate the brain parenchyma of the TgCRND8 AD mouse 
model following intravenous administration [133]. Further-
more, Bilia et al. [133] demonstrated that intraperitoneal 
injection of andrographolide loaded NPs to AD mice for 4 
weeks ameliorated cognitive dysfunctions and reduced astro-
cyte reaction, indicating the anti-inflammatory property of 
andrographolide. 

4.9. Hesperetin  

Hesperetin, a citrus flavonoid, found abundantly in or-
ange and grape juice, was shown to elevate oxidative stress, 
neuroinflammation, apoptosis and memory impairment in the 
CNS [134, 135]. Similar to other phytochemicals discussed 
early, hesperetin’s low bioavailability due to its water insol-
ubility, and rapid clearance from the body has limited its 
clinical applications [136]. Treatment with nanosuspension 
of hesperetin produced via evaporative precipitation exhibit-
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ed superior neuroprotective effect in AD model, compared to 
free hesperetin. Kheradmand et al. [137] and Hajizadeh 
Moghaddam et al. [136] showed improvement in memory 
retrieval and recognition memory consolidation, increased 
antioxidant enzymes (SOD, glutathione GPx, GRx and CAT) 
activity and decreased lipid peroxidation in the hippocampus 
of streptozotocin-induced AD rats following treatment of 
nano-hesperetin with a dose of 10 and 20�mg/kg for three 
weeks by oral gavage. Similarly, hesperetin nanocrystals 
produced by small-scale milling treated SH-SY5Y-APP695 
cells improved mitochondrial function as shown by increased 
ATP levels and respiratory chain complex activity [138]. 

4.10. Naringenin 

Naringenin is a flavonoid present abundantly in citrus 
fruits. It was reported to possess antioxidant, antithrombotic, 
anti-atherosclerosis, antidiabetic, antihypertension, anti-
inflammatory and anticancer properties [139]. Naringenin 
was shown to reduce Aβ levels and protect cells against Aβ1-

42-induced neurotoxicity [140]. Additionally, naringenin 
treatment was able to alleviate lipopolysaccharide-induced 
cognitive impairment and neuroinflammation [141]. 
Naringenin nanoemulsion significantly alleviated the Aβ 
neurotoxic effects on SH-SY5Y cells by reduced cellular 
ROS production, and decreased APP, BACE and tau phos-
phorylation [142]. 

4.11. Green synthesized NPs with Extracts of Natural 
Products  

The synthesis of NPs usually requires the use of highly 
toxic chemicals [143]. In order to reduce the impact of NPs 
synthesis on the environment, numerous plant extracts have 
been used as chelating and stabilizing agents in NPs synthe-
sis, which has promoted the use of green synthesized NPs 
[143]. Additionally, green synthesized NPs were shown to 
exhibit better biocompatibility and less toxicity compared to 
conventional NPs synthesized via chemical methods [144].  

Aqueous extracts of Lampranthus coccineus and 
Malephora lutea have been used for the synthesis of silver 
NPs with a size less than 30 nm [145]. The nanosilver aqueous 
extracts of both L. coccineus and M. lutea showed high AChE-
inhibiting and antioxidant activity, suggesting a potential tar-
get for the treatment of AD [145]. Similarly, other plant medi-
ated synthesis of NPs, such as Sageretia thea leaves, Millettia 
pinnata flower, Terminalia arjuna bark, endophytic fungi 
Cladosporium species, edible mushroom Flammulina ve-
lutipes and Sabal blackburniana leaves, fruits and pollen 
grains exhibited excellent inhibitory efficacy against AChE 
and butyrylcholinesterase (BChE) [146-151]. Furthermore, 
treatment of Nepenthes khasiana leaf extract-mediated silver 
NPs and Clitoria ternatea flower extract mediated graphene 
quantum dots have been shown to improve learning and 
memory capacity in AD models [152, 153].  

5. MECHANISTIC BASIS OF NANOPARTICLE-

BASED TREATMENT IN AD 

Literature has revealed various sources of natural prod-
ucts or phytochemicals used in NP that are beneficial for the 
treatment of AD. The types of NPs or nanopreparation used 
as the delivery agents also varied, from the most basic 
nanoemulsion (used to deliver osthole) [154], to complex 

lipid-based NPs (such as lipid core NP used to deliver cur-
cumin) [155] and polymeric NPs (such as the PLGA NP 
used to deliver triptolide) [156].  

Due to the heterogeneity of preparations available, multi-
ple mechanisms of action leading to neuroprotective effects 
were reported. These can be broadly categorised according to 
their effect(s) on (i) Aβ and related molecules, (ii) neuro-
transmitter levels, (iii) general pathological states like oxida-
tive stress, inflammation and apoptosis, and (iv) other mis-
cellaneous parameters.  

5.1. Reducing Aß and its Related Molecules 

Irrespective of whether Aß is the cause or consequence of 
the pathophysiology of AD, targeting this protein has been 
the focus of countless researchers in the pursuit of new AD 
therapies. Because of their limitation in delivery over the 
BBB, Aβ subfragments were employed in combination with 
NPs for active immunotherapy [157]. This method was used 
to create intramembranous Aβ fragment-loaded chitosan NPs 
for improved brain delivery. The study's ELISA results re-
vealed that the formulation had a high potential for immuno-
genicity [157]. For example, quercetin-loaded PLGA NPs 
(PLGA@QT) managed to disrupt Aß1-42 aggregation using 
the ThT assay [158], thus implying their potential to reduce 
the downstream processes leading to neurodegeneration. 
Aside from this, they also reported that PLGA@QT was 
better than free quercetin at reducing aggregation, preventing 
fibril formation, and dissolving formed Aß aggregates. The 
use of phytochemicals in the green synthesis of gold and 
silver NPs observed this direct effect on Aß aggregation 
[159, 160], but this was due to the innate property of the NPs 
themselves, rather than that of the phytochemicals. Moreo-
ver, quercetin-loaded superparamagnetic iron oxide NP (QT-
SPION) also managed to reduce the expression of APP in the 
brain of AD rats [161]. APP overexpression is one of the 
causes of increased Aß production by neurons, leading to 
neurodegeneration [162]. Thus, the ability of QT-SPION to 
reduce APP expression will be beneficial in AD. This effect 
was also reported by Amin et al. [163] to be one of the 
mechanisms of anthocyanin-loaded PLGA NP (An-NP) in 
reducing Aß1-42-induced SH-SY5y toxicity. In this study, 
An-NP also reduced the expression of BACE-1, which en-
codes for the APP-cleaving BACE responsible for the for-
mation of Aß fragments. Additionally, both these effects 
were reported to be more prominent in An-NP when com-
pared to free anthocyanin. 

5.2. Increasing ACh Concentration in the Brain 

Low ACh levels are another hallmark of AD, which is 
due to increased expression and/or activity of AChE [164], 
hence making the latter as a target for inhibition in AD ther-
apy. Several phytochemicals described in this review also 
possess this AChE inhibition activity, like curcumin, querce-
tin, resveratrol, phytol, extract of L. Coccineus, M. lutea, M. 
pinnata, T. arjuna, C. ternatea, Cladosporium sp., F. ve-
lutipes, S. blackburniana, and S. thea. Kakkar, Kaur [165] 
were one of the earliest researchers who demonstrated the 
AChE inhibition property of curcumin-loaded solid lipid NP 
(C-SLN) in AlCl3-induced AD in rats. The inhibition by C-
SLN was better than free curcumin, but they also reported a 
similar effect of empty SLN on the AChE. 
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Aside from curcumin-loaded NPs, quercetin-loaded SPI-
ONs (QT-SPION) produced by Jajin et al. also displayed 
AChE inhibition in AlCl3-induced AD in rats [161]. As a 
result, treated rats performed significantly better in the Mor-
ris water maze and passive avoidance tests; QT-SPION 
treatment proved superior to free QT in attenuating AD-
induced worsening of the test parameters.  

5.3. Attenuation of General AD Pathophysiological Pro-
cesses 

Various agents and phytochemicals have been shown to 
reduce oxidative stress, inflammation and eventually apopto-
sis in combating the neurodegeneration observed in AD.  

5.3.1. Oxidative Stress 

The ability to attenuate oxidative stress is the most as-
sessed parameter when phytochemical-loaded NPs are inves-
tigated as potential agents for AD therapy. C-SLN was 
shown to reduce oxidative stress in AlCl3-induced AD in rats 
by reducing lipid peroxidation and increasing the expression 
of endogenous antioxidants (GSH, SOD and CAT)[165]. 
These effects were comparable to the positive control ri-
vastigmine (AChE inhibitor used in AD treatment) and were 
superior to free curcumin. Other oxidative stress parameters 
ameliorated by phytochemical-loaded NPs include increased 
DPPH free radical scavenging activity by Centella asiatia 
nanoemulsion [166], increased total antioxidant status by 
thymoquinone nanoemulsion [167], reduced ROS generation 
by anthocyanin-PLGA [163], and reduced MMP production 
by Saussurea lappa essential oil-polymethyl methacrylate 
(PMMA)-based NPs [168]. In all these reports, the NP for-
mulation of the phytochemicals was found to be superior to 
the free formulation.  

5.3.2. Inflammation 

A recent association study reported a possible link be-
tween the anti-inflammatory NSAID use and cognitive im-
provement in patients with AD [169], thus providing more 
evidence that inflammation plays a key role in AD patho-
physiology. 

Anthocyanin-loaded PLGA (An-NP) used by Ul Amin et 
al. on Aß1-42-treated SH-Sy5y cells showed reduced expres-
sion of phosphorylated NFkB, TNF-α and iNOS [163]. An-
NP treatment resulted in better viability of the Aß1-42-treated 
SH-SY5Y cells, thus implying better neuroprotective effect. 
Quercetin-loaded NP was also shown to have an anti-
inflammatory effect. Quercetin-SPION treatment of AlCl3-
induced AD rats restored elevated iNOS levels in their brains 
back to comparatively normal levels, which was not pro-
duced by free quercetin [161]. Other inflammatory parame-
ters were reported to be ameliorated in other studies and the-
se included reduction in IL-6 by baicalein-loaded PEG-PLA 
micelles [170]. These reports stated the superior effects of 
the NP formulations.  

5.3.3. Apoptosis 

Neuronal death commonly occurs by apoptosis and is 
usually the culmination of the multiple insults described in 
the preceding paragraphs. Cucurmin RBCm-coated PLGA 
NPs bearing T807 and triphenylphosphine molecules showed 
suppressed primary brain microvascular endothelial cell and 

astrocyte death [83]. Quercetin loaded selenium NPs demon-
strated low cytotoxicity in the presence of PC12 cells and 
also protected PC12 cells from damage by H2O2 [97].    

6. TOXICITY CONCERNS WITH NPS THERAPY IN 
AD 

Over the years, a major limiting factor in the effort to 
translate promising experimental results observed with phy-
tochemical-loaded NPs into clinically applicable products is 
the lack of data on cytotoxicity. In general, NPs formulation 
of phytochemicals improve their dispersibility in aqueous 
environments, which contributes to their improved bioavail-
ability. However, at higher concentrations, increased dispers-
ibility will increase tissue delivery to a level that would tip 
the balance towards toxicity as it increases tissue penetration 
[171, 172]. Few studies uncovered the potential danger of the 
NPs formulation when compared to the free formulation. For 
instance, Gutierrez et al. [155] reported that curcumin-loaded 
lipid core NP (LCN-C) treatment of AD mice could not re-
duce COX-2 expression; thus LCN containing both curcumin 
and meloxicam is needed to reduce it. Furthermore, free cur-
cumin treatment was observed to be better at reducing COX-
2 expression than LCN-C, with the latter observed to in-
crease COX-2 expression to a higher level than non-treated 
AD mice. More work is needed, especially looking at the 
tissue level and long-term toxicities of the phytochemical-
loaded NPs, in order for them to be serious contenders for 
the various clinical applications that their experimental data 
suggest. 

7. LIMITATIONS AND FUTURE APPLICATION OF 
NATURAL PRODUCT-BASED NANOMEDICINE IN 

AD 

Advances in nanotechnology have led to a rise in poten-
tial therapeutic strategies against AD progression. For AD 
nanotherapeutics, a biocompatible nano-carrier with ade-
quate size, shape, charge, and surface characteristics corre-
sponding to the intended site/mechanism of action is re-
quired [173].  

However, there are still certain obstacles to overcome in 
the realm of AD nanotherapeutics. For example, at the site of 
the Aβ fibrillar event, for example, a larger pool of small 
NPs functions as a monomer to trigger fibrillation, whereas a 
larger pool of big surface NPs would efficiently absorb free 
fibrils and suppress fibrillation [173]. Other investigations 
have found that NPs with a smaller size and a negative 
charge are more effective at crossing the BBB and exerting 
inhibitory effects [174]. A few additional polymeric NPs 
were shown to have improved targeting and efficacy, but 
only under certain pH and temperature conditions [175]. In 
another study, it was discovered that some metallic nano-
carriers aided Aβ fibrillation-mediated AD development and 
were also implicated in bio-accumulation-mediated neuro-
toxicity [176]. Thus, an appropriate biocompatible nano-
carrier fabricated with suitable size, shape and charge, and 
surface modification corresponding to the targeted 
site/mechanism of action is essential for AD nanotherapeu-
tics [177]. In addition, AD is a multi-faceted clinical compli-
cation, so fabricating a single NP entity with several drug 
molecules or multi-potential drug candidates can possibly 



1512    Current Neuropharmacology, 2022, Vol. 20, No. 8 Woon et al. 

curb the AD progression more effectively, perhaps due to s 
ynergistic effects [178]. 

This review summarized numerous in vitro studies which 
have demonstrated the potential usefulness of NPs in modu-
lating the AD pathology. However, this must be further sup-
ported by in vivo experiments before proceeding to clinical 
trials. The in vivo studies need to be able to indicate long-
term systemic effects and, pharmacokinetic and pharmaco-
dynamic profiles of these NPs, and to identify potential tox-
icity in the body systems [179]. Furthermore, the evaluation 
of these natural product-derived NPs compounds in clinical 
trials is important to validate their application in the treat-
ment of AD. 

CONCLUSION  

The current review focused on the in-depth roles of NPs 
in the delivery of natural products, specifically in the treat-
ment of AD. Even though conventional medicinal properties 
were established to treat this disease, challenges were dis-
covered, especially due to its poor solubility and low bioa-
vailability upon crossing the BBB. Hence, numerous natural 
products using NPs were identified to promote a therapeutic 
effect on AD. Nanotechnology advancements may aid in 
achieving the larger concentrations of natural compounds 
required for efficacy against AD. Though there remain some 
concerns about general safety and environmental conse-
quences, that need to be resolved with more extensive stud-
ies. To summarize, nanotechnology containing one or more 
natural chemicals has the potential to be within reach for 
treating AD soon. 
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