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Prostate cancer is one of the most common cancers in men. Early detection of prostate cancer is the key to successful treatment.
Ultrasound imaging is one of the most suitable methods for the early detection of prostate cancer. Although ultrasound images
can show cancer lesions, subjective interpretation is not accurate. Therefore, this paper proposes a transrectal ultrasound image
analysis method, aiming at characterizing prostate tissue through image processing to evaluate the possibility of malignant
tumours. Firstly, the input image is preprocessed by optical density conversion. Then, local binarization and Gaussian Markov
random fields are used to extract texture features, and the linear combination is performed. Finally, the fused texture features
are provided to SVM classifier for classification. The method has been applied to data set of 342 transrectal ultrasound images
obtained from hospitals with an accuracy of 70.93%, sensitivity of 70.00%, and specificity of 71.74%. The experimental results
show that it is possible to distinguish cancerous tissues from noncancerous tissues to some extent.

1. Introduction

Prostate cancer is one of the most common malignant
tumours in the male genitourinary system. In recent years,
its incidence and mortality rate in China has been increasing.
In 2018, the China Cancer Center released the latest issue of
national cancer statistics, pointing out that prostate cancer
ranked sixth in the incidence rate of men in China, only
lower than lung cancer, gastric cancer, liver cancer, esoph-
ageal cancer, and intestinal cancer [1]. The following year,
the American Cancer Society released a data analysis
report, showing that prostate cancer was the first in male
morbidity and the second in deaths [2]. Prostate cancer
has posed a serious threat to men’s health, so early detec-
tion is particularly important.

At present, digital rectal examination, prostate-specific
antigen, nuclear magnetic resonance imaging, and transrectal
ultrasound are commonly used methods to examine prostate
cancer [3]. Among them, a digital rectal examination is the
most common and cheapest method to examine prostate

cancer. However, the digital rectal examination cannot reach
tumours in the anterior part of the prostate, which is easy to
miss diagnosis [3]. Prostate-specific antigen concentration is
a sensitive indicator for the diagnosis of prostate cancer, but
some patients with benign prostate diseases will also have
increased prostate-specific antigen concentration [4]. There-
fore, prostate-specific antigen examination is easy to cause
overdiagnosis, leading to unnecessary biopsy and potential
overtreatment [5]. Nuclear magnetic resonance imaging
(MRI) is an important examination technique for noninva-
sive evaluation of the prostate and its surrounding tissues,
which has a relatively high diagnostic accuracy for prostate.
Some studies have shown that compared with transrectal
ultrasound-guided prostate biopsy, MRI-guided prostate
biopsy can puncture targeted nodules with higher accuracy
[6]. However, because MRI-guided biopsy requires special
equipment, which is time-consuming and expensive, it can-
not be popularized at present.

Transrectal ultrasound is generally used to guide prostate
biopsy because of its visualization of prostate, nondamage,
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low cost, and real-time characteristics. A transrectal
ultrasound-guided prostate biopsy is the gold standard for
diagnosing prostate cancer. Although transrectal ultrasound
is currently the most widely used imaging method, unfortu-
nately, the visual interpretation of transrectal ultrasound
images is poor and is not very reliable in distinguishing
prostate cancer from normal glandular tissue. The diagno-
sis process will inevitably take the form of a tissue biopsy.
However, a transrectal ultrasound-guided biopsy is to uni-
formly sample glands, not prostate cancer [7], and its pos-
itive diagnostic rate is shallow, especially for early prostate
cancer lesions [8]. To obtain reliable results in histological
analysis, multiple puncture biopsies are often required [9].
However, the increase of puncture times will bring a lot of
pain to the patient (the probability of complications such
as postoperative infection, hematuria, hematochezia, and
the like will increase). At the same time, more clinically
meaningless cancers will also be detected, resulting in
excessive diagnosis and treatment [10].

Although the predictive value of positive results of trans-
rectal ultrasound examination is very low (even trained urol-
ogists can hardly detect prostate cancer from ultrasound
images), it is currently the most commonly used image detec-
tion method for diagnosing prostate cancer [3]. Improving
the detection accuracy of transrectal ultrasound is helpful to
reduce the number of puncture biopsies. Therefore, one
possible way to improve the transrectal ultrasound-
guided prostate puncture is to use computer-assisted anal-
ysis of transrectal ultrasound images.

Due to speckle noise, artifacts, attenuation, and signal
loss inherent in transrectal ultrasound images, it is difficult
for ultrasound doctors to analyze the image from the texture
level to determine whether the image is positive (suffering
from prostate cancer) or negative (normal). Therefore, this
study uses a texture feature analysis method to try to obtain
useful information from transrectal ultrasound images so as
to improve the accuracy of prostate cancer detection.

We realize that our research is very difficult because
specific pixels are not correctly marked. Ultrasound doc-
tors are unable to analyze images at the microtexture level
to determine whether pixels are positive or negative, and
histological analysis of extracted tissues cannot be con-
verted into pixel marker maps. Therefore, we can only
use an imperfect label for all pixels in the biopsy area.
Despite this problem, we have achieved some results,
showing that it is possible to distinguish cancer tissues
from noncancer tissues to a certain extent.

2. Related Work

Texture features consider the distribution of pixel intensity
and the relationship between adjacent pixels [11, 12]. Differ-
ent texture measurements often describe the corresponding
texture from different angles. In medical imaging, since the
internal structure of lesions can be quantitatively described,
each texture feature is considered as an important indication
feature for image pattern recognition [13, 14]. Previous stud-
ies have shown that heterogeneity reflected by texture fea-

tures can be used to identify the nature of lesions with high
diagnostic accuracy [15, 16].

In recent years, with the vigorous development of artifi-
cial intelligence, the technology of machine science has
become increasingly mature. Many diagnostic methods
based on computer-aided diagnosis provide convenience
for medical diagnosis. In the field of vision research, medical
image research mostly trains classic machine learning sepa-
rators (such as support vector machines and decision trees)
to extract human engineering-based features (such as texture
and shape). So far, these algorithms have been successful
applied to various medical applications such as liver [17],
thyroid [18], and bladder cancer [19, 20]. However, although
early detection of prostate cancer is very important, there is
still little research on computer-aided detection of prostate
cancer. Moreover, due to the number of patients used and
the experimental techniques adopted, many of them are lim-
ited in scope, or the results cannot be considered representa-
tive. Llobet et al. [3] proposed a method of transrectal
ultrasound image analysis for computer-aided diagnosis of
prostate cancer. The best classification result of this research
method reached a 61.6% area under the ROC curve. How-
ever, the recognition ability of urologists using the
computer-aided system is only slightly improved compared
with that of experts who do not use the system. Huynen
et al. [21] developed a system for automatic analysis and
interpretation of prostate ultrasound images. The system
extracts five parameters of the cooccurrence matrix from
ultrasound images to classify benign and cancerous prostate
tissues. The sensitivity and specificity of this method are
80% and 88%, respectively, with good results. Kratzik et al.
[22] published a study on prostate testing. The study used
texture feature analysis to obtain good results (specificity
and sensitivity both exceed 80%) but did not specify how to
evaluate. Han et al. [23] proposed a prostate cancer detection
method, which uses multiresolution autocorrelation texture
features and clinical features. The method can effectively
detect cancer tissues with a specificity of about 90% and a
sensitivity of about 92%. However, this method is only appli-
cable to similar databases. If other database data are used,
such high sensitivity and specificity may not be achieved.
Glotsos et al. [24] established a computer-aided diagnosis
system based on texture analysis of transrectal ultrasound
images. The system extracts 23 texture features from the
region of interest in each image and uses exhaustive search
(combining up to 5 features) and omission method to select
and train the features of the classifier. In terms of overall sys-
tem performance, the best classification accuracy rates for
identifying normal, infectious, and cancer cases are 89.5%,
79.6%, and 82.7%. However, this research method is only
suitable for use when data are scarce. Gomez-Ferrer and
Arlandis [25] recorded 288 cases of transrectal ultrasound-
guided biopsy and extracted three still images from the
biopsy area. The texture features of ultrasonic images are
obtained by “simple mapping” on grey and spatial grey corre-
lation matrices. Finally, two methods based on nearest neigh-
bour and Markov hidden model are used for classification.
The nearest neighbour of the ROC curve is 59.7%, and the
classification of Markov hidden model is 61.6%; ROC curve

2 Computational and Mathematical Methods in Medicine



area of cooccurrence matrix is 60.1% nearest neighbour, and
Markov hidden model is 60.0%. To solve the problems of
unclear prostate boundary and insufficient data, Zhu et al.
[26] proposed a boundary-weighted domain adaptive neural
network (BOWDA-Net).

3. Materials and Methods

3.1. Data Procurement. In Zhangzhou Hospital, a transrectal
ultrasound-guided prostate biopsy is usually performed for
all patients with prostate cancer-related symptoms (such as
high PSA value and abnormal DRE results). The inserted
transrectal ultrasound probe displays sagittal images of
the prostate. When suspicious areas are found, the biopsy
needle connected to the probe will be triggered for tissue
extraction and later histological analysis. Generally, multi-
ple biopsies will be performed if no particularly suspicious
area is found. According to the guidance of ultrasound
doctors, our experimental data are mainly pictures before
biopsy (Figure 1). Because histology can only be deter-
mined from the resected tissue, the puncture location must
be accurately known. To achieve this, we used the second
image, which was recorded before the biopsy needle was
retracted from the gland (Figure 2). There is a white nee-
dle track in each image. In each biopsy, we define a point
for the first needle where the probe appears in front of the
prostate and define a second point for the position where
the probe is inserted into the prostate about two scales
from the first point. We define a rectangle based on these
two points (as shown in Figure 2). Since there is no obvi-
ous patient movement during the biopsy, pixels in the pre-
vious image are marked with the defined rectangle. The
image of Figure 1 is our experimental data. In Figure 1,

we manually cut a rectangular image at the same position
as that of Figure 2, which is the region of interest for our
experiment.

Histological analysis can indicate whether the extracted
tissue has prostate cancer, and if so, its location can also
be known. However, in a clinical environment, it is diffi-
cult to carry out reliable physical labelling on the extracted
tissue and then map the physical labelling to pixel label-
ling. Therefore, we will use a label definition for pixels
in all biopsy areas, which means that some images marked
as positive samples may contain normal tissues. Fortu-
nately, however, an image pixel marked negative always
corresponds to normal tissue, because histological exami-
nation can ensure that the entire biopsy area is free of
prostate cancer.

3.2. Method. Figure 3 shows the flow of the proposed classifi-
cation method. The whole method flow mainly includes four
parts: image preprocessing, feature extraction, feature fusion,
and classification. The main contribution lies in the use of
optical density conversion technology to increase the con-
trast of the image and reduce its noise. Gaussian Markov ran-
dom field and local binarization are used to extract the two
texture features of the image, and then the two features are
linearly combined. Finally, the fused features are put into
SVM classifier for classification.

3.2.1. Optical Density Image Processing Technology. Remov-
ing noise from original images is still a challenging research
topic in image processing. Generally speaking, there is no
commonly used noise reduction enhancement method. Usu-
ally, the appropriate noise reduction method is selected
according to the image characteristics. Limited by the

Figure 1: Biopsy tissue was recorded before the examination. In the image, the needle track is visible but has not been inserted into the
prostate. Tissue and corresponding ultrasonic texture are not disturbed, and this image is used for image processing and texture analysis.
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principle of ultrasonic imaging and the hardware itself, the
quality of ultrasonic images is not satisfactory. The main
manifestations are of low contrast and speckle noise.
Therefore, this paper uses an optical density conversion
technology [27] to dry the selected region of interest and
enhance the contrast and to make the details of the image
clearer and more obvious, which is conducive to the sub-
sequent analysis and processing of the image. The optical
density transformation for each pixel ði, jÞof an object
region is defined as follows:

ODij = log
Iij
Io

� �
, ð1Þ

where Iij is the intensity value of pixel, and Io is the aver-
age intensity. In this method, the intensity of gray image is
converted into optical density, and each optical density
value is linearly mapped to the image with 8-bit depth

information, so that the optical density image can be
obtained. As shown in Figure 4.

3.2.2. Feature Extraction. Texture features can reflect the
overall change of grey pixel values in the image, and dif-
ferent tissues have different textures. Therefore, by distin-
guishing and identifying texture features in transrectal
ultrasound prostate images, suspected case samples with sim-
ilar texture structures to confirmed case samples can be
detected, thus providing decision support for doctors. As one
of the most widely used and basic image global features, there
are many texture feature extraction methods, which are often
used in medical ultrasound image analysis: grey level cooccur-
rence matrices (GLCM) [28], histogram of oriented gradient
(HOG) [29], local binary pattern (LBP) [30], etc. Eachmethod
has its advantages and disadvantages. In actual use, it is often
necessary to select the corresponding feature extraction
method according to the practical application requirements.

According to the relevant research results in recent
years, different types of texture features are generally

Figure 2: Biopsy needle track can still be seen in the prostate gland. In this picture, the puncture position is determined. The extracted tissue is
analyzed by a pathologist, and the puncture position determines the analysis position in a clean image (Figure 1).
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Figure 3: Method flow chart.
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complementary. In the image classification task, the com-
bination of different feature extraction methods can often
achieve higher classification accuracy than when used
alone. Therefore, we use local binarization and Gaussian
Markov random field model to extract texture features.

(1) LBP. LBP (local binary pattern) [30] is an operator
used to describe local texture features of images. Its
basic idea is defined in the eight fields of pixels (3x3
window). The grey value of the central pixel is taken
as the threshold, and the values of the surrounding
8 pixels are compared with it. If the surrounding pixel
value is less than the grey value of the central pixel,
the pixel value is marked as 0; otherwise, it is marked
as 1. In this way, 8 points in the domain size of 3x3
can be compared to generate 8-bit binary numbers
(usually converted into a decimal, i.e., LBP code,
256 kinds in total). Each pixel obtains a binary com-
bination, i.e., LBP value of pixel point in the centre of
the window, and this value is used to reflect texture
information of the region. However, as the image
rotates, the pixels in the neighbourhood will recom-
bine, and the LBP value will change. To keep LBP
rotation unchanged, Ojala et al. [30] improved the
LBP operator. The formula is as follows:

LBPN ,R a, bð Þ = 〠
N−1

i=0
s Gi −G0ð Þ•2i

s tð Þ =
1, t ≥ 0

0, else

(
,

8>>>>><
>>>>>:

ð2Þ

where R is the radius of the neighbourhood circle,
and N is the number of pixels evenly distributed in
the neighbourhood. Gi represents N pixels centred
on G0.

(2) GMRF. Gaussian Markov random field (GMRF)
model [31] is a probability model to describe the
image structure and is a better method to describe
the texture. It was originally described by Leonard

E. Baum and other authors in a series of statistical
papers in the second half of the 1960s. There is a
certain correlation between the category of a pixel
in an image and the category of pixels in its sur-
rounding areas. This correlation is called Markov
correlation. An image can be regarded as a two-
dimensional random process, and the distribution
of image data can be described by conditional
probability. MRF assumes that the pixel value of
each pixel in the image depends only on the pixel
value of the pixel in its domain. A Markov random
field is usually described by the following local
conditional probability density (PDF):

p m, nð Þ ∣ f k, lð Þ, k, lð Þ ≠ m, nð Þ, k, lð Þ∈∧ð Þ
= p f m, nð Þ ∣ f k, lð Þ, k, lð Þ ∈N m,nð Þ
� �

:
ð3Þ

Nðm, nÞ is the neighbourhood pixel point of the
centre pixel. If PDF follows Gaussian distribution,
MRF is called GMRF. Its prominent feature is that
it introduces structural information through a
properly defined neighbourhood system and pro-
vides a model commonly used to express the inter-
action between spatially related random variables.
The parameters generated from this model can
describe the aggregation characteristics of textures
in different directions and forms.

3.2.3. Feature Fusion. Both LBP texture features and GMRF
texture features have strong capabilities in feature extraction
of transrectal ultrasound prostate images, but they have some
limitations in practical application. In the process of feature
extraction, LBP only considers the grey values of other sur-
rounding pixels, but does not fully consider the interaction
and interdependence between the central pixel and the sur-
rounding pixels. These dependencies can be random, func-
tional, or structural and can be represented by Gaussian
Markov random field model. Therefore, this paper first
extracts LBP features from transrectal ultrasound prostate
images and then calculates the conditional probability den-
sity of the extracted LBP feature images.

(a)

(b)

Figure 4: (a) Transrectal ultrasound prostate image and (b) optical density image.
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3.2.4. Classifier Design. Image classification is an important
research field and has practical applications in many areas
such as pattern recognition, artificial intelligence medicine,
and visual analysis. For image classification, we adopt SVM
classifier, which is described in detail as follows.

SVM is based on statistical learning technology and is the
foundation of modern statistical learning theory. It was pro-
posed by Cortes and Vapnik in 1995 [32]. SVM algorithm is a
supervised machine learning algorithm by minimizing
empirical errors and maximizing geometric edges to com-
plete pattern classification and regression analysis. It is
widely used in statistical classification and regression analy-
sis. It has unique advantages in solving small samples and
nonlinear high-dimensional pattern recognition and can be
widely applied to machine learning problems such as func-
tion fitting. The basic principle of the modified method is
to find the fractal hyperplane of the training set n in the sam-
ple space and to separate the categories to the maximum
extent. Besides, SVM, as a quadratic programming problem,
can find a globally unique optimal solution, thus avoiding the
occurrence of local minima. The principle and solving pro-
cess are as follows:

Given a data set:

N xi, yið Þ ∣ xi ∈ Rn, yi ∈ −1,+1f g, i = 1,⋯nf g: ð4Þ

Then, the discriminant function of SVM is as follows:

f xð Þ = sign 〠
n

i=1
AiyiK x, xið Þ + B

 !
, ð5Þ

where Kðx, xiÞ is the kernel function, and n is the number of
support vector machines. The kernel function is vital in sup-
port vector training. It can effectively overcome the dimen-
sion disaster problem. Proper kernel function can improve
the prediction accuracy of the classification model. Common
kernel functions include Gaussian function, polynomial
function, sigmoid function, and linear function. In this paper,
input vectors composed of texture features are selected as
Gaussian functions. The classification results of SVM are
used to distinguish positive samples from negative samples
in transrectal ultrasound images.

In this paper, SVM classification data are using a linear
hyperplane that separates data into two isolated classes. This
hyperplane is calculated using Gaussian kernel function. The
number of neighbours in k-nearest neighbour (KNN) [33] is
set to 5. The confidence factor of decision tree (DT) [34] is set
to 0.25, and the minimum case tree of each leaf is set to 2.
Random forest (RF) [35] is using matlab random forest tool-
box, with trees selection of 500 and mtry of 61.

4. Experimental Results

4.1. Experimental Data. This research has been approved and
reviewed by the local ethics committee, and all relevant topics
have been notified with permission. Transrectal ultrasound
prostate images used in this experiment were from Zhang-
zhou Hospital affiliated to Fujian Medical University, with a

total of 48 cases. All pathological cases were biopsied under
ultrasound guidance by experienced pathologists and con-
firmed histologically. The data collection time is from March
2019 to November 2019, and each patient file contains mul-
tiple images. The data are classified according to pathological
results. There were 36 cases in training set and 12 cases in test
set. Experiments were conducted on prostate diagnosis to
distinguish whether transrectal ultrasound images have pros-
tate cancer. Therefore, the negative samples of training data
were 18 cases (126 images), and the positive samples were
18 cases (130 images). The remaining 12 cases were used as
experimental test sets, of which 6 cases (40 images) were pos-
itive samples, and 6 cases (46 images) were negative samples.

4.2. Experimental Setup and Performance Evaluation. The
experiment is completed based onWindows10 operating sys-
tem. The computer hardware is configured as follows:
Intel(R) Core(TM) i7-8700 is used for CPU, NVIDIA
GeForce GTX-1080Ti is used for GPU, and the video mem-
ory is 11G and the memory is 32G. The programming envi-
ronment is Matlab2017a.

Disease classification results are true positive, true neg-
ative, false positive, and false negative. In order to facilitate
comparative analysis with the existing methods, we have
considered three indicators: accuracy (ACC), sensitivity
(SEN), and specificity (SPEC) [36], as shown in Table 1.
Among them, TP, TN, FP, and FN are the number of true
positive, true negative, false positive, and false negative,
respectively, in the classification results. Accuracy is a direct
measure of comparison between methods. Sensitivity and
specificity describe how diagnostic tests capture the real
presence or absence of disease. These evaluation indexes
together describe the accuracy and error rate of image clas-
sification and recognition methods. Among them, the
higher the accuracy, sensitivity, and specificity, the lower
the error rate of the method.

4.3. Comparison of Characteristic Combination Performance.
In order to test the effectiveness of the combination of Gauss-
ian Markov random field and local binarization, we respec-
tively use a variety of texture features to carry out
experiments and compare the accuracy with the proposed
method. In all experiments, we use support vector machine
to classify. The classification performance of different
methods is shown in Table 2. All the values in Table 2 are
obtained using our data set. As can be seen from the table,
compared with individual features, the classification accuracy
of feature fusion has been significantly improved, and other
indicators have also been improved to varying degrees, espe-
cially the specificity indicators are more obvious. Compared
with the classification results of different texture features in

Table 1: Definition of evaluation index.

Evaluations Definition

ACC TP + TNð Þ/ TP + TN + FP + FNð Þ
SEN TP/ TP + FNð Þ
SPEC TN/ TN + FPð Þ
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Table 2, the texture feature fusion classification results
proposed in this paper are the best, with the classification
accuracy rate reaching 70.93%, sensitivity 70.00%, and spec-
ificity 71.74%. Using Gaussian Markov random fields to
extract texture features alone does not provide meaningful
results for our data set. As can be seen from Table 2, our
method has high specificity while maintaining high
sensitivity.

4.4. Performance Comparison of the Methods. To test the
effectiveness of our approach, we compared our method with
the following three ways: (a) KNN classifier [33], (b) decision
tree (DT) classifier [34], and (c) random forest (RF) classifier
[35]. Specifically, in each experiment, the image is prepro-
cessed by optical density conversion technology, and then
the Gaussian Markov random field and local binarization
features are extracted and fused. Finally, the above three clas-
sifiers are used for classification.

Compared with the classification results of different
classifiers in Table 3, the classification results of support
vector machine are higher than those of other classifiers,
with the classification accuracy rate reaching 70.93%, sen-
sitivity reaching 70.00%, and specificity reaching 71.74%.
The second is DT, with a classification accuracy of
63.96%, sensitivity of 55%, and specificity of 71.72%. The
classification accuracy of KNN was 63.95%, sensitivity
57.50%, and specificity 69.57%. The classification accuracy
of RF was 62.78%, sensitivity 62.50%, and specificity
63.04%. As can be seen from the results shown in
Table 3, our proposed method has better performance
than other methods.

By comparing the experimental results in Tables 2 and 3,
it can be found that LBP+GMRF+SVM proposed in this
paper gives full play to the complementarity of texture fea-
tures. The classification accuracy of this method is 4.65%
higher than the highest accuracy of single feature. At the
same time, the accuracy of this method is 6.97% higher than
highest accuracy of other classifiers.

4.5. Effect Analysis of Image Preprocessing. The experimental
data are preprocessed, and the texture features are analyzed
by the SVM classifier. As shown in Table 4, preprocessing
helps to extract more useful features from images and effec-
tively improves classification accuracy.

4.6. Method Performance Evaluation. Aiming at the problem
of small amount of data sets, 5-fold cross-validation is used to
verify the effectiveness of the proposed method. That is, the
whole data set is divided into five different subsets. Every
time one subset is used as the test set and the other four sub-
sets are used as the training set, this process is repeated five
times. Finally, the average of five experimental results is cal-
culated to evaluate the performance of the classifier.

By comparing Table 3 with Table 5, it can be found that
the error between the results of 5-fold cross-validation and
the experimental results of dividing the data set into training
set and test set is not great. This verifies the effectiveness of
the proposed method.

5. Discussion

Since TRUS cannot reliably identify prostate cancer [8], 6-18
or more puncture biopsies [9] are used to detect cancerous
lesions. However, some biopsy samples taken from some
male patients will not contain cancer. Also, clinically signifi-
cant PSA does not necessarily have prostate cancer [4].

Prostate cancer is hypoechoic in ultrasound images
[38]. Therefore, TRUS has poor visual interpretation and
cannot accurately identify the tumour area. Gomez-Ferrer
and Arlandis [25] found only 12.6% hypoechoic lesions
in their work, which were found in most (68%) benign
tissues. These data confirm the need to try to analyze
transrectal ultrasound images with computer assistance.
Therefore, this paper proposes an image analysis method
based on texture feature fusion.

Sensitivity is an essential criterion for medical diagnosis,
especially in the early stage of disease examination. Positive
samples of clinical examination should avoid missed diagno-
sis as much as possible. The texture feature fusion method is
used in this experiment. The sensitivity of the fused texture
feature is 70.00%, which is better than 67.50% of LBP and
57.50% of GMRF. This shows that there is a correlation
between texture description and sensitivity in the image:
the more texture descriptions, the more obvious the features
of positive lesions. However, for transrectal ultrasound
images with small differences between classes, the overall
classification performance will also decrease. Experiments
show that texture feature fusion has a significant effect on
the classification of transrectal ultrasound images.

According to our experimental methods and results, it is
quite difficult to develop software for real-time image recog-
nition in the future. Because images will have to be analyzed
in real-time and suspicious areas identified, we believe that
this may be due to several factors: the method or the disease
itself. It may be that prostate cancer and its histological
changes have different structures from normal glands.
Another problem we are facing is incomplete labelling when
conducting such studies because it is almost impossible to

Table 2: Classification accuracy with different types of features.

Method ACC SEN SPEC

GLCM [28] 61.63% 67.50% 56.52%

HOG [29] 66.28% 65.00% 67.39%

LBP [30] 60.47% 67.50% 54.35%

GMRF [31] 53.49% 57.50% 50.00%

GLDS [37] 61.63% 62.50% 60.87%

Our method 70.93% 70.00% 71.74%

Table 3: Classification performance of all comparison methods.

Method ACC SEN SPEC

KNN [33] 63.95% 57.50% 69.57%

DT [34] 63.96% 55.00% 71.72%

RF [35] 62.78% 62.50% 63.04%

Our method 70.93% 70.00% 71.74%
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accurately determine the exact location of cancer in transrec-
tal ultrasound images with current technologies. In our
research, this annotation was obtained by studying histolog-
ical analysis and puncture site location. However, this may be
affected more or less because the length of the region of inter-
est we extract rarely corresponds to cancer.

6. Conclusion

This paper proposes a texture feature analysis method to
improve the classification accuracy of transrectal ultrasound
prostate images. Firstly, the transrectal ultrasound image is
preprocessed by optical density conversion technology, and
then Gaussian Markov random fields and local binarization
features are extracted. The two features are linearly com-
bined, and then SVM classifier is used for classification
experiments. Finally, several comparative experiments were
carried out on the data set we collected, and the experimental
results were given and analyzed. The experimental results
show that the method has good classification accuracy
(70.93%), sensitivity (70%), and specificity (71.74%). This
provides a low cost, rapid, and repeatable analysis method
for transrectal ultrasound-guided prostate puncture. In the
future work, we plan to carry out more effective cooperation
with hospitals to obtain more data sets, and then we will
improve the proposed method to make it more suitable for
the actual needs of the medical field.
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