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Abstract
Large quantities of information describing the mechanisms of biological pathways continue to be collected in publicly
available databases. At the same time, experiments have increased in scale, and biologists increasingly use pathways
defined in online databases to interpret the results of experiments and generate hypotheses. Emerging computa-
tional techniques that exploit the rich biological information captured in reaction systems require formal standar-
dized descriptions of pathways to extract these reaction networks and avoid the alternative: time-consuming and
largely manual literature-based network reconstruction. Here, we systematically evaluate the effects of commonly
used knowledge representations on the seemingly simple task of extracting a reaction network describing signal
transduction from a pathway database.We show that this process is in fact surprisingly difficult, and the pathway
representations adopted by various knowledge bases have dramatic consequences for reaction network extraction,
connectivity, capture of pathway crosstalk and in the modelling of cell^ cell interactions. Researchers constructing
computational models built from automatically extracted reaction networks must therefore consider the issues we
outline in this review to maximize the value of existing pathway knowledge.
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INTRODUCTION
The first simulation of an entire cellular system [1]

represents a watershed moment in computational

biology. This simulation combines multiple models

of cellular processes into a simulation capable of pre-

dicting the phenotype of the single-celled organism

Mycobacterium genitalium, one of the simplest living

organisms [2]. Because of this simplicity, the compo-

nent process models are relatively small and can be

manually assembled from the literature in a reason-

able timeframe. However, this model assembly step

presents a major hurdle to whole-cell systems mod-

elling in more-complex organisms. Some processes,

such as metabolism, have existing large-scale models

[3]; others, such as the signal transduction system, do

not. The simplest way to accelerate the development

of large-scale models is to exploit data contained in

existing knowledge bases. In the case of signal trans-

duction, these databases are already used to interpret

the results of high-throughput experiments, and pro-

vide detailed insight into the specific mechanisms

through which phenotype is controlled and created.

Open-access databases range in size and scope from

small single-pathway models with extensive kinetic

detail (e.g. those captured in the BioModels [4] data-

base) to much larger, community-curated reaction
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databases such as Reactome [5, 6], the National

Cancer Institute Pathway Information Database

(PID) [7] and the Kyoto Encyclopedia of Genes

and Genomes (KEGG) [8, 9]. While a number of

commercial pathway knowledge bases are available

for performing traditional pathway analysis [10], the

costs, format, data sharing restrictions, and terms of

use make these less attractive as a source of data for

network extraction. Open-access databases are thus

the main repositories of the large-scale pathway re-

action and interaction data necessary for cellular-scale

systems modelling.

Knowledge bases are generated by teams of skilled

researchers and curators working on functionally

defined pathways, entering data extracted from the

body of literature relevant to that reaction system.

These data are then checked by independent curators

to ensure accuracy, and later revisited and updated to

reflect changes in our understanding of the system.

Such databases have three key features: (i) they are

detailed, (ii) they undergo quality control processes

and (iii) they are broad, covering many pathways in

depth and detail (Reactome describes 12 334 partici-

pants in 6004 reactions across 1371 pathways in their

Homo sapiens data set as of January, 2013). They also

provide high-quality diagrammatic representations of

their constituent pathways for visual interrogation

and analysis.

Computational analyses of pathway systems that

use these data range in sophistication from the use

of pathway enrichment and gene-set enrichment

techniques [11], through to simulations at the reac-

tion level in systems ranging in size from single signal

transduction pathways [12, 13] to genome-scale

metabolic networks [14, 15], cellular-scale signalling

networks [16] and whole-cell models [1].There are

many and important distinctions among these simu-

lation-based modelling and analytical techniques, but

those more sophisticated than simple enrichment

analyses require the extraction and use of the under-

lying reaction network, typically in the form of an

adjacency matrix or adjacency list. This adjacency list

is the most basic representation of a set of reactions

possible, and is used (with additional information) to

generate rate equations, flux-balance equations or

Boolean statements [12, 13, 16, 17].

A number of design decisions in the implementa-

tion of pathway databases can hinder the extraction

of this fundamental information. Previous discussions

of the knowledge contained within databases have

focused on the content of databases, specifically the

completeness and quality of annotation in signal

transduction [18] and metabolic [19] networks,

rather than the impact and implications of these im-

plementation choices for modelling and simulation.

These features have not been widely discussed, and

have been overlooked in many modelling applica-

tions. Other issues arise from the age of many of

the current generation of database projects. Major

databases take time to design, build and populate

with curated data, and many major repositories

have been running for 6 (PID) to 8 (KEGG,

Reactome) years. Our understanding of and ability

to detect certain biological phenomena has improved

during this time. Early design decisions and subse-

quent shifts in knowledge have significant repercus-

sions for modellers, database designers, curators

and the broader community that rely on these ana-

lytical tools.

We will discuss issues related to knowledge rep-

resentation, and to the capture of underlying biolo-

gical complexity, from the perspective of

computational pathway analysis. These problems

are found across the range of currently available data-

bases; we will provide representative examples from

the Panther Pathways [20], Reactome [5, 6] and

KEGG [8, 9] databases because of their size and cur-

rent status as primary sources of data for large-scale

models of signal transduction.

To examine the suitability of existing database

representations of pathways for computational path-

way analysis, we consider five criteria in the areas of

knowledge representation and the representation

of biological complexity: adherence to standards in

implementation, uniqueness of entity references, use

of meta-entities to group data, the resolution of

captured data, and ability to capture multicellular

interactions.

KNOWLEDGEREPRESENTATION
The accumulated knowledge held in pathway data-

bases is valuable. Good representation enables the

development of efficient and accurate analytical

techniques, even when working with large

multipathway systems or entire databases, whereas

poor representation can have the opposite effect.

Three key representational issues appear in the cur-

rent generation of databases: variation in implemen-

tation of standards, lack of uniqueness criteria and the

use of sets of molecules in interaction and reaction

data. Each presents its own challenge to the model-

ling community.
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DATABASESMAY VARYWIDELY IN
IMPLEMENTATIONOF
STANDARDS
Each database system has a different underlying struc-

ture, and captures subtly different information.

KEGG, one of the longest-running curation projects,

uses DBGet/LinkDB to retrieve records stored in

their specialized KEGG Markup Language (KGML)

data representation [9]. In contrast, Reactome uses a

Structured Query Language (SQL) backend to re-

trieve data stored in flat files according to the

Reactome specification [5]. Even when databases

make programmatic access to their data available

(through application programming interfaces, or

APIs), this makes systematic access to the data con-

tained within the database challenging—any software

must be capable of negotiating database-specific fea-

tures and implementations.

To deal with this problem, data exchange formats

such as Systems Biology Mark-up Language (SBML)

[21], Biological Pathway Exchange (BioPAX) [22]

and the Human Proteome Organisation (HUPO)

Protein Standards Initiative Molecule Interaction

(PSI-MI) [23] have been developed by the commu-

nity or different segments thereof. These formats

provide common standard methods of data represen-

tation that can be accessed programmatically.

However, implementation of these standards by

each database varies.

Currently, most databases make their data available

in several of these formats (Table 1). However, the

location of important information (such as entity

names or accession numbers for other resources such

as UniProt) varies between databases (Supplementary

Data S1). This difference in implementation prevents

the creation of database-agnostic software, and defeats

the purpose of data exchange standards.

Even where standard formats are adopted, the

specifications themselves can result in ambiguity

(Supplementary Data S1). Standard formats fre-

quently make recommendations and outline best

practices, the uptake and implementation of which

varies significantly between databases. For example,

the BioPAX Level 3 specification provides a descrip-

tion of how to represent complexes, which are phys-

ical associations between or among multiple

component entities. In this description, it is recom-

mended that a complex should not contain other

complexes as their components—instead, they

should be ‘flat’ structures containing proteins, small

molecules and other participants in the reaction

system to prevent implicit encodings of assembly

order [24]. This also allows easy checking of com-

ponents without need for recursion. Because this is

described as a recommendation, it is not enforced,

and causes further variability in the implementation

of the standard.

The solution to this issue would seem to be rela-

tively straightforward—stronger standards for data

sharing at the community level, and stricter quality

control by database designers. However, any gain in

interoperability owing to stricter, more detailed spe-

cifications must be carefully weighed against the

associated loss of flexibility to capture non-standard

information.

UNIQUENESS CRITERIA ARENOT
GUARANTEED
Another issue is duplication within the database or

model. It is essential that each entity in the system be

described by a single unique database entry—that, for

example, STAT3 protein in the cytosol with no

post-translational modifications (PTMs) is repre-

sented uniquely. This is critical from a modelling

perspective, and is often assumed. For example, re-

action information extracted from the Panther

Pathways database was used to form a constraint-

based model of signal propagation in multiple

Table 1: Formats implemented by major databases

Database BioPAXL3 BioPAXL2 SBML PSI-MITAB Custom format API

Reactome 3 3 3 3 MySQL dump 3

PANTHER Pathway 3 5 3 3 CellDesigner-compatible SBML 5

KEGG 5 5 5 5 KGML 3

NCI-PID 3 3 5 5 PIDXML 5

PathwayCommons 3 5 5 5 SIF, tab-delimited 3

Wediscuss data sourced from fourmajordatabases (Reactome,PANTHERPathways,KEGG,NCIPID) and ameta-database that aggregates informa-
tion frommultiple sources (PathwayCommons).These databasesmake their data availableboth through a graphicalweb-based interface (with asso-
ciateddiagrammatic representations) andinnumerous community-specifiedandcustom formats, aswell as throughAPIs.
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signal transduction pathways linked to prostate

cancer [17]. However, 28 entities in the system

were duplicates (Supplementary Data S1 and S2).

Not only did this effectively linearize a connected

interdependent network (as demonstrated in

Figure 1), the duplication made multiple add-

itional pools of nucleotide triphosphate available

for use in the reaction system, which has major

implications.

Duplication of entries can cause loss of connect-

ivity within the extracted reaction network

(Figure 1) and generate errors in simulation. This

loss is severely problematic for topology-based

analytical methods, in that it effectively disconnects

reactions, arbitrarily and randomly linearizes other-

wise complex interconnected relationships and elim-

inates potentially significant crosstalk between

pathways, largely by disconnecting the functions of

multifunction proteins. It is important to note that

this issue is distinct from the use of duplication in

visualizations of the data. Duplications to aid visual

interpretation are supported by graphical exchange

standards (e.g. [25]) and where they are used, refer to

unique entries in the underlying database.

In most interaction databases, duplications are

prevented by checking each new entry’s third-

party database identifiers, such as UniProt [26] acces-

sions for proteins, ENSEMBL [27] identifiers for

genes and unique chemical identifiers such as the

IUPAC International Chemical Identifier [28] or

Chemical Entities of Biological Interest [29]. These

strategies cannot be applied to complexes of entities,

or to molecules without third-party database refer-

ences. Such references can also fall victim to changes

in the external databases, such as the deprecation and

reassignment of accession numbers [30]. It is import-

ant that modellers are aware of the need to confirm

that molecules are uniquely and exclusively asso-

ciated with a single identifier when extracting reac-

tion data from large databases.

Figure 1: Duplication of entities decreases network connectivity. It is essential that each entity in a given cellular
location is represented with a single entry in the underlying database. In this visualization, each node in the network
refers to a unique database entry. In (A), the entity represented by a star has been duplicated (solid and dashed out-
lines). This significantly reduces the connectivity and complexity of the network described by the data. (B) shows a
network consisting of multiple signal transduction pathways implicated in prostate cancer visualized from data ori-
ginally sourced from the PANTHER Pathways database and analysed in [17].This network has duplication of 28 enti-
ties. Correcting these duplications, as illustrated in (C) yields the network shown in (D), with an attendant
increase in connectivity and complexity.
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OVERUSEOFMETA-ENTITIES HAS
UNINTENDED CONSEQUENCES
Entity sets are groups of molecules that behave in

the same way or fulfil the same role in a reaction,

and are therefore interchangeable in that reaction.

Generally, these sets operate at a conceptual level

as a Boolean ‘OR’ operator. This allows for the cap-

ture and description of mechanisms such as catalysis

by any member of that group of entities.

The widespread use of sets of entities (quantified

in Table 2) instead of individuals has major

unintended consequences for the modelling and

database-curation communities. Some databases

permit users to group entities in reactions where

the entities undergo similar biochemical modifica-

tion, with sets of entities as both reactant and product

(Figure 2). This creates problems when a member

of one of these sets has functions outside of the

set. For example, Cyclin A and Cyclin E participate

in a number of reactions, some of which require

a specific Cyclin, and some of which may use

either. Reactome groups the entities Cyclin A

Figure 2: Bucketing of entities has a significant effect on networks. In (A), three entities have been grouped into a
meta-entity (dashed circle), which interacts with the species described by the star. One of the entities has a
number of distinct separate activities outside of this group. The network depicted in (B) is sourced from
Reactome’s ‘Mitotic G1-G1/S phases’ pathway (REACT_21267.3). The BioPAX Level 3 representation of this pathway
contains 27 of these meta-entities. Removing the meta-entity, as illustrated in (C) results in significant changes to
the network shape. Restoration of connectivity lost owing to meta-entity use generates the network shown in
(D), significantly changing network topology.

Table 2: Frequency of occurrence of meta-entities and non-flat complexes

Database Total number of entities Meta-entities Number of complexes Number of recursive complexes

Reactome 24 477 2419 6040 3485
KEGG* 25 043 4716 ^ ^
PANTHER 13241 Unlabelled1 913 34
NCI-PID 27367 Approx 9602 9016 2751

Bothmeta-entities andnon-flat complexes are common in themajor signal transduction databases discussed. *KEGGdata sourced from their REST
API, downloaded as KGML files for interpretation. 1Panther Pathways does not annotate their sets of entities^ this is only evident from entity
names [e.g.‘C-jun-amino-terminal kinase1, 2, and 3 (JNK1^3)’ as specified in the ‘FGF signalling pathway’] 2NCI-PID does not annotate their sets of
entities with a clear markerçan estimate was made by counting the number of entities with cross-references to multiple proteins (e.g. ‘GRP1
family’ from the‘Arf6 signaling events pathway’).
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(REACT_5498.2) and Cyclin E (REACT_5284.1)

into the meta-entity Cyclin E/A (REACT_9091.1)

when describing reactions which may use either

gene, whereas reactions that require a specific form

use the relevant individual identifier. Thus, not all

the reactions that can use Cyclin A are associated

with the Cyclin A identifier, and shared functions

are linked to the Cyclin E/A meta-entity, effectively

breaking these connections (as illustrated in

Figure 2). The situation becomes more-complex

still, as Reactome’s representations of Cyclin A and

Cyclin E are themselves meta-entities, as each cyclin

has two isoforms [A1 (REACT_4163.1)/A2

(REACT_3467.1) and E1 (REACT_2635.2)/E2

(REACT_2733.2), respectively], and these isoforms

have additional distinct reactions from their parent

and grandparent meta-entities.

Meta-entities that bundle entities with distinct

function cause issues similar to the duplication of

molecules in the database. The severity of these

issues are dramatically amplified when they occur

in conjunction with complex formation.

Complexes are formed by the physical combination

and association of their components, and their data-

base representations are conceptually equivalent

to Boolean ‘AND’ operators. Complexes may have

meta-entities of the type previously discussed

amongst their components. These component

meta-entities may also contain other subcomponent

meta-entities and complexes, adding depth and com-

plexity to the parent complex. One such complex

is Cyclin E/A:Cdk2:phospho-p27/p21:SCF(Skp2):

Cks1 (REACT_9193.1), which contains two sub-

complexes, representing eight possible combinations

of its component molecules (Supplementary Data

S1). Alternatively, a meta-entity can consist of a set

of complexes themselves, which may in turn contain

meta-entity components. When such structures and

representations occur, the constructions become

more than simple sets of equivalent entities, and

approach something closer to a grammar.

The repercussions of this structure on the extrac-

tion of reaction networks are severe. Essentially, each

member of a meta-entity must be checked to deter-

mine whether it participates in interactions separate

from those of its parent. If it does, then the equiva-

lent molecule must be extracted from the meta-

entity representing the product (or reactant) of that

interaction. This process must be repeated for all

meta-entities containing that molecule or its modi-

fied equivalents, until full extraction is achieved.

The difficulty here lies not in the decomposition of

entity sets or the identification of which members of

a given meta-entity have independent function.

There are three challenges: (i) the construction of

new mass-balanced reactions (a problem discussed

in the context of metabolic networks in [31, 32]);

(ii) identifying all entities in the network affected by

the expansion (as a meta-entity may be a member of

another meta-entity or component of a complex);

and (iii) editing the original meta-entity from

which molecules have been isolated to prevent loss

of information regarding other members. This edit-

ing step is approximately equivalent to programmat-

ically modifying a complex formal grammar [33] in

such a way that it no longer generates a specific se-

quence, without otherwise modifying its language.

In the case of Reactome, where �10% of the trans-

ducers in the system are meta-entities, �2400 new

formal grammars may need generation, an onerous

and time-consuming task.

Specific databases use different variations of meta-

entities. The simplest of these is found in the KEGG

database, where molecules with equivalent function

are bundled together. An example of this occurs in

the ‘FGF’ ligand shown in the MAPK signalling

pathway (KEGG PATHWAY:hsa04010), which

represents 22 separate molecules acting as agonists

of the four receptors bundled under the ‘FGFR’ an-

notation. A more-complex version is that used by

the Reactome database, which features three distinct

types of set representation [5, 6]. The first of these,

DefinedSet, functions as previously described to

group equivalent molecules. The second,

CandidateSet, implements a ‘maybe-OR’ function-

ality used to describe situations in which a group of

molecules has been implicated in a process, but the

specific molecule involved has not been elucidated.

Reactome also provides an ‘OpenSet’ structure,

which is a set of molecules with some shared struc-

tural property, defined by an example. This classifi-

cation of set type is not consistently made available in

the exported versions of the database (Supplementary

Data S1), with the BioPAX version annotating these

meta-entities as generic ‘EntitySets’, without provid-

ing detail as to which type of set they are. The SBML

version of Reactome provides this information for

some sets, but also uses the generic ‘EntitySet’ nota-

tion for others.

Collecting distinct entities into meta-entities

serves two purposes. Firstly, use of meta-entities

allows the compression of information that would
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otherwise cause a database to undergo a combinator-

ial explosion in size [e.g. Reactome’s ‘APOBEC3G:

RTC with deaminated minus sssDNA:tRNA

primer:RNA template’ (REACT_9785.1), repre-

senting 484 323 840 000 individual molecules

(Supplementary Data S1)]. This is a powerful and

proper use of these representations, and does not

significantly affect the extracted reaction network.

However, meta-entities may also be used for ease

of data entry and visual representation. This latter

use can, as illustrated, cause unintentional loss of

connectivity. Ideally, database designs should distin-

guish between the two, and only the former should

be captured in the exported underlying data.

BIOLOGICALCOMPLEXITYAND
CONTEXT
The second area of concern from the perspective of

modelling lies in the capture and representation of

biological complexity and context. As the largest

repositories of pathway reaction data, KEGG and

Reactome represent the best starting points for

building large-scale models of cellular function.

While these databases capture significant portions

of the interactome, they do not capture behaviour

related to splice variants and protein isoforms, or

multicellular interactions, in a manner that enables

reaction networks to be easily extracted.

VARYING LEVELS OFMOLECULAR
RESOLUTION
Protein isoforms may be generated by a number of

mechanisms (e.g. from homologous genes, by alter-

native splicing, from post-translational events, etc.).

The body of information regarding the activity and

effects of different isoforms is steadily growing. Splice

variants of proteins are a key source of functional

diversity in healthy organisms [34], play major roles

in many genetic diseases [35, 36] and have been

implicated in cancer [37]. A number of recent articles

have specifically implicated splice variation as a

mechanism through which signalling pathways vary

[38–41]. For example, alternative splicing of the

transcript for growth-factor receptor-bound protein

2 (GRB2, UniProt:P62993) leads to production of

an isoform, GRB3–3 (UniProt:P62993–2). GRB3–3

is known to have a dominant negative effect over

GRB2, triggering apoptosis as part of the pro-

grammed cell death pathway [42]. Capturing these

behaviours will be important in future modelling

efforts.

Additionally, the experimental characterization of

protein PTMs (e.g. phosphorylation or ubiquitina-

tion) has become more accurate and less expensive

over the past decade, with a corresponding increase

in the amount of PTM data available. Database

editors must deal with and interpret experimental

observations of signal transduction events that range

in detail from not describing PTMs at all, through

those that require some PTMs without regard to

specific sites, through to those that require specific

combinations of PTMs at specific sites. Some data-

bases attempt to capture information covering pro-

tein isoform details and the sites and nature of PTM

[5, 7]. At present, the main Reactome database cap-

tures a mix of generic [e.g. phospho-Emi1 (UniProt:

Q9UKT4, REACT_2668.2)] and site-specific

[e.g. p-T161-CDK1 (UniProt:P06493, REACT_

5391.4)] PTMs, and some alternatively spliced

isoforms are recorded in more recently annotated

pathways [e.g. IRAK1 splice variants (associated

with UniProt:P51617, REACT_7703.1)]. At an

interaction level, this can be handled by the previ-

ously described meta-entity structures. It is important

that care be taken when working with meta-entity

structures owing to the attendant risks of grouping

functionally distinct elements, and the subsequent

loss of network connectivity.

Failing to capture, or partially capturing, PTMs

can result in distortion of the reaction network.

For example, there are a number of cases in which

a protein must have PTMs at specific sites for a par-

ticular interaction to occur. Problems arise when a

protein with these modifications at unspecified sites is

included within the database, or where an interac-

tion fails to specify these sites. An inclusive approach

to these situations risks creating links between sub-

sections of the network that do not exist, whereas a

conservative approach that discards such information

risks severing links that do.

An additional issue is the problem of curating and

maintaining these resources over time. The sequen-

tial nature of the curation process means that a given

database may have closely related pathways entered

years apart (Reactome’s ‘Apoptosis’ pathway dates to

2004 (reviewed February, 2013), and its ‘Cellular

Responses to Stress’ pathway to late 2011). A path-

way curated in 2013 would almost certainly contain

information about isoform-specific function and

PTMs that was simply not available 8–10 years ago.

The level of detail captured by reactions in a data-

base can vary widely in terms of this level of detail,
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even when derived from contemporaneous experi-

mental results reported in the same publication.

For example, the previously mentioned phospho-

Emi1 (a generically phosphorylated molecule

with no site-specificity) has an entry in the

‘Mitotic Metaphase/Anaphase Transition’ pathway

(REACT_1016.2). However, another phosphory-

lated Emi1 with site-specific modifications [phos-

phor-Emi1(Ser 145, Ser 149), REACT_7080.1]

appears in the related ‘APC/C-mediated degradation

of cell cycle proteins’ (REACT_6828.1) pathway.

The signalling events in which these molecules par-

ticipate are described in the same publication [43],

yet have varying levels of detail in their representa-

tion within the database.

This has important implications for the inter-

actions between pathways (or ‘crosstalk’), and re-

quires additional checking against previously

grouped sets of molecules. Such crosstalk has been

demonstrated to be of key importance in regulation

of phenotype [44, 45]. Strategies to deal with this

variation in level of detail are required to minimize

the impact of variable levels of resolution across

individual pathways, and to minimize the resultant

distortion of extracted reaction systems. Rather than

the current approach of iterative expansion of signal

transduction databases (which is the root cause of this

divergence), it may be necessary to incorporate a

more-thorough revision process specifically targeting

differences in resolution at each major release and

publication point.

MULTICELLULAR INTERACTIONS
ARENOTWELL-DESCRIBED
Interactions and reactions described in pathway data-

bases are recorded as occurring between entities that

are in a specific subcellular location, such as the cyto-

sol, extracellular region or various organelles. This

information is useful in determining the reactions

in which a molecule can participate, and captures

sequestration and compartmentalization within the

cell, in addition to allowing description of events

related to secretion and molecular transport.

Almost all of the databases mentioned so far also

contain information detailing interactions occurring

between cells. Recording the cellular location of

a given entity becomes more difficult when two

(or more) cells interact within the system. For ex-

ample, the Reactome database contains information

governing host–pathogen interactions in latent

Mycobacterium tuberculosis (tuberculosis) infection.

Interactions in this pathway occur in the host cell,

in the pathogen or in the extracellular region be-

tween the two, and are obviously separated in the

pathway visualization. However, no distinction is

made between the cytosol of different cells in the

exported version (BioPAX Level 3) of the

Reactome database (Supplementary Data S1). This

results in the effective fusion of the cellular systems of

the pathogen and its host, and prevents accurate

simulation of the interactions as illustrated in

Figure 3. This situation also occurs in cell–cell and

synaptic signalling data, where it causes similar prob-

lems by collapsing multiple cells into one. Similar

problems occur in other databases. Notable examples

include the BioPAX version of the NCI-PID

curated pathway ‘Effects of Botulinum toxin’ inad-

vertently describing Botulinum neurotoxins (e.g.

P18640) as human proteins, and the attribution of

West Nile Virus RNA to H. sapiens in the BioPAX

version of the BioCarta-sourced ‘West Nile Virus’

pathway retrieved from the NCI-PID database.

Additional problems arise in the context of

whether a reaction can be considered to be part of

a normal healthy cell or tissue. Diseases that affect

cellular signal transduction are frequently included in

databases, but do not distinguish between normal

events in healthy cells and events that occur owing

to infection. Similarly, databases do not uniformly

record information about the tissue specificity of sig-

nalling pathways and reactions. This can cause prob-

lems with model quality when, for example, synaptic

signalling reactions are incorporated into models of

inflammation.

One suggestion for avoiding this unintentional

merging of organism-, tissue- and disease-specific

entities and interactions would be to specify data-

bases at the reaction level with respect to a single

canonical cell free of disease, and to support such a

model in the specification of data exchange stand-

ards. Additional cell types can then be added to pro-

vide data relating to additional interacting cells or

organisms. A model of an otherwise healthy cell

with latent tuberculosis infection would then be

represented as the interaction data available for the

canonical cell, with the addition of interactions asso-

ciated with the cell type describing the pathogen.

Any contradictions between the two sets of inter-

actions would then have to be resolved. Such an

approach would make it easy to generate reaction

networks describing both healthy and diseased cells,

and even allow generation of clean data sets covering
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multiple infections (such as HIV-infected cells with

latent tuberculosis) for simulation and analysis, a

highly desirable outcome for applications to perso-

nalized medicine.

CONCLUSIONS
Databases, including Reactome, KEGG, PID and

Panther Pathways, containing broad-scale informa-

tion represent the best collections of high-quality

reaction and interaction data available to the scien-

tific community today. These data sets have immense

potential in predictive and explanatory cellular-scale

modelling, and enable systems-level descriptions and

models of cells.

Features and undocumented issues surrounding

the implementations of these databases have import-

ant implications for computational network

modelling. Databases are designed with multiple

stakeholders in mind–the database designers, the cur-

ators and data entry teams, small-scale analysts, large-

scale analysts and people using visual analysis of

pathway maps, all have different requirements, and

some of the issues we discuss here are a product

of compromise among the competing demands

of these stakeholders [46]. Our analysis is based

on the exported exchange files (e.g. BioPAX and

SBML formatted data), which are the most

common, and in the case of Panther and PID, the

only method for accessing the databases’ content.

The majority of problems we describe also occur

in the underlying databases (the notable exception

being Reactome’s clear labelling of interactions

with the species in which they occur in their SQL

database, although not in their exported BioPAX

files), which makes resolution of these problems

difficult.

Our analysis has focused on signal transduction

systems; however, databases describing these and

other processes in a systems context face similar chal-

lenges. A good example is that of metabolism, where

the primary modelling techniques require mass- and

stoichiometrically-balanced reactions. Grouping of

entities through reactions at the database level

Figure 3: Multicellular interactions present problems in the absence of a defined cellular frame of reference.
(A) shows an example system with cellular locations defined solely with respect to the cytosol, cell membrane and
extracellular region of an unspecified cell.This representation generates ambiguity and is misleading when describing
multicellular interactionsçthe same set of reactions can lead to significantly different functional capabilities of the
interaction network when this is accurately represented (C). The example in (B) is sourced from Reactome’s
‘Latent infection of H. sapiens withM. tuberculosis’ pathway (REACT_121237.2). In the version of the network described
in the database, the ‘cell wall’, ‘periplasmic space’, and ‘plasma membrane’ locations can be assigned to
Mycobacterium (green) and ‘phagocytic vesicle membrane’ and ‘late endosome membrane’ to H. sapiens (blue). The
more generic ‘cytosol’ is ambiguous (orange), and reactions assigned to this location could belong to either species.
Fixing these assignments (using the graphical representation of the pathway) yields the unambiguous representation
shown in (D). A colour version of this figure is available at BIB online: http://bib.oxfordjournals.org.
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makes instantiating models based on these data

vastly more difficult. Addressing these issues for

metabolic systems has required extensive rework-

ing and modification of databases to ensure that

they can be used for and facilitate modelling appli-

cations [31].

The advent of whole-cell computational model-

ling and the expanding use of high-throughput tech-

niques require ever more-sophisticated data analysis

methods. While established first-generation methods

such as enrichment analysis do not suffer greatly from

the issues described here, the structural issues that we

discuss become limiting and will be addressed as the

field moves beyond enrichment and towards mech-

anistic models. Handling these issues and thus facil-

itating systematic extraction of basic reaction

information will allow development and improve-

ment of computational data analysis using these

data sets. This combination will drive new and excit-

ing experimental work, and dramatically enhance

our ability to work with and exploit cellular

level phenomena in a systematic, evidence-based

fashion.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key Points

� Large-scale models using prior knowledge about detailed sig-
nal transductionmechanisms are becomingmore common.

� Thesemodels require the extraction of a reaction network, and
one source of such data is community-sourced data in major
databases.

� Knowledge representation in these databases has unintended
consequences for computationalmodelling.

� Use of sets of entities and duplication of entities cause unin-
tended loss of connectivity in database-derived reaction
networks.

� Multicellular interactions are not currently well captured in
databases and can result in misleading reaction networks.

� Additional work is needed to capture behaviours such as splice
variation of proteins in a way that does not further hinder
analyses.
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