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OBJECTIVEdLaboratory studies suggest that exposure to methylmercury at a level similar to
those found in fish may induce pancreatic islet b-cell dysfunction. Few, if any, human studies
have examined the association between mercury exposure and diabetes incidence. We examined
whether toenail mercury levels are associated with incidence of diabetes in a large prospective
cohort.

RESEACH DESIGN AND METHODSdA prospective cohort of 3,875 American young
adults, aged 20–32 years, free of diabetes in 1987 (baseline), were enrolled and followed six times
until 2005. Baseline toenail mercury levels were measured with instrumental neutron-activation
analysis. Incident diabetes was identified by plasma glucose levels, oral glucose tolerance tests,
hemoglobin A1C levels, and/or antidiabetes medications.

RESULTSdA total of 288 incident cases of diabetes occurred over 18 years of follow-up. In
multivariate analyses adjusted for age, sex, ethnicity, study center, education, smoking status,
alcohol consumption, physical activity, family history of diabetes, intakes of long-chain n-3 fatty
acids and magnesium, and toenail selenium, toenail mercury levels were positively associated
with the incidence of diabetes. The hazard ratio (95% CI) of incident diabetes compared the
highest to the lowest quintiles of mercury exposure was 1.65 (1.07–2.56; P for trend = 0.02).
Higher mercury exposure at baseline was also significantly associated with decreased homeosta-
sis model assessment of b-cell function index (P for trend , 0.01).

CONCLUSIONSdOur results are consistent with findings from laboratory studies and pro-
vide longitudinal human data suggesting that people with high mercury exposure in young
adulthood may have elevated risk of diabetes later in life.

Diabetes Care 36:1584–1589, 2013

Whereas type 2 diabetes mellitus is
considered a lifestyle-mediated
chronic disease, the importance

of environmental risk factors of diabetes is
increasingly recognized. Exposure to heavy
metals may play a role in the induction or
exacerbation of diabetes (1). Mercury is a
widespread pollutant with high toxicity
both for organic and inorganic forms. The
major sources of mercury accumulation in

humans result from methylmercury
(MeHg) exposure from fish or seafood con-
sumption and elemental mercury exposure
from dental amalgam fillings (2). MeHg in
particular has been linked to human health
disorders including neurodevelopmental
delays (3), immune system suppression
(4), and cardiovascular dysfunction (5).

Mercury exposure, at levels similar to
those found in fish, can induce oxidative

stress and cause pancreatic islet b-cell
dysfunction in experimental models (6–
8), suggesting that mercury exposure may
be a risk factor for diabetes. To the best of
our knowledge, there are no longitudinal
human studies that have investigated
mercury exposure and diabetes risk.
Therefore, we prospectively examined
toenail mercury levels in relation to inci-
dence of diabetes in a large cohort of
American young adults over 18 years of
follow-up using data from the Coronary
Artery Risk Development in Young Adults
(CARDIA) Study.

RESEARCH DESIGN AND
METHODS

Study design
CARDIA is an ongoing, multicenter, pro-
spective observational study to investigate
the evolution of cardiovascular disease risk
factors from young adulthood to midlife.
In 1985 to 1986, 5,114 American young
adults, aged 18–30 years, were recruited
from fourU.S. cities: Birmingham, AL; Chi-
cago, IL; Minneapolis, MN; and Oakland,
CA. The sampling scheme was designed to
achieve a balance at each site by age (18–24
and 25–30 years), sex, ethnicity (African
American and Caucasian), and education
(high school degree or less and more than
high school). Participants were followed
every 2–5 years from 1985–2005. Detailed
information on study design and recruit-
ment protocol has been published (9).

Toenail clippings were provided by
4,362 CARDIA participants. The nail mass
was too small to be used in 18 samples.
Among 4,344 participants with toenail
mercury data available, we excluded 31
participants with prevalent diabetes at
baseline in 1987, 36 with no information
on key covariates, 191 with insufficient
information for defining incident diabetes
during follow-up, and 211 women who
were pregnant at any exam. A total of
3,875 participants remained in the anal-
ysis after these exclusions.

Assessment of toenail mercury
Toenail clippings were collected with a
stainless-steel clipper from all 10 toes by
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the participants themselves during the
clinical examination in 1987 and stored at
ambient room temperature and humidity.
All toenail clippings were processed
with a washing procedure in a sonicator
with deionized water. Toenail mercury
concentrations were assessed by instru-
mental neutron-activation analysis at the
University of Missouri-Columbia Research
ReactorCenter (10). Toenail clippingswere
assayed in randomorder by laboratory per-
sonnel blinded to other clinical measures.
The limit of detection was 0.001 mg/g. The
coefficient of variation of subsamples of
clippings from the same participants was
6.8%. Duplicate samples of two different
quality-control materials were introduced
in 48 batches. The overall recovery rate
was 101.2% (SE 2.5%).

Toenail mercury levels are recognized
as excellent biomarkers of long-term
MeHg exposure and have been used in
epidemiological studies (11–13). A study
found that Spearman correlation coeffi-
cient for the reproducibility of toenail lev-
els of mercury was 0.54 over 6 years
among 127 U.S. women (12).

Measurement of insulin, glucose,
and hemoglobin A1C
Fasting blood samples were collected ac-
cording to standardized CARDIA proce-
dures and processed at central laboratories
(9). Fasting plasma insulin was measured
originally by a nonspecific insulin assay at
baseline and in later examinations by a new
radioimmunoassay (Linco Research Inc.,
St. Charles, MO). To assure comparability
of insulin across examinations, sera stored
from baseline was remeasured by the new
assay 8 years later (14). The Pearson corre-
lation of log insulin values for baseline by
the original (15) and the new method (16)
was 0.81. Fasting glucose was detected by
hexokinase method on a Cobas Mira Plus
chemistry analyzer (Roche Diagnostic Sys-
tems, Montclair, NJ) at each examination
(14). Based on reassays of glucose in 2006
and 2007 in ;200 samples per examina-
tion drawn at exam years 7, 10, 15, and 20
and of insulin in 100 samples stored since
exam year 15, glucose and insulin were re-
calibrated to harmonize them with the pre-
vious measurements. Recalibrated glucose
values were 6.98 + 0.94 3 year 7 glucose
concentrations, 7.15 + 0.963 year 10 glu-
cose concentration, 6.99 + 1.013 year 15
glucose concentration, and 4.06 + 0.97 3
year 20 glucose concentration. Recalibrated
insulinwas20.36 + 0.933 year 20 insulin
concentration (17). Homeostasis model as-
sessment (HOMA) of insulin resistance

(HOMA-IR) was calculated as follows: glu-
cose (mmol/L) 3 insulin (mU/L)/22.5.
HOMA of b-cell function was computed
as follows: (20 3 insulin)/(glucose 2 3.5)
(18). Hemoglobin A1C was assessed
using a Tosoh G7 high-performance liquid
chromatography instrument (Tosoh Bio-
science) at year 20. The interassay coeffi-
cients of variation were 2.0–3.0%.

Case identification
At any follow-up examination, partici-
pants with one or more of the following
were determined to have incident diabe-
tes: 1) fasting plasma glucose$7.0mmol/L;
2) nonfasting plasma glucose $11.1
mmol/L; 3) postprandial 2-h plasma glu-
cose $11.1 mmol/L from an oral glucose
tolerance test (OGTT); 4) hemoglobin
A1C$6.5%; or 5) reported use of antidia-
betes medications, which were verified by
medication names (19). We could not
clearly distinguish diabetes type, because
some participants were young at diagnosis
and used insulin as treatment. Therefore,
we used the term diabetes rather than type
2 diabetes, although presumably the great
majority of participants had type 2 diabe-
tes.

Assessment of covariates
Demographic variables, including age,
sex, ethnicity and education level, were
collected through a self-administered ques-
tionnaire and verified during clinic exami-
nations. Smoking status was determined
based on self-report, and participants were
classified into five groups: never smokers,
former smokers, and current smokers (0–
4, 5–10, and$11 pack-year). Alcohol con-
sumption was measured by a validated
questionnaire and classified into four
groups according to total daily intake:
0 (never drink), 0.1–9.9, 10.0–19.9, or
$20 g/day. Body weight and height were
measured in light clothes without shoes
during the clinical examination. BMI was
calculated as weight in kilograms divided
by the squareofheight inmeters.Threemea-
surements of resting systolic and diastolic
fifth-phase blood pressures were taken
using a random-zero sphygmomanom-
eter. The average of the second and third
measurements was used in the analyses.
Physical activity was assessed using the
CARDIA Physical Activity History Ques-
tionnaire, an interviewer-administered
self-report of frequency of participation
in 13 categories of recreational sports, ex-
ercise, leisure, and occupational activities
over the previous 12months. The physical
activity score was calculated in exercise

units (EU) reflecting the frequency and
duration of activity over the previous
year. A score of 100 EU is roughly equiv-
alent to participation in a vigorous activity
2 to 3 h/week for 6 months of the year
(20–22). Family history of diabetes was
defined as either mother or father having
diabetes. Diet was assessed three times at
baseline and years 7 and 20 with an inter-
view-based diet history questionnaire.
The evaluation of the dietary measure-
ment was published previously (23,24).

Statistical analysis
Participants were divided into quintiles
according to their toenail mercury levels.
Group comparisons of baseline character-
istics were performed using ANOVA,
Kruskal-Wallis test, or x2 test as appro-
priate. Cox proportional hazards models
were used to estimate the hazard ratios
(HRs) and 95% CIs of incident diabetes.
Follow-up time was calculated as the dif-
ference between the baseline examination
and the year in which diabetes was first
identified, the year a participant was cen-
sored, or the end of the study. If a case was
diagnosed prior to a visit and the exact
date could not be determined, the follow-
up time was assigned as the midpoint
between the current and the previous visit.
Because of limited literature, potential
confounders were identified based mainly
on statistical tests and our previous
knowledge in studying mercury exposure
and fish consumption in relation to other
health end points. We considered several
sequential models in the main analysis:
model 1 adjusted for age, sex, ethnicity,
and study center; model 2 additionally ad-
justed for BMI; model 3 further adjusted
for other major lifestyle variables, includ-
ing education, family history of diabetes,
smoking status, alcohol consumption,
and physical activity; and models 4–6 ad-
ditionally adjusted for intake of long-
chain n-3 polyunsaturated fatty acid fatty
acids (LCn-3PUFAs), magnesium, and toe-
nail selenium sequentially. These three nu-
trients were selected because they
concentrate in fish (25) and have been re-
lated to diabetes risk (26). A continuous
variable using the median mercury con-
centration in each quintile was created
for trend tests. Moreover, we tested for
possible interactions between toenail mer-
cury levels and preidentified potential-
effect modifiers by adding corresponding
multiplicative interaction terms in the
models, followed by the likelihood ratio
test. We also stratified data according to
these variables to determine whether they
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modified the associations. Furthermore,
because the cutoff point of fasting glucose
for defining diabetes was changed from
140 to 126 mg/dL in 1997, we used a cut-
off point of 140 mg/dL at exam years be-
fore 1997 in a sensitivity analysis to test
the robustness of our results.

In addition, we examined the associ-
ation between toenail mercury concen-
trations and fasting insulin, glucose,
HOMA-IR, and HOMA of b-cell function.
A logarithmic transformation was used to
improve the normality of the distribution
of these parameters. Since fasting insulin
and glucose were measured multiple
times, generalized estimating equations
with exchangeable correlation structure
for simplicity were used. All analyses
were performed with SAS (version 9.2;
SAS Institute, Cary, NC). P # 0.05 was
considered statistically significant.

RESULTSdThemedian values of toenail
mercury across quintiles were 0.073, 0.139,
0.213, 0.332, and 0.607 mg/g (Table 1).
Compared with those in the lowest quin-
tile of toenail mercury, participants in the
highest quintile were slightly older, were
more likely to be females and Caucasians,
exercised more, had a higher education
level, had higher toenail selenium levels,
had lower BMI and waist circumference,
were less likely to be current smokers, and
had slightly lower fasting insulin levels. In
addition, participants with higher mer-
cury exposure consumed more alcohol,
fish, LCn-3PUFAs, and magnesium.

During the 18 years of follow-up, 288
participants developed diabetes, including
193 case subjects identified by fasting
criteria and 3, 35, 25, and 32 case subjects
determined by nonfasting glucose, 2-h glu-
cose after OGTT, hemoglobin A1C, and
antidiabetes medication use criteria, respec-
tively. After adjustment for demographic
and major lifestyle variables, especially
BMI, a statistically nonsignificant positive
association was found (Table 2). After fur-
ther adjustment for intake of LCn-3PUFAs
and magnesium and for toenail selenium,
the observed positive association became
statistically significant. Compared with
those in the lowest quintile of toenail mer-
cury levels, the fully adjusted HR (95% CI)
for participants in the highest quintile was
1.65 (1.07–2.56; P for trend = 0.02).

In sensitivity analyses, we considered
other potential dietary and nondietary
confounders in the analyses, we sub-
stituted waist circumference for BMI in
the models, and we used different defi-
nitions of diabetes based on the time T
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period of the examination. Our results
were essentially the same as findings from
the primary analysis (data not shown).

In stratified analyses according to a
few prespecified factors, the observed
association between mercury exposure
and diabetes risk was not appreciably
modified by sex, BMI (normal weight or
overweight), ethnicity (African American
or Caucasian), or selenium concentration
(below or above median). Intake of LCn-
3PUFAs or magnesium above the median
appeared to attenuate the potential effect
of mercury exposure on diabetes risk
(data not shown). Nonetheless, the tests
for interactions were only marginally
significant (P for interaction is 0.08 for
LCn-3PUFAs and 0.15 for magnesium).

To explore the potential mechanisms,
we investigated the associations between
toenail mercury concentrations and fast-
ing plasma glucose and insulin levels and
HOMA-IR score, as well as HOMAofb-cell
function index, excluding those under di-
abetes treatment and those whose fasting
time was ,8 h (Fig. 1). Higher mercury
exposure was associated with elevated
fasting glucose and insulin levels, increased
HOMA-IR, and decreased HOMA of b-cell
function index, but only the association
with HOMA of b-cell function index
showed a significant linear trend.

CONCLUSIONSdIn this prospective
cohort study, mercury exposure mea-
sured in toenails was associated with
increased incidence of diabetes in a
dose-response manner among American
young adults. This association was evident
only after adjustment for demographic,

major lifestyle, and dietary factors,
particularly BMI and intake of long-chain
n-3 fatty acid and magnesium. Results
from this study also suggest that high
mercury exposure may be associated with
pancreatic islet b-cell dysfunction.

Our findings are supported by exper-
imental studies. Both in vitro and in vivo
studies (6,7) found that MeHg exposure,
at a level similar to that in some seafood,
significantly decreased cell viability in the
pancreatic b-cell line and caused pancre-
atic islet b-cell dysfunction, which may
lead to diabetes development (1). In par-
ticular, laboratory studies demonstrated
that islet b-cell function and survival
was affected by mercury exposure through
an oxidative stress pathway (6,7). Inmouse
models, even low-dose mercury exposure
caused pancreatic islet b-cell dysfunction
by inducing oxidative stress and phospha-
tidylinositol 3-kinase activation (7). Also,
MeHg was observed to induce oxidative
stress–triggered b-cell apoptosis and
death (6). In addition, a study found that
8-hydroxy-2’-deoxyguanosine, a bio-
marker of oxidative DNA damage, was sig-
nificantly higher in urine samples of
mercury-exposed persons compared with
control subjects (27).

Human data relating mercury expo-
sure to diabetes are sparse, and the results
were contradictory. A study conducted in
Japan reported that mercury levels in hair
from patients including patients with di-
abetes were considerably higher than that
of healthy people of the same age groups
(28). This finding was in agreement with
results from studies conducted in Turkey
(29) and Mexico (30), but was not

consistent with another Japanese survey
in which the prevalence of diabetes
among people living in anMeHg-polluted
area was not increased (31). In a recent
study conducted in Taiwan (32), blood
mercury concentrations were signifi-
cantly associated with HOMA-IR and
HOMA of b-cell function index. In
addition, a study conducted in Korea re-
ported that hair mercury levels in patients
with metabolic syndrome were signifi-
cantly higher than those in normal con-
trol subjects (33). Data from Western
countries are not available. Our investiga-
tion provides evidence from a human
study supporting that mercury exposure
at young adulthoodmay be longitudinally
associated with increased risk of diabetes
and pancreatic islet b-cell dysfunction.

Of note, MeHg is a major contami-
nant in some fish, and toenail mercury
concentration is generally correlated with
fish consumption. While LCn-3PUFAs,
largely derived from fish consumption,
are considered to be the key nutrients
responsible for the potential benefits of
fish intake, fish is also a good dietary
source of selenium and magnesium. It is
likely that the overall health impact of fish
consumption may reflect the interactions
of nutrients and contaminants in fish
(34). Thus, studying any of these nu-
trients and contaminants such as mercury
should consider confounding from other
components in fish. In the current study,
the association between mercury expo-
sure and diabetes incidence was substan-
tially strengthened after controlling for
intake of LCn-3PUFAs and magnesium.
Although the existing literature is

Table 2dMultivariable-adjusted HRs and 95% CIs of diabetes according to quintiles of toenail mercury levels

Quintile of toenail mercury levels

P for trend*1 (lowest) 2 3 4 5 (highest)

Mercury levels (mg/g) ,0.108 0.108–0.174 0.175–0.265 0.266–0.424 .0.425
No. of participants 775 774 776 775 775
No. with diabetes 65 52 64 56 51
Model 1† 1.00 0.78 (0.54–1.12) 0.93 (0.65–1.32) 0.82 (0.56–1.21) 0.81 (0.53–1.23) 0.49
Model 2‡ 1.00 0.97 (0.67–1.40) 1.08 (0.76–1.55) 1.03 (0.70–1.53) 1.16 (0.76–1.78) 0.44
Model 3x 1.00 1.05 (0.72–1.52) 1.20 (0.84–1.72) 1.13 (0.76–1.69) 1.44 (0.93–2.22) 0.10
Model 4| 1.00 1.06 (0.73–1.54) 1.22 (0.84–1.76) 1.17 (0.78–1.76) 1.55 (0.99–2.41) 0.053
Model 5{ 1.00 1.05 (0.73–1.55) 1.21 (0.84–1.75) 1.16 (0.77–1.74) 1.64 (1.05–2.57) 0.03
Model 6# 1.00 1.05 (0.72–1.53) 1.23 (0.85–1.78) 1.18 (0.79–1.77) 1.65 (1.07–2.56) 0.02

All models were constructed by the Cox proportional hazards model. *Medians of mercury in each quintile were used to create a continuous variable for the test for
trend. †Model 1: adjustment for age (continuous), sex, ethnicity (African American or Caucasian) and study center. ‡Model 2: model 1 with additional adjustment for
BMI (continuous). xModel 3: model 2 with additional adjustment for education (,12, 12, 12.1–15.9, 16, or .16 years), smoking status (never smokers, former
smokers, current smokers with pack-years between 1 and 4, 5 and 10, and $11), alcohol consumption (0, 0.1–9.9, 10.0–19.9, or $20 g/day), physical activity
(quintiles), and family history of diabetes. |Model 4: model 3 with additional adjustment for LCn-3PUFA intake (quintiles). {Model 5: model 4 with additional
adjustment for magnesium intake (quintiles). #Model 6: model 5 with additional adjustment for toenail selenium (quintiles).
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inconsistent, some studies suggest that
LCn-3PUFAs are beneficial to glucose me-
tabolism (35,36), which may lead to re-
duced risk of diabetes. In addition, a
body of evidence suggests thatmagnesium
intake is significantly inversely related to
diabetes risk (26). Hence, a possible asso-
ciation between mercury exposure and
risk of diabetes can be attenuated or
masked by LCn-3PUFAs and/or magne-
sium and vice versa. Recent meta-analyses
found that fish consumption was not as-
sociated with risk of diabetes (37,38).
However, none of the primary studies

considered mercury contamination.
Thus, the possibility of a null association
between fish and diabetes biased by mer-
cury exposure could not be excluded.
Moreover, the association between sele-
nium and diabetes is still not quite clear.
In the current study, further adjustment
for selenium levels did not materially
change the observed association.

In addition to a large cohort of young
adults and a long-term prospective follow-
upperiod, a few strengths of our study need
to be highlighted. Mercury exposure was
measured in toenails using instrumental

neutron-activation analysis, which is con-
sidered as a reliable objective biomarker
reflecting relatively long-term exposure
(12,13). Also, we defined diabetes cases
based mainly on fasting and postprandial
glucose levels fromanOGTTandhemoglo-
bin A1C measurements in addition to a
self-reported questionnaire. Furthermore,
we longitudinally measured fasting insulin
levels, which enable us to calculate HOMA-
IR and HOMA of b-cell function over 18
years of follow-up and explore potential
pathophysiological mechanisms linking
mercury exposure to diabetes risk.

Similar to other observational studies,
the possibility of confounding from un-
known or unmeasured factors including
other pollutants (e.g., polychlorinated bi-
phenyl) cannot be completely excluded.
However, the likelihood should be small
that our results were largely explained by
confounding, given our extensive data
analysis, consistent findings in sensitivity
analyses, and the supportive biological
mechanisms. In fact, the baseline data
indicated that participants in the highest
quintile of toenail mercury levels, pre-
sumably due to higher fish consumption,
had a relatively healthy lifestyle. For
example, they had lower BMI and waist
circumference, exercised more, and were
less likely to be current smokers. In
addition, our capability to further explore
the effect modifications was limited by the
relatively small number of cases. Finally,
the generalizability may be limited since
the young adult cohort was recruited
from urban areas. However, there is little
evidence that biological effects ofMeHg in
this study population would be different
from those in the general population.

In summary, this prospective cohort
study provides evidence supporting that
high mercury exposure may affect pancre-
atic isletb-cell function and lead to elevated
risk of diabetes among American young
adults. The potential adverse effect of mer-
cury exposure, presumably derived from
diet, may be attenuated by other nutrients,
in particular LCn-3PUFAs andmagnesium.
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