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Abstract: Gene editing of the porcine genome has enabled the production of pigs that do not express 
the three known carbohydrate antigens that are associated with hyperacute rejection of a pig organ 
xenotransplant. In addition, it is now possible to insert a variety of human transgenes to protect against 
the human immune response, e.g., to protect from complement and coagulation activation. As a result, 
cardiac xenotransplantation of the gene-edited porcine heart is progressing towards clinical application. 
Many hope that it will definitively address the disparity between organ supply and demand. The role of 
cardiac xenotransplantation in pediatric care remains controversial but we believe there is an infant patient 
population with complex congenital heart disease (CHD) (not optimally managed by conventional surgical 
approaches) that is ideally suited to initial clinical application of this new technology. The most efficacious 
start would be to initiate clinical use as a short-term bridge to allotransplantation, particularly in infants 
with single ventricle pathology and significant risk factors for first stage Norwood palliation. Infants with 
end-stage heart failure after first stage palliation would represent a second target population. Infants 
experience unacceptably high mortality and morbidity when placed on mechanical circulatory support as 
a bridge to allotransplant. Effectively bridging these vulnerable populations could promote acceptance of 
cardiac xenotransplantation, allowing indications and use to expand, e.g., by (I) bridging patients with failed 
second and third stage single ventricle disease, or (II) with complex biventricular CHD, or (III) those with 
a restrictive or dilated cardiomyopathy. Finally, there is a reasonable expectation that the immunologic 
privilege of infants will allow porcine heart xenotransplantation to be destination therapy for some patients. 
In summary, heart allotransplantation in infants offers superior outcomes when compared to three-stage 
single ventricle palliation, but there is a continual shortage of deceased human donor organs. We should 
pursue research towards the application of xenotransplantation in patients with single ventricle pathology, 
in whom the results of staged palliation are likely to be suboptimal. There are many remaining issues to be 
resolved before cardiac xenotransplantation enters regular pediatric clinical use, but experience in this field is 
progressing rapidly. 
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Introduction

Current status of pediatric cardiac transplantation

Background
Cardiac transplantation is the most effective therapy for 
treating end-stage heart failure in children. Short and long-
term outcomes have reached historical highs. A total of  
30 pediatric heart transplants took place in 1984 with a 
median survival of 3.5 years (1). Today, over 600 children 
worldwide undergo cardiac transplantation each year with 
an expected overall median survival of 18 years. Results 
are age-dependent and superior in patients who undergo 
transplant at an earlier age. Median survival is 24.5 years 
in infants compared to 14.3 years for those transplanted 
between the ages of 11–17. Greater than 60% of infants 
who survive the first post-transplant year are still alive  
25 years later (2). 

Despite these excellent results, the annual number of 
transplants has remained stagnant over the last 10 years. 
Twenty to thirty percent of children listed for transplant 
will die on the waitlist each year before a suitable organ can 
be found (3). The primary reason for this is simple—the 
need for transplant exceeds the available supply of deceased 
human donor hearts. 

Combating waitlist mortality
Physicians caring for children with heart failure are 
combating waitlist mortality through three strategic efforts: 
(I) reducing demand for transplantation; (II) increasing 
the available supply of donor hearts; and (III) seeking 
alternatives to safely extend waitlist times. The first of 
these efforts centers on judicious listing and appropriate 
prioritization of children waiting for transplant. This is 
reflected by modifications made in 2016 to the allocation 
system for pediatric heart transplantation by the Organ 
Procurement and Transplant Network (4). In addition, 
stakeholders are advocating to implement risk models to 
determine transplant candidacy. They argue that limited 
resources should be protected, and the medical community 
must reduce the use of cardiac transplant for patients at the 
highest risk of death within 1 year of transplant (5). 

The second effort has providers working to increase the 
supply of donor hearts either by improving utilization of 
currently offered organs or seeking alternative methods to 
increase human donation. Reports indicate that 18–57% 
of offered hearts are not presently transplanted (6). The 
International Society for Heart and Lung Transplantation 
(ISHLT) has spearheaded efforts in conjunction with 

other groups to define the impact of donor characteristics 
on transplant outcomes (7-10). They sought to dispel 
perceived limitations on organ acceptance based on donor 
characteristics so that fewer hearts offered in donation go 
un-transplanted. 

The community continues to push the boundaries of 
ABO-incompatible heart transplantation in children. This 
initiative expands the pool of donors from which any given 
recipient can receive an organ. Depending on the country, 
children as old as four are candidates to safely undergo 
transplantation of a heart from a donor of an incompatible 
ABO blood group, provided that isohemagglutin titers are 
below 1:16 (11). Additionally, certain pediatric groups have 
followed the lead of colleagues working with adults and 
have renewed their focus on procuring hearts following 
circulatory death. Limited pediatric data suggest acceptable 
outcomes, albeit inferior to hearts obtained following brain 
death (12). 

The third effort, i.e., to safely extend waitlist times, 
centers on the application of technology to improve cardiac 
output until a suitable organ can be found. Pediatric 
mechanical circulatory support (MCS) utilization is on the 
rise worldwide. Thirty-seven percent of children listed for 
transplant are now bridged to transplant with a ventricular 
assist device (VAD) and outcomes have improved with 
each passing year. The most recent Pediatric Interagency 
Registry for Mechanical Circulatory Support report 
indicated a positive outcome (alive on device or successfully 
bridged to transplant/recovery) for 82% of VAD recipients 
6 months following implant (13). 

However, there remains a disparity in the use of this 
technology among children with congenital heart disease 
(CHD) versus those with dilated cardiomyopathy (2). VAD 
outcomes are inferior for patients with CHD, particularly 
for those patients with first stage palliated single ventricle 
disease (13). Despite these efforts, waitlist mortality among 
neonates and infants remains disproportionately high, 
warranting further exploration into alternatives.

Cardiac xenotransplantation

Background

Medical professionals have long dreamt that xenotransplantation 
would be the definitive solution for patients with end-stage heart 
failure. Transplant pioneer Norman Shumway has often been 
quoted, “Xenotransplantation is the future of transplantation, 
and always will be.” This pessimistic sentiment is 
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understandable considering highly publicized failures 
such as those of Dr. James Hardy and Dr. Leonard Bailey 
who transplanted nonhuman primate (NHP) hearts into 
humans who succumbed fairly rapidly (14,15). Advances 
in molecular biology and genome editing are beginning to 
shift attitudes once again and encourage physicians to hope 
that xenotransplantation will soon have clinical utility.

Since the 1990s, scientists have been experimenting with 
genome editing in pigs for the purpose of producing organs 
compatible with the human immune system (16). Early 
molecular biology techniques in addition to lack of identified 
xenoantigen targets precluded rapid and widespread clinical 
translation. The development of CRISPR-Cas9 technology 
(clustered randomly interspaced short palindromic repeats 
and the associated protein 9) made genome editing easier, 
quicker, and less expensive (17,18).

In addition, scientists identified three major carbohydrate 
antigens expressed on pig vascular endothelium against 
which humans have natural antibodies (Table 1). Genetically 
engineered “triple knockout” (TKO) pigs that do not 
express any of these antigens are now available (19). 
Human infant serum antibody binding to TKO pig cells 
is non-existent or minimal (Figure 1). Researchers have 
introduced other genetic modifications, e.g., protective 
human transgenes, which add further protection against the 
human immune response (21). This progress has prompted 
a recent push for clinical application, including one clinical 
heart transplant in an adult on ‘compassionate’ grounds (22) 
followed recently by a second. 

There continues to be concern for the potential of cross-
species transmission of potentially infectious microorganisms, 
but expert opinion is that most post-transplant infections are 
likely to be the same nosocomial infections as those seen after 
allotransplantation (23). The presence of porcine endogenous 
retroviruses (PERV) in pig cells was a concern, but these can 
now be inactivated in the pig (24). 

Community attitudes

The history, ethical considerations, and psychosocial 

impact  surrounding xenotransplantat ion make i t 
important to delineate community attitudes before clinical 
implementation. Early surveys distributed to pediatric 
medical providers and families of children with CHD 
indicate potentially high levels of acceptance (25-28). If the 
functional performance of the xenograft is proven inferior 
to that of an allograft, acceptance rates among stakeholders 
were lower (particularly for the use of a xenograft as a bridge 
to transplant). Unfortunately, these early surveys were 
limited by their broad scope and the limited background 
information provided to participants. A more focused follow-
up study helped identify specific concerns (religious beliefs, 
animal ethics, stigma about how pigs are viewed, organ 
allocation logistics, and impact on quality of life) to target 
for improved acceptance by better education (29). Further 
studies are warranted to explore attitudes across providers 
and families from a broad scope of backgrounds to ensure 
widespread applicability of these findings.

Immune privilege of children

Pediatric application of xenotransplantation may offer 
immunologic advantages over the adult population. 
The case for this argument is made strong through 
understanding the outcomes of neonatal and infant cardiac 
allotransplantation in addition to the outcomes of a few key 
in vitro studies. Current ISHLT data indicate that neonates 
and infants with heart allografts experience less rejection, 
allograft vasculopathy, post-transplant lymphoproliferative 
disease, and need for re-transplant, but greater survival 
compared with all other age groups that receive a cardiac 
transplant. In fact, the half-life of a heart transplanted prior 
to one year of age has yet to be determined (2,30). Many 
argue that this superiority is driven by an immunologic 
advantage inherent to children less than one-year-old, i.e., 
inducibility. Research dating back to 1945 suggests that 
immune responses can be modified in young patients with 
early antigen exposure (30,31). However, such immunologic 
advantage remains ill-defined and difficult to target with 
therapies intended to augment it. 

Table 1 Carbohydrate xenoantigens that have been deleted in gene-edited pigs

Carbohydrate (abbreviation) Responsible enzyme Gene-knockout pig

1. Galactose-α1,3-galactose (Gal) α1,3-galactosyltransferase GTKO

2. N-glycolylneuraminic acid (Neu5Gc) Cytidine monophosphate-N-acetylneuraminic acid hydroxylase (CMAH) CMAH-KO

3. Sda β-1,4N-acetylgalactosaminyltransferase β4GalNT2-KO
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A second factor that must be taken into consideration 
is the fact that most neonates and infants undergo total 
thymectomy at the time of heart transplantation. Although 
this is not associated with many infectious complications, 
it certainly reduces the patient’s T cell response and may 
well contribute to the good results achieved after heart 
transplantation in this age group (31).

Cardiac allotransplantation across the ABO blood 
group barrier remains an excellent example of tolerance by 
the infant immune system. In 2000, West and colleagues 
theorized that, because human infants lack strong humoral 
responsiveness to stimulation by carbohydrate antigens 
and have low levels of antibodies to non-self A and B 
blood group antigens, they would accept grafts from ABO-
incompatible donors (32). Not only were the transplants 
uniformly successful, with excellent survival and low rates 
of rejection, but follow-up studies indicated that patients 
who received an ABO-incompatible organ failed to develop 

specific antibodies to the donor blood group (33). They 
named this phenomenon “donor-specific B-cell tolerance”. 
We predict that infant humans will demonstrate a similarly 
blunted and accommodating humoral response to a 
xenograft (34). 

To investigate this, our group performed early in vitro 
assessments of neonates and infants both pre- and post-
cardiac surgery to determine their native reactivity to porcine 
antigens. No patients less than one-year-old had performed 
IgM or IgG antibodies to TKO pig red blood cells, regardless 
of whether they had undergone prior cardiac surgery (20). 
This was not the case in older children and adults, several 
of whom registered significant levels of antibodies to TKO 
pig antigens. Most intriguing, newborns who underwent 
a Norwood procedure, which requires implantation of an 
allograft patch for arch reconstruction and generous blood 
transfusion, did not express levels of anti-pig IgM or IgG 
that would result in humoral rejection (20). Further studies 
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Figure 1 Correlation between human serum antibody binding to pRBCs (by rGM) and age. Human serum IgM and IgG antibody binding 
to WT (i.e., genetically unmodified) pRBCs (top) and to TKO pRBCs (bottom). The dotted lines indicate no IgM or IgG binding (Note the 
great difference in the scale on the Y axis between WT and TKO). Adapted from original data set from Li et al. (20). RBC, red blood cell; 
pRBC, pig RBC; rGM, relative geometric mean; WT, wild-type; TKO, triple knockout.
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are necessary to delineate infant human cellular porcine 
immunity along with their humoral reactivity to nucleated 
cells from pigs. 

Bridge to allotransplantation

New technology is most ideally applied in clinical 
settings where it addresses a large gap within current care 
paradigms. Xenotransplantation has the potential to target 
the problems associated with contemporary pediatric VAD 
support which weigh heavily on patients and the healthcare 
system. Mortality associated with pediatric VADs has 
improved but remains at 30% for all children placed on 
support as a bridge. Morbidity is also high, mostly centered 
on thrombosis and the complications of therapies intended 
to prevent it. Independent of underlying diagnosis, children 
on a VAD demonstrate a 30% stroke rate and 25% risk 
of life-threatening bleed during their time on support. 
Furthermore, 30% of children will develop a major 
infection during VAD support, in part because all devices 
have externalized components, but primarily due to ongoing 
nosocomial exposure (13). Patients with small body surface 
areas on MCS cannot be discharged from hospital. Patients 
successfully bridged require prolonged inpatient hospital 
stays, resulting in numerous infections and ultimately a 
heavy financial burden on the healthcare system. 

Pretransplant MCS significantly increases hospital 
costs compared to those of recipients not on MCS (35), 
MCS adding almost $69,000 to the adjusted excess 
cost per case basis in post-operative CHD surgery (36). 
While the additional costs associated with infant cardiac 
xenotransplantation are hitherto unknown, the potential 
for early home discharge with outpatient follow-up until 
allotransplantation would almost certainly lower the 
costs compared to continued hospitalization of an infant 
supported by a currently available MCS (in addition, home 
care would be greatly beneficial from a psychological 
perspective for the patient and the family).

A fully implantable, biologic pump capable of delivering 
adequate biventricular cardiac output would revolutionize 
the current pediatric bridge-to-transplant paradigm. A 
xenograft’s natural endothelial lining would preclude the 
need for intensive anticoagulation. Our current standard 
of care in animal experiments of xenotransplantation is 
simply to give recipients only 40 mg of aspirin on alternate 
days. The xenograft’s lack of externalized hardware 
would eliminate the risk of infection inherent to exposed 
drivelines and cannulas. This may be a neutral benefit when 

accounting for the risks of required immunosuppression. 
However, the graft’s ability to adjust to physiologic 

demands could allow for safe discharge to home during the 
bridge period. This would help reduce the length and cost 
of prolonged inpatient hospitalization along with the added 
benefit of diminishing exposure to nosocomial infections. 
As experience with the technology improves, the transplant 
community will likely support efforts to discharge 
xenotransplant recipients to home while retaining a stable 
United Network for Organ Sharing listing status. 

There are, however, remaining barriers to the clinical 
application of cardiac xenotransplantation in infants. To 
date, no research group has demonstrated consistent six-
month survival of an orthotopically-placed cardiac xenograft 
in an infant NHP. Nevertheless, all of the evidence to date 
indicates that the development of an immune response 
to a TKO pig heart will not result in the production of 
antibodies that cross-react with human leukocyte antigens 
(HLA) and so will not prevent successful subsequent 
allotransplantation (37). 

As a research group, we are actively evaluating orthotopic 
cardiac transplants from TKO pigs into juvenile baboons 
(4–6 kg in weight). Our goal is to demonstrate consistent 
4–6 months survival of life-supporting cardiac xenografts 
with no evidence of cross-reactivity of anti-pig antibodies 
with human antigens that would preclude subsequent 
allotransplantation. To ensure clinical feasibility, at  
4–6 months we will excise the pig heart and replace it with 
a baboon allograft, which we would monitor for a further 
2–4 months. If these milestones are achieved, we believe 
a clinical trial in infants failing traditional single ventricle 
palliation is warranted. 

There is clearly a risk in this approach because, in the 
event of graft failure, there is likely to be no alternative 
therapy available. However, without a xenograft, the risk 
of death on MCS is also high. We would not proceed to 
a clinical trial unless our laboratory studies in the pig-to-
baboon model indicated that a clinical trial would have a 
realistic chance of success. As NHPs are more likely to have 
preformed antibodies to TKO pig cells whereas our in vitro 
data indicate that no human infants have anti-pig antibodies 
(Figure 1) (and our current immunosuppressive regimen 
successfully prevents the production of de novo antibodies) 
we believe that rejection is unlikely to be problematic.

Selection of patients

If preclinical animal studies confirm an acceptable safety 
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profile for orthotopic cardiac xenotransplantation, the 
question remains: “What clinical setting is the most 
appropriate for initial application?” Seventy percent of 
pre- or post-first stage single ventricle patients who need a 
VAD die before a suitable human heart can be found. The 
children within this group who receive heart allotransplants 
undergo MCS for a median of 64 days (13,38). Most 
successful experiences with bridging first stage single 
ventricle patients to transplant with a VAD occur in a few 
specialized centers around the country. Other single center 
experiences report mortality rates as high as 100% (39). 

If this low success rate is exceeded clinically, populations 
with lower risk VAD profiles could be offered xenotransplantation 
as an alternative bridge in a hazard-adjusted fashion:  
(I) failed second stage single ventricles; (II) failed third 
stage single ventricles; (III) complex failed biventricular 
CHD; (IV) dilated/restrictive cardiomyopathies. Contrary 
to adult applications, porcine hearts used in these settings 
would eventually be removed in favor of a human allograft, 
which may also promote community acceptance and clinical 
expansion. 

We believe there are significant advantages of our 
proposal to employ a pig xenograft as a bridge to 
allotransplantation. No NHP has yet survived beyond  
9 months after orthotopic transplantation of a pig heart, 
and therefore the prospects for destination therapy are 
presently limited. Bridging of infants for 4–6 months would 
be much more feasible. Bridging does not commit an infant 
to a lifetime dependent on a pig heart which, in view of 
our limited knowledge of the field at present, must be an 
advantage.

Destination therapy

Looking further into the future, successfully bridging 
pediatric patients to transplant across all diagnoses could 
open the opportunity for destination therapy. This has 
precedent in adult VADs, which began initially as a therapy 
offered only as a bridge but eventually became destination 
therapy once results were proven superior to medical 
therapy alone (40). Large gaps in the current care paradigm 
of CHD leave room for xenotransplantation to play a role, 
particularly in the care of single ventricle patients. 

The current limits of three-stage palliation

The evolution and refinement of three-stage single ventricle 
palliation has saved the lives of many children. As those 

children progressed into adulthood, the medical community 
discovered that Fontan physiology is not a lifelong solution. 
Instead, it represents a stable state while patients await 
inevitable cardiac transplantation to prolong their lives 
past the third and fourth decades (41-44). Furthermore, 
we are learning more about the long-term consequences 
of elevated central venous pressure on end organ function, 
including but not limited to hepatic, renal, gastrointestinal, 
pulmonary, neurologic, and lymphatic systems (45-49). 
Because of this end organ dysfunction as well as the 
added technical complexity and immunologic impact of 
multiple prior cardiac operations, adult Fontan patients 
demonstrate greater post-transplant mortality compared 
to their biventricular counterparts (50,51). Such profound 
limitations warrant reconsideration of a well proven fact—
single ventricle palliation is offered because of necessity, not 
superiority among available therapies.

Although bridging by a xenograft will necessitate a second 
operation to replace the pig graft with an allograft, this is 
arguably preferable to the multiple palliation procedures and 
eventual cardiac allotransplant required by many patients.

Cardiac transplantation is superior to palliation

In the 1980s, a few centers in the United States pursued 
primary cardiac transplantation as  the treatment 
modality for hypoplastic left heart syndrome (HLHS). 
Simultaneously, the remaining centers in the United States 
offered three-stage single ventricle palliation. The long-
term survival advantage favoring human primary transplant 
is clear for newborns with HLHS. At 15 years from index 
operation, 65% of patients with primary transplants are 
alive versus 40% of three-stage palliation patients (52,53). 
In addition to better survival, the negative sequelae of 
prolonged elevation in central venous pressures were 
avoided in the transplant population. If enough donor 
hearts were available, cardiac replacement would be the 
treatment of choice for HLHS. Cardiac xenografts have 
the potential to fill this need assuming they demonstrate 
acceptable longevity, associated morbidity, and rates of 
rejection. 

Prenatal diagnosis

Over the past two decades, there have been significant 
improvements in fetal diagnosis. In the present era, there 
is an expectation of accurate and detailed diagnosis of 
complex CHD in fetuses referred to pediatric cardiologists. 
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Diagnosis before birth would allow sufficient time for 
counseling of the parents about the potential availability of 
xenotransplantation among other treatment options. If they 
wished to explore xenotransplantation, the time before birth 
would allow prenatal clinical preparation. 

The ability to accurately diagnose CHD in the fetus also 
provides the possibility of modifying the neonatal immune 
response to xenoantigens and thereby improving the 
outcome of cardiac xenotransplantation. In fact, this ability 
could potentially result in cardiac xenotransplantation 
utilized as destination therapy for a group of neonates that 
have been documented to have poor prognosis. 

Conclusions

Xenotransplantation with gene-edited porcine hearts offers 
great promise. There is a specific population of vulnerable 
neonates and infants with CHD who could immediately 
benefit from its introduction. Our community, comprised of 
physicians, nurses, families, and patients, must investigate 
and overcome its current limitations. Once these are 
resolved, we must boldly push towards clinical application. 
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