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Abstract 

Background:  Host population structure is a key determinant of pathogen and infec-
tious disease transmission patterns. Pathogen phylogenetic trees are useful tools 
to reveal the population structure underlying an epidemic. Determining whether a 
population is structured or not is useful in informing the type of phylogenetic methods 
to be used in a given study. We employ tree statistics derived from phylogenetic trees 
and machine learning classification techniques to reveal an underlying population 
structure.

Results:  In this paper, we simulate phylogenetic trees from both structured and non-
structured host populations. We compute eight statistics for the simulated trees, which 
are: the number of cherries; Sackin, Colless and total cophenetic indices; ladder length; 
maximum depth; maximum width, and width-to-depth ratio. Based on the estimated 
tree statistics, we classify the simulated trees as from either a non-structured or a struc-
tured population using the decision tree (DT), K-nearest neighbor (KNN) and support 
vector machine (SVM). We incorporate the basic reproductive number ( R0 ) in our tree 
simulation procedure. Sensitivity analysis is done to investigate whether the classifiers 
are robust to different choice of model parameters and to size of trees. Cross-validated 
results for area under the curve (AUC) for receiver operating characteristic (ROC) curves 
yield mean values of over 0.9 for most of the classification models.

Conclusions:  Our classification procedure distinguishes well between trees from 
structured and non-structured populations using the classifiers, the two-sample Kol-
mogorov-Smirnov, Cucconi and Podgor-Gastwirth tests and the box plots. SVM models 
were more robust to changes in model parameters and tree size compared to KNN 
and DT classifiers. Our classification procedure was applied to real -world data and the 
structured population was revealed with high accuracy of 92.3% using SVM-polynomial 
classifier.
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Tree statistics, Classification

Open Access

© The Author(s), 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH ARTICLE

Kayondo et al. BMC Bioinformatics          (2021) 22:546  
https://doi.org/10.1186/s12859-021-04465-1 BMC Bioinformatics

*Correspondence:   
whkayondo@gmail.com; 
hassan.kayondo@mak.ac.ug 
2 Department 
of Mathematics, Makerere 
University, Kampala, Uganda
Full list of author information 
is available at the end of the 
article

http://orcid.org/0000-0001-8607-6636
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-021-04465-1&domain=pdf


Page 2 of 20Kayondo et al. BMC Bioinformatics          (2021) 22:546 

Background
A number of evolutionary, demographic, environmental, epidemiological and immuno-
logical factors greatly impact on the genetic variation in a given population [1, 2]. These 
genetic variations can be summarised as phylogenetic trees, from which the determin-
ing factors can be empirically estimated [2, 3]. A phylogenetic tree consists of nodes, 
branches and tips representing a hypothesis of evolutionary relationships among genes, 
organisms, species and populations from a common ancestor [2, 4]. A phylogenetic 
tree is fully described by its tree topology (e.g. branching patterns) and branch lengths 
[2, 5–7]. The tree topology is described by the branching patterns arising from events 
such as birth, death, migration and sampling among the populations being analysed [6]. 
Birth and death correspond to speciation and extinction of species, respectively [6, 8]. 
Sampling allows species or infected hosts to be included into the phylogeny [9, 10]. The 
techniques that are employed to model the branching patterns in the phylogeny are coa-
lescent and birth-death processes [11–14]. A phylogeny can be constructed by simulat-
ing the branching patterns or by using simulated sequences or genomes [15, 16]. The 
underlying structure of the host population can be determined from a tree that is recon-
structed using genomes from randomly sampled individuals coupled with their demo-
graphic characteristics [17]. This is usually done by analysing the clustering and balance 
of taxa on the resultant tree.

A structured population is characterised by types (sub-populations) or demes [3, 11, 
17]. In epidemics, a population may be structured based on host characteristics such as 
differences in age, duration of infection, contact rate, infectiousness and susceptibility 
[18]. The dynamics of an infection that progresses from acute to chronic, and also for 
a particular disease that infects individuals in separate locations can be modelled using 
methods for a structured population [11]. Determining how the host population is strat-
ified is essential in capturing the heterogeneity and determining the host characteris-
tics that drive the disease transmission dynamics within and between populations. The 
model parameters and hypothesis for a structured population with two sub-populations 
can be tested using maximum likelihood inference [3]. General multi-type birth-death 
models that extend likelihood inference from two states to multi-states are employed 
for a structured population with n states to estimate epidemiological parameters [17]. 
In such inference, the contribution of a particular sub-group on the general epidemic is 
quantified.

Previous phylogenetic studies have utilised genomic data for reconstructing time-
resolved phylogenetic trees to study the evolution and transmission trends of patho-
gens and infections in populations [17, 19–21]. This has been achieved by analysing 
the inferred tree shape, which is one of the most important properties of a phylogeny 
[22, 23]. The tree’s shape describes the tree’s topology or branching pattern and branch 
lengths. The tree’s topological features are referred to as the tree’s statistics [24]. The 
topological features of a tree can be analysed to infer attributes such as the evolutionary 
process, the dynamics (e.g. the basic reproductive number, R0 ) and patterns of trans-
mission of an epidemic [25]. Furthermore, it can be used to infer important features of 
a population, such as population size, fitness, ecology and geographical structure [18]. 
Details such as pathogen selection and immune escape can also be deduced [26]. Tree 
shapes were used to show that heterogeneity in Human Immunodeficiency Virus (HIV) 
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arises due to differences in the contact rates between groups and differences due to the 
infectiousness of individuals over the course of an epidemic [18].

Tree shapes can be asymmetrical or symmetrical depending on the topological distri-
bution of the taxa among different clades [27]. Tree symmetry is a measure of the degree 
to which descendants of internal nodes have a similar number of descendant taxa, given 
as a “balance index” [18, 27, 28]. Topological asymmetry can be assessed both locally 
and globally [29]. The degree of asymmetry for any given tree can provide support for 
the hypothesis that species have different potential for speciation [30]. Three main sta-
tistics have been used to measure tree symmetry, which are: number of cherries, Sackin 
and Colless indices [24, 30, 31]. It was showed that the number of cherries is asymptoti-
cally normal as the number of taxa grows to infinity under both Yule and uniform mod-
els [32]. In other studies, both the number of cherries and the Sackin index were used to 
investigate tree asymmetry [18, 29]. Currently, more statistics have been extracted from 
trees such as total cophenetic index as described in [33]. Other tree statistics include 
ladder, tree width and depth, among others. A combination of more than one of these 
statistics can be used to improve inferences from phylogenetic trees [25]. Many of pre-
vious studies employ tree statistics for bifurcating trees and our simulation procedure 
also resulted in bifurcating trees. A bifurcating tree with n tips has n− 1 internal nodes. 
However, by modelling a migration event by a change of colour along a vertical line, the 
resulting simulated trees with n tips have more than n− 1 internal nodes. These are as 
well bifurcating since for a migration event, it is the same individual moving from one 
sub-population to the other (see Fig. 1).

In this study, we simulated birth-death trees from both structured and non-structured 
host populations. For both populations, we then analysed tree shapes by estimating eight 
tree statistics, namely: number of cherries; Sackin, Colless and total cophenetic indices; 
ladder length; maximum depth; maximum width, and width-to-depth ratio. We used 

Fig. 1  A bifurcating phylogenetic tree simulated using our simulation procedure with 6 tips. Node A is 
the first bifurcation event. Nodes B, C, D and E are internal nodes. Nodes numbered 1 up to 6 are the tips 
or leaves. There is a migration event represented by node B to E. The phylogenetic tree is from a structured 
population. The two sub-populations are represented by green and red colours
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all the eight tree statistics to classify the simulated trees as either from non-structured 
or structured populations. In addition, we incorporated R0 in our tree simulation pro-
cedure. We investigated whether the classifier models were robust to changes in both 
parameter values and tree size.

Results
Distributions for tree statistics for non‑structured and structured populations

For the two datasets generated, trees from a non-structured population had higher Col-
less and Sackin index values compared to trees from a structured population (Fig. 2 & 
Fig.  3). However, tree index values for cophenetic, maximum depth, maximum depth 
and width to depth ratio were slightly higher for a structured compared to a non-struc-
tured population (Fig. 2 & Fig. 3).

Comparing each tree statistic across the two datasets resulted in some differences. 
For example, for Colless, Sackin, ladder length, cophenetic and maximum width 
indices, mean and median values were lower in dataset 1, compared to dataset 2. 

Fig. 2  Box plots for tree statistics for dataset 1. The mean values are the red points inside the boxes, the 
median values are the horizontal black lines inside the boxes and the outliers are the purple dots. The groups 
were structured (str) and non-structured (unstr). A normalised number of cherries, B normalised Colles index, 
C normalised Sackin index, D total cophenetic index, E ladder length, F maximum width, G maximum depth, 
H width to depth ratio
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For the number of cherries and maximum depth, the mean and median values were 
higher in dataset 1, compared to dataset 2 (Fig. 2 & Fig. 3).

The differences between maximum and minimum (range) values of the tree statis-
tics are slightly higher for trees from non-structured populations compared to trees 
from structured populations (Fig. 2 & Fig. 3 ). Generally there are some observable 
differences in distribution and dispersion of tree statistics from structured and non-
structured populations.

Using the two-sample Kolmogorov-Smirnov, Cucconi and Podgor-Gastwirth sta-
tistical tests, the difference in structure of a population from which trees were drawn 
from was identified in all the tree statistics for dataset 1 (Table  1). The difference 
in structure of a population from which trees were drawn failed to be determined 
using the number of cherries and the ladder length in dataset 2 (results not shown), 
though for the rest of the tree statistics, a difference in structure of an underlying 
population was detected.

Fig. 3  Box plots for tree statistics for dataset 2. The mean values are the red points inside the boxes, the 
median values are the horizontal black lines inside the boxes and the outliers are the purple dots. The groups 
were structured (str) and non-structured (unstr). A normalised number of cherries, B normalised Colles index, 
C normalised Sackin index, D total cophenetic index, E ladder length, F maximum width, G maximum depth, 
H width to depth ratio
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Cross‑validated results on tree classification

Optimal parameters were obtained using grid search as implemented in the train-
Control function of the “caret” package in R. The optimal parameters include; k = 5 
for KNN; sigma = 0.20 for SVM-radial; scale = 0.1, degree = 3 for SVM-polynomial; 
cp = 0.028 for DT. The optimal constant C of the regularization term in the Lagrange 
formulation was C = 1 for all SVM classifiers.

Based on the mean values for the measures (sensitivity, specificity, accuracy and 
area under the curve (AUC)), the classification performed well for dataset 1 (Baseline 
dataset; Table  2). Support vector machine (SVM) classifiers performed better than 
K-nearest neighbor (KNN) and decision tree (DT). For the SVM classifiers, all the 
mean measures computed were above 0.95 for dataset 1 (Table 2).

Receiver operating characteristic (ROC) curves for SVM-radial and SVM-polyno-
mial, with their corresponding confusion matrices, for dataset 1 are shown in Fig. 4. 
Both curves indicate that the corresponding area under the curve (AUC) is close to 1. 
From the confusion matrices shown, few cases ( three out of 307 for SVM-radial and 
12 out of 307 for SVM-polynomial) were mis-classified.

Classification performance on sensitivity analysis

For all SVM models, classifier performance almost remained the same whether 
tree size, parameters or both tree size and parameters were varied from the base-
line (Table 2). In particular for SVM models, varying both tree size and parameters 
yielded almost no difference in classifier performance when compared to the baseline. 
However, for KNN and decision trees, differences in performance of classification 
were registered with baseline performing better than varying tree size and param-
eters (Table 2). Overall, SVM models were more robust to different choices of model 
parameters and to the size of the trees compared to decision trees and KNN classifi-
cation models.

Table 1  Two-sample Kolmogorov-Smirnov, Cucconi and Podgor−Gastwirth tests for comparing 
distributions of tree statistics between populations for dataset 1. D, C and S are the statistics used in 
the tests

Tree statistics Kolmogorov-Smirnov Test Cucconi Test Podgor-Gastwirth 
Test

D p-value C p-value S p-value

Number of Cherries 0.142 8.365× 10
−5 4.997 0.007 4.951 0.0073

Colless index 0.43 2.2× 10
−16 110.7951 < 10

−20 142.0913 < 10
−20

Sackin index 0.408 2.2× 10
−16 100.971 < 10

−20 126.3 < 10
−20

Total cophenetic index 0.44 2.2× 10
−16 101.987 < 10

−20 127.896 < 10
−20

Ladder length 0.128 5.537× 10
−4 4.668 0.011 4.567 0.0106

Maximum width 0.362 2.2× 10
−16 62.15007 < 10

−20 79.63062 < 10
−20

Maximum depth 0.304 2.2× 10
−16 50.3996 < 10

−20 56.04892 < 10
−20

Width-depth ratio 0.184 8.898× 10
−8 28.19 < 10

−20 29.825 < 10
−20
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Performance of the classifiers on real‑world data

For general population (GP) and fishing communities (FCs) combined, the SVM-
radial classifier most often classified trees as structured 66.3% and 33.7% as non-
structured. The SVM-polynomial classified most trees as structured 92.3% and 7.7% 
as non-structured. In the KNN classification, 64.8% of the trees were classified as 
structured and 35.2% as non-structured. For trees from the GP only, the SVM-radial 
classified 66.6% of trees as structured and the 33.4% as non-structured. The SVM-pol-
ynomial classified 55.1% of the trees as structured and 44.9% as non-structured. In the 
KNN classification, 84.5% of the trees were classified as structured and the remaining 
15.5% classified as non-structured. For trees from the FCs only, the SVM-radial most 
often classified trees as structured 86.6% and 13.4% as non-structured. The SVM-pol-
ynomial mostly classified FCs trees as structured 99.6% and 0.4% as non-structured. 
In the KNN classification, 80.9% of the trees were classified as structured and 19.1% as 
non-structured.

Details of the computing environment

The computing system used to perform the analyses is a 64-bit standalone server run-
ning Scientific Linux 7.5 with 64 GB RAM and 2 processors (AMD Opteron (TM) 

Table 2  Results of 10-fold cross-validated classification with computed average for the measures for 
baseline and sensitivity analysis.Times in seconds taken to build respective models are shown as well

Classifier Sensitivity Specificity AUC​ Accuracy Time in seconds

SVM-linear

Baseline 0.99 0.95 0.98 0.97 1.23

Varied tree size 0.98 0.88 0.93 0.93 1.30

Varied parameters 0.93 0.86 0.90 0.90 1.25

Varied tree size & parameters 0.99 0.97 0.99 0.99 1.18

SVM-polynomial

Baseline 0.99 0.99 0.99 0.99 16.60

Varied tree size 0.98 0.90 0.95 0.94 17.64

Varied parameters 0.99 0.98 0.99 0.99 19.22

Varied tree size & parameters 0.99 0.99 0.99 0.99 16.87

SVM-radial

Baseline 0.99 0.98 0.99 0.99 2.89

Varied tree size 0.94 0.86 0.94 0.90 2.11

Varied parameters 0.99 0.98 0.99 0.99 2.86

Varied tree size & parameters 0.99 0.98 0.99 0.99 2.27

Decision Trees

Baseline 0.98 0.94 0.96 0.96 1.17

Varied tree size 0.96 0.78 0.85 0.87 1.37

Varied parameters 0.83 0.88 0.84 0.86 1.27

Varied tree size & parameters 0.90 0.85 0.85 0.88 1.29

KNN

Baseline 0.99 0.98 0.99 0.99 1.71

Varied tree size 0.98 0.92 0.97 0.95 1.37

Varied parameters 0.99 0.98 0.99 0.99 1.27

Varied tree size & parameters 0.78 0.84 0.87 0.78 1.29
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Processor 6274). Each processor had 32 cores with 2 threads per core. Time taken for 
dataset simulations and real data analysis are shown in Table  3. The time taken in sec-
onds to build classification models under 10-cross-validation is shown in Table 2.

Discussion
A system of equations that depicted our model was defined. The obtained expression for 
R0 using the next generation matrix was used to compute the basic reproductive number 
under some parameter setting as explained in the methods. This enabled incorporation 
of R0 in our simulation procedure. The tree classification procedure was also validated 

Fig. 4  ROC for two of the best classifiers with their corresponding confusion matrices for dataset 1. A ROC 
curve for SVM-radial, B ROC curve for SVM-polynomial, C confusion matrix for SVM-radial, D confusion matrix 
for SVM-polynomial

Table 3  Execution times for tree dataset simulations and real data analysis

Simulating tree datasets Non-structured Structured

Baseline 8 hours, 13 minutes 1 day, 3 hours, 39 minutes

Varied tree size 8 hours, 36 minutes 2 days, 8 hours, 40 minutes

Varied parameters 7 hours, 1 minute 1 day, 10 hours, 17 minutes

Varied tree size & parameters 7 hours, 3 minutes 1 day, 13 hours, 38 minutes

Real data General population ( n = 357) Fishing communities 
and General population 
( n = 571)

Calculating tree statistics (250) bootstraps 4 hours, 31 minutes 19 hours, 3 minutes

Calculating tree statistics (1000) bootstraps 18 hours, 23 minutes 3 days, 1 hour, 42 minutes
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by investigating whether classification models were robust to changes in both param-
eter values and tree size. SVM models were more robust as there were almost no differ-
ences observed in the classification performance for the trees. DT and KNN were less 
robust. This suggests that our tree simulation and classification procedures give promis-
ing results.

The two-sample Kolmogorov-Smirnov, Cucconi and Podgor-Gastwirth tests did well 
in establishing whether the distributions for the tree statistics were different regarding 
the structure of a population from which the trees were drawn. The tests distinguished 
the distributions for all the tree statistics for trees from structured and non-structured 
populations in dataset 1. Only the distributions for the number of cherries and the lad-
der length for trees from structured and non-structured  populations failed to be dis-
tinguished using these three tests. The box plots displayed some differences in the tree 
statistics. The box plots revealed that tree statistics values were slightly higher and more 
dispersed in the structured population compared to the non-structured population. Fur-
ther research is needed to establish how many simulated trees and tips in each tree are 
sufficient to detect significant differences between distributions of computed tree statis-
tics for structured and non-structured populations.

The classification procedure performed very well in distinguishing between trees from 
structured and non-structured populations. The 10-fold cross validated classification 
results had mean accuracy of at least 0.78 in all the classifiers that we used. The com-
puted ROC with its corresponding AUC shows that the classifiers’ performance was 
excellent with AUC values of at least 0.84 for all the classifiers used. From the results, 
we observe that dataset 1 had the best classification results with a mean accuracy of 0.99 
for SVM-radial and SVM-polynomial. This is the case because dataset 1 provided more 
information for the learning algorithms as we used a constant number of tips of 350 and 
200 for non-structured and structured population, respectively for dataset 1, while tips 
were varied in the interval (300,  400) for dataset 2.

Our study procedure is applicable to real data in terms of informing the choice of phy-
logenetic tree analysis method (structured or non-structured). Given a real dataset of 
phylogenetic trees, the study procedure provided insight into the structure of the popu-
lation under study.This was done by classifying trees as either from a structured or a non 
structured population using classifiers that had been trained using the simulated trees 
for dataset 1. We found that tree shape statistics ably provide insight into the population 
structure underlying transmission patterns of HIV using actual genomic data. Classifi-
ers built on simulated data were able to detect beyond chance the assumed underlying 
population structure for a combination of general population and fishing communities. 
In addition, trees from individual populations of GP and FCs were majorly classified as 
structured rather than non-structured. The fact that the tree statistics can to a certain 
extent reveal underlying population structure is a proof-of-principle that tree shape sta-
tistics are informative.

Conclusion
We incorporated R0 in our simulation procedure. The classification models were robust 
to changes in both parameter values and tree size. The structure from which trees were 
drawn; that is, from a structured or a non-structured population was revealed by the 
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classification techniques, the two-sample Kolmogorov-Smirnov, Cucconi and Podgor-
Gastwirth tests and the box plots. Other classification procedures using supervised 
learning algorithms like random decision forest and unsupervised learning algorithms 
like clustering can be used in further research. The developed study procedure is applica-
ble to real data, in terms of informing the choice of phylogenetic tree analysis methods.

Methods
Model design of structured and non‑structured host populations

In this study, we considered the dynamics of both structured and non-structured popu-
lations. The structured population was broken down into two sub-populations, such that 
individuals within these sub-populations were indistinguishable, while there was a dif-
ference between sub-populations [34]. The choice of two sub-populations was supported 
by previous work where two groups were used to study population structure. [3, 17, 35].

The structured population consisted of sub-populations S1 and S2 , as shown in Fig. 5. 
Only three main events were allowed to occur in a given sub-population: birth, migra-
tion and death. All of these events occurred at different rates between sub-populations. 
The rate at which an individual in sub-population Si gave birth to another within that 
sub-population was �i , for i ∈ {1, 2} . An individual in Si died at a rate of µi , for i ∈ {1, 2} . 
An individual from Si migrated to Sj at a migration rate of αij , where i, j ∈ {1, 2}.

Unlike the structured population, all individuals behaved uniformly in the non-struc-
tured population. In other words, there were no sub-populations separating a non-struc-
tured population. The simulation of a non-structured population followed a birth-death 
process without migration events.

Phylogenetic tree simulation in structured and non‑structured populations

To simulate phylogenetic trees, we accounted for all of the possible events that can occur 
during the evolution of a population. For the structured population, we let Ni(t) repre-
sent the number of present lineages in Si at time t, for i ∈ {1, 2} . A lineage is representa-
tive of a single infected individual. We set the waiting time to any event in Si to follow an 
exponential distribution with parameter Ni(t)(�i + µi + αij) , where i, j ∈ {1, 2}.

Therefore, the density for the waiting time to an event in Si is given by:

Fig. 5  A structured host population with two sub-populations S1 and S2
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Each of our tree simulation process started with one individual in either S1 or S2 . Any of 
the three events (birth, migration or death) then occured randomly.

To determine the sub-population where proceeding events happened, we defined 
sub-total rates in Si as TSi = �i + µi + αij , for i, j ∈ {1, 2} . We randomly drew a number 
between 0 and 1, say n.

If 

the next event happened in Si and if the condition was not satisfied, then the event hap-
pened in Sj . Assuming that the selected sub-population for the next event is Si , we deter-
mined the next event by randomly drawing a number between 0 and 1, say σ . 

	(i)	 If 

 then the event was a birth.
	(ii)	 If 

 then the event was a migration.
	(iii)	 Otherwise, the event was a death.

The simulation was terminated after reaching a given number of extant lineages. How-
ever, the simulations can be stopped after a given time t or age of the tree. Our simula-
tion procedure was implemented in Python software, version 3.7.3. “ETE 3 Toolkit” was 
used [36]. We simulated two sets of phylogenetic trees from both structured and non-
structured populations.

Incorporating R0 in phylogenetic tree simulation

The basic reproductive number, denoted as R0 , is one of the important disease epide-
miological parameters that can be estimated directly from genomic phylogenies (Stadler 
et  al. 2012) [37]. R0 measures the number of secondary cases caused by one primary 
infection being introduced into an all-susceptible population [38]. In its simplest form, 
R0 depends on contact rate, probability of a contact producing an infection (susceptible 
individual getting infected on contact with an infected individual) and the duration of 
the infectious period [38]. For infectious diseases, a value of R0 > 1 is associated with 
infection outbreak and persistence [38]. On the other hand, if R0 ≤ 1 , then minor out-
breaks with probability of extinction of one, will be realized [38].

We explored the deterministic nature of the birth-death model process, this was 
aimed at establishing conditions for which the infection (process) persists. This 

f (x) =
{

Ni(t)(�i + µi + αij) exp
−Ni(t)(�i+µi+αij)x x ≥ 0

0 x < 0.

n ≤
TSi

TSi + TSj
,

σ ≤
�i

TSi
,

�i

TSi
< σ ≤

�i + αij

TSi
,
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informed choice of parameters for which the simulation process was feasible. The fol-
lowing system of ordinary differential equations describes the dynamics of an infec-
tion across the two sub-populations S1 and S2 shown in Fig. 5 with birth, death and 
migration parameters as previously described.

We obtained equilibrium points by setting the above equations to zero,

The Disease Free Equilibrium (DFE) of the system is given by (S∗1 , S
∗
2 ) = (0, 0) .

We then computed R0 of this system using the next generation matrix method [39, 
40]. Unlike typical epidemiological models, both compartments are representative of 
infectives. We let X be defined as:

We then constructed matrices F  and V for new and other infection terms in the respec-
tive compartments as:

Jacobian matrices of F  and V at the DFE were obtained as:

Similarly,

The inverse of V was computed and it is given as:

(1)
dS1

dt
= (�1S1 + α21S2)− (µ1S1 + α12S1),

(2)
dS2

dt
= (�2S2 + α12S1)− (µ2S2 + α21S2).

dS1

dt
= 0,

dS2

dt
= 0

X =
[

S1
S2

]

F =
[

�1S1
�2S2

]

=
[

f1
f2

]

, V =
[

µ1S1 + α12S1 − α21S2
µ2S2 + α21S2 − α12S1

]

=
[

v1
v2

]

F =


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We computed the next generation matrix given as FV−1 and obtained corresponding 
eigenvalues. R0 is the maximum eigenvalue. For the system of equations defining our 
model, R0 was given as:

Where,

The above expression of R0 applies to the general case of a structured population with 
two sub-populations, S1 and S2 . We explored two cases for obtaining the R0 , in the first 
case, we considered a single population with no sub-populations. We had only birth and 
death with no migration rate parameters. This was the scenario under a non-structured 
population. In the second case, birth, death and migration rate parameters in one sub-
population were multiplied by a factor k of the parameters in other sub-population. This 
case represented a structured population. In both cases, we established the relationship 
among parameters for which R0 > 1 . 

1.	 �1 = �2 = � , µ1 = µ2 = µ , α12 = α21 = 0,

	 R0 =
�

µ
for R0 > 1 =⇒ � > µ.

2.	 �2 = k�1 , µ2 = kµ1 , α21 = kα12 , where k > 0,
	 R0 =

�1

2α12 + µ1
for R0 > 1 =⇒ �1 > 2α12 + µ1.

Choice of parameters used in the phylogenetic tree simulations

Since our interest was to apply our methods to real dataset like for HIV/AIDS sequence 
data, the parameters we used in the phylogenetic tree simulations were based on litera-
ture related to HIV/AIDS in Uganda. For the death rate, [41] reported that the estimated 
deaths of adults due to HIV/AIDS was 21,000 (17,000  29,000) out of a total of 1,500,000 
(1,400,000    1,600,000) adults living with HIV/AIDS. This translates into death rate of 
0.014 (0.01    0.02). Since [42] observed that HIV prevalence was three times higher in 
communities at high risk of getting infected compared to the general population, we 
multiplied by 3 to obtain the death rate parameter for the high risk sub-population in a 
structured population. For R0 , the choice was based on the work of [43] where we used 
R0 of 4.99 (0.45, 6.34) for non-structured and 9.09 (4.18, 36.75) for a structured popula-
tion. For the migration rate parameter, the value used was 0.3 (0.18, 0.44) for low risk 
sub-population and 0.2 (0.10, 0.33) for high risk sub-population in a structured popula-
tion. This was based on the work of [44]. We then computed birth rate parameter based 
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on the formula for R0 . Parameter values from literature which are relevant to our study 
are shown in Table 4.

Sets of simulated trees

For dataset 1 (baseline dataset), the parameters for a non-structured population were: 
µ = 0.014,R0 = 4.99, � = µ(R0) , number of tips was 350 and number of trees was 500. 
For the structured population, in sub-population 1 (low risk), the parameters used were: 
µ1 = 0.014, α12 = 0.3, R01 = 4.99, �1 = R01(2α12 + µ1) , the number of tips was 350 
and the number of trees was 250. For sub-population 2 (high risk), the parameters used 
were: µ2 = 3(0.014), α21 = 0.2, R02 = 9.09, �2 = R02(2α21 + µ2) , the number of tips 
was 200 and the number of trees was 250.

For dataset 2, the number of tips was varied while keeping other parameter values for 
dataset 1 constant. For the structured population, the number of tips was varied in the 
interval (300,  400) for sub-population 1 and (150,  250) for sub-population 2. For a non-
structured population, tips were varied in the interval (300,    400). A summary of the 
parameter values used for dataset 1 is shown in Table 4.

Estimating the tree statistics from the simulated trees

The shapes of trees simulated from both structured and non-structured populations 
were examined using estimates of tree statistics. These tree statistics included: num-
ber of cherries; Sackin, Colless and total cophenetic indices; ladder length; maximum 
width; maximum depth and width to depth ratio index. A detailed description on 
the number of cherries was done by [18, 29, 32]. For the Sackin index, details can be 
found in the work of [18, 24]. The Colless index was defined and described by [24, 45]. 
The total cophenetic index is one of the new indices for phylogenetic trees, which is 

Table 4  Parameter values used for simulating phylogenetic trees for structured and non-structured 
populations and their corresponding parameter values from literature

Structured population Sub-population 1 Sub-population 2

Basic reproductive number ( R0) 4.99 9.09

Birth rate ( �) 3.0639 4.0178

Death rate ( µ) 0.014 0.042

Migration rate ( α) 0.3 0.2

Number of tips (n) 350 200

Number of trees 250 250

Non-structured population

 R0 4.99

 � 0.0699

 µ 0.014

 n 350

 Number of trees 500

From literature Values References

HIV/AIDS related deaths ( µ) 0.014(0.01, 0.02) [41, 42]

R0 4.99(0.45, 6.34) for low risk sub-population & 
9.09(4.18, 36.75) for high sub-population

[43]

Out-migration ( α) 0.30(0.18, 0.44) for low risk sub-population & 
0.20(0.10, 0.33) for high risk sub-population

[44]
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defined in the work of [33]. Definitions and descriptions for ladder length, maximum 
depth of a tree, maximum width of a tree, and width to depth ratio index were done 
by [25]. A summary of the definitions of the eight tree statistics is shown in Table 5. 
Fig. 1 shows a simulated tree with 5 tips and Table 6 shows how the corresponding 
tree statistics were computed. All computations for the eight statistics were imple-
mented in Python software, version 3.7.3.

Table 5  Definitions for the tree statistics

Tree statistics Definition References

Cherry Pair of leaves that is adjacent to a common ancestor node. [18, 29, 32]

Normalized number of cherries Number of cherries divided by half the number of tips in a tree. [46]

Sackin index Sum of all the number of edges from a leaf to a root for each of a 
leaf in a tree.

[18, 24]

Normalized Sackin index Sackin index divided by (0.5× (n(n+ 1))− 1) , where n is the 
number of tips.

[46]

Colless index Sum of absolute differences between left and right hand leaves 
(terminal tips) subtended at each internal node of a tree, the root 
inclusive.

[24, 45]

Normalized Colless index Colless index divided by (n−1)(n−2)
2

 , where n is the number of tips. [45]

Total cophenetic index Sum of all depths of the lowest common ancestor for all pairs of 
leaves in a tree.

[33]

Ladder length Ratio of maximum number of connected internal nodes with a 
single descendant leaf to number of leaves in a tree.

[25]

Maximum depth Maximum number of edges from a leaf to a root for all the leaves 
in a tree.

[25]

Maximum width Maximum number of nodes for each possible depth of a tree. [25]

Width-depth ratio Ratio of maximum width of a tree to its maximum depth. [25]

Table 6  Computed tree statistics from the illustrated tree in Fig. 1

Tree statistics Computed value

Number of Cherries Cherries are formed by tips 1 & 2 and 4 & 5. So the number of cherries is 2.

Standardized number of Cherries From the formula, 2

0.5∗5 = 0.8

Sackin index We consider each leaf and we count the edges to the root, e.g for leaf 1, there 
are 3 edges to the root. The value of the Sackin index becomes 14.

Standardized Sackin index From the formula, 14

0.5×5×6−1
= 14

14
= 1

Colless index We consider each internal node, e.g for internal node C, the difference 
between left and right tips subtended is 1. Adding such values for each inter-
nal node results in 2 as the Colless index.

Standardized Colless index From the formula, 2

4×3|2 = 0.3333

Total cophenetic index (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5)&(4, 5) are the possible 
pairs. The corresponding cophenetic values are 2, 0, 0, 0, 0, 0, 0, 1, 1&2 , respec-
tively. Sum of all possible pairs is 6.

Ladder length One internal node C has a single child descendant leaf, ladder length there-
fore is 1

5
= 0.2.

Maximum depth Depth for tips 1,2,3,4 & 5 are 3,3,2,3 & 3. Since 3 is the highest, it is the maxi-
mumdepth.

Maximum width Depth for tips 1,2,3,4 & 5 are 3,3,2,3 & 3 respectively. Depth for internal nodes 
A,B,C,D & E are 0,1,1,2 & 2. Depth 3 has the highest number of nodes and it is 
4. Maximum width becomes 4.

Width-depth ratio 4

3
= 1.3333
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Comparing tree statistics estimated from structured and non‑structured populations

We investigated whether the estimated tree statistics could be used to distinguish 
between structured and non-structured host populations. The tree statistics were visual-
ised using box plots for both populations. These were helpful for summarizing location 
and dispersion of the tree statistics.

Because the box plots could not give concise distinction in the tree statistics between 
populations, we first compared the distributions of the tree statistics for both popula-
tions using a two-sample Kolmogorov-Smirnov test [47]. For a given tree statistic, we 
investigated whether this test distinguished the corresponding distributions under both 
populations. From the computed p-values, Kolmogorov-Smirnov test distinguished 
between trees from either structured or non-structured population at a level of 0.05. For 
this test, the D parameter is the Kolmogorov-Smirnov statistic, which measures the dis-
tance between the two distributions under comparison. The larger the D parameter, the 
smaller the p-value, and the more distant (different) the two distributions under com-
parison are. In addition, we used two non-parametric tests, which included Cucconi and 
Podgor-Gastwirth tests. These are also two-sample tests which detect whether the two 
underlying samples are distinct using both location and scale parameters. These two 
and some others were described by [48]. Box plots, two-sample Kolmogorov-Smirnov, 
Cucconi and Podgor-Gastwirth tests were implemented in R, version 4.0.2. R package 
‘ggplot2’ [49] was used for box plots drawing.

Classification of simulated trees as either from a structured or a non‑structured population 

based on their tree statistics

We used various classification algorithms to determine the type of population (struc-
tured or non-structured) from which a given set of trees were simulated based on their 
estimated tree statistics. The classification algorithms that we used were; K-nearest 
neighbour (KNN) [50], support vector machine (SVM) [51, 52] and decision trees (DT) 
[53]. Table 7 gives descriptions of these classifiers.

Here, we aimed at classifying the simulated trees into two main classes; that is, a struc-
tured and a non-structured population. To establish a proportion to be used for train-
ing, we tried out different proportions of data; that is, 30% , 50% and 70% for training 
and with the corresponding remaining proportions for testing of the classifiers. We 
then performed grid search for the parameters to obtain optimal models to be used for 
classification. The classification procedure for the optimal models for KNN, SVM and 
DT was implemented in R software, version 4.0.2. R package ‘e107’ [54] was used in the 
classification.

Evaluation and cross‑validation of tree classifiers

We compared the performance of all the three classification techniques using meas-
ures such as sensitivity, specificity and accuracy rate [55]. We also evaluated the per-
formance of the classifiers using receiver operating characteristics (ROC) curves. 
For ROC curve, true positive rate (sensitivity) is plotted against false positive rate 
(1-specificity). The area under the curve (AUC) for the ROC curves was computed. 
Some analysis and comparison of ROC curves are given in [56]. In our study, the 
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AUC quantifies the overall ability of the classifier to discriminate between trees sim-
ulated from structured and non-structured populations. The AUC ranges between 
0.5 and 1 for a realistic classifier, as reported by [57]. A perfect classifier (one that 
has zero false positives and zero false negatives) has an area of 1. The closer the 
value of AUC to 1, the better the classifier performance.

We performed 10-fold cross validation. Under this, a given dataset is divided into 
10 equal portions and each of the portions is used as a testing set, while the remain-
ing 9 are used for model training. We then obtained the means for the measures 
that we used for evaluation of classifiers. Cross validation gives realistic evaluation 
of model performance as done in some studies [58, 59]. Parameter tuning of model 
parameters and cross validation was done with help of ‘caret’ R package [60]. The 
evaluation and cross-validation of tree classifiers was implemented in R software, 
version 4.0.2.

Table 7  Descriptions for machine learning techniques

Machine learning technique Description References

K-nearest neighbour (KNN) KNN classifies an object based on closest training examples in the 
feature space. KNN is a supervised machine learning technique 
where data is divided into two sets: a training and a test set. The 
training set is used to train the machine (learning), while the test 
set is used to determine the classes of the given objects (actual 
classification). Given an unknown sample (k0) to be classified and 
a training data set, the distances between k0 and all samples in 
the training set are computed. The number of neighbours (k) that 
have the shortest distance (closest) to k0 are identified. And k0 will 
be inferred to belong to the class where its k closest neighbours 
come from. Some of the distance metrics that can be used in the 
KNN classification include: Eucledian, Eucledian squared, City-
block and Chebychev.

[50]

Support vector machine (SVM) SVM is both a supervised learning and a binary classification 
method. It finds the best separating hyperplane between two 
classes of the training samples in the feature space. Suppose 
we have n sample points in the training set, where each sample 
point xi , has k attributes and each belongs to one of two classes. 
Let us denote the classes as either 1 or −1 , the sample points are 
denoted as (xi , yi) , where i = 1, ..., n , yi ∈ {−1, 1} and x ∈ R

k . For 
the case when the data are separable and k = 2 , a line separating 
between the two classes is easily drawn. In circumstances where 
k > 2 and the data are still separable, a hyperplane separates the 
two classes. For a case when the data are not linearly separable, 
the data are transformed using kernel functions. Some of the 
commonly used functions include radial basis kernel, linear kernel, 
polynomial kernel and the sigmoidal kernel.

[51, 52]

Decision tree (DT) DT procedure divides a data set into subdivisions basing on a set 
of tests that are defined at each branch or a node. From the given 
data, a tree is constructed which is composed of a root, internal 
nodes which are known as splits and a set of leaves. The leaves 
are the terminal nodes. Data are classified according to the deci-
sion framework defined by the tree. It is the leaf nodes that are 
assigned the label class. The assignment is done according to the 
leaf node into which the observation falls. The learning algo-
rithms define splits at each internal node of a decision tree from 
the training data set. For an accurate decision tree, the training 
data should be of high quality so that the relations between the 
features and classes can be easily learned.

[53]
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Sensitivity analysis

To determine whether the classifiers were robust to different choices of model param-
eters and to size of the trees, we simulated three sets of 250 structured and 250 non-
structured trees (500 in total) with (i) randomly selected parameters, (ii) a random 
tree size and (iii) random parameters and random tree size. Parameters and tree sizes 
were obtained using Latin hyper cube sampling as implemented in the “SMT” python 
“toolkit”. Parameters were selected such that R0 was in the intervals (0.45,  6.34) and 
(4.18,   36.75) for sub-population 1 and 2, respectively. Similarly, tree size was varied 
to lie in the intervals (300,   400) and (250, 300) for sub population 1 and 2, respec-
tively. Selected parameters and tree sizes were similar to the real-world popula-
tions that were later investigated. Simulated trees were then classified under 10-fold 
cross-validation.

Application of the classification procedure to real‑world data

To evaluate the classifiers’ performance on real-world data within known epidemiol-
ogy, we used the classifiers on sequence data from two key populations in Uganda 
whose underlying HIV-1 transmission dynamics have been previously described 
by [61]. We applied our classifiers on phylogenetic trees from previously published 
HIV−1 sequence data from the general population (GP) and fishing communities 
(FCs) of Uganda, Bbosa et  al. [61]. The sequences were retrieved from the NCBI 
nucleotide database, accession numbers MG434786 to MG435347. The data com-
prised of 357 sequences from the GP and 221 sequences from FCs. Two sets of trees 
were generated; (i) only GP (ii) only FCs and (iii) the combination of GP and FCs. 
Sequences were aligned using “clustalw” [62], ahead of generating 1000 bootstraps 
of maximum likelihood trees using IQ-TREE of Nguyen et al. [63] with UFBoot2 of 
Hoang et al. [64]. SVM, DT and KNN classifiers trained at 10-fold cross validation at 
baseline were used to predict the population structure of the bootstraps. We classified 
maximum likelihood 1000 tree bootstraps generated from three sets of data includ-
ing; sequences from GP, FCs and both GP and FCs.
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