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Advances in induced pluripotent stem cell (iPSC) techniques have opened up new
perspectives in research on developmental biology. Compared with other sources of
human cellular models, iPSCs present a great advantage in hosting the unique genotype
background of donors without ethical concerns. A wide spectrum of cellular and organoid
models can be generated from iPSCs under appropriate in vitro conditions. The
pluripotency of iPSCs is orchestrated by external signalling and regulated at the
epigenetic, transcriptional and posttranscriptional levels. Recent decades have
witnessed the progress of studying tissue-specific expressions and functions of
microRNAs (miRNAs) using iPSC-derived models. MiRNAs are a class of short non-
coding RNAs with regulatory functions in various biological processes during
development, including cell migration, proliferation and apoptosis. MiRNAs are key
modulators of gene expression and promising candidates for biomarker in
development; hence, research on the regulation of human development by miRNAs is
expanding. In this review, we summarize the current progress in the application of iPSC-
derived models to studies of the regulatory roles of miRNAs in developmental processes.

Keywords: microRNA, induced pluripotent stem cell, cellular model, develoment, gene regulaiton

INTRODUCTION

MiRNAs are short RNA molecules with 20–24 nucleotides that regulate the posttranscriptional
silencing of target genes (Krol et al., 2010; Fabian and Sonenberg, 2012; Luo and Zhu, 2014; Lu
and Rothenberg, 2018). MiRNAs exhibit a complex regulatory network resulting from a
particular miRNA targeting multiple mRNAs and multiple miRNAs targeting the same mRNA,
and affecting the expression levels of many protein-coding genes involved in functional
pathways (Liu et al., 2014; Barwari et al., 2016; Luo et al., 2016; Rupaimoole and Slack, 2017).
Over the past few decades, the role of miRNAs has been evaluated in a variety of biological
processes (Ambros, 2004; Luo et al., 2015b; Lopez et al., 2017; Song et al., 2019). To date,
numerous studies have delineated the regulatory role of miRNAs in development. For instance,
miRNAs are regulating cell differentiation, proliferation, apoptosis and migration during B cell
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development by regulating a spectrum of signalling pathways,
including BCR, MAPK/ERK, PI3K/AKT and NFκB pathways
(Katsaraki et al., 2021). Thus, miRNAs have been
characterized as valuable modulators of human development.

The investigation of miRNAs in development requires in vitro
models derived from human pluripotent stem cells to simulate the
tissue developmental procedures. Nevertheless, there are a number
of shortages of human embryonic stem cell (hESC) techniques, such
as ethical issues and complicated manipulation, thus preventing its
wide application in clinical and basic research (Barker and de
Beaufort, 2013; Luo et al., 2014). In 2006, studies were conducted
to reprogram somatic cells into pluripotent stem cells with a cocktail
of transcriptional factors, such as the combination of OCT4, KLF4,
SOX2 and c-Myc (Takahashi and Yamanaka, 2006). This method
avoids moral controversies and has led to the application of cellular
programming techniques in human developmental research (Lo
Sardo et al., 2017). Thus, the emergence of human induced
pluripotent stem cells (hiPSC) has solved these problems (Luo
et al., 2015a).

Remarkable progress has been created within the area of
hiPSC over the past decade (Luo et al., 2018; Luo et al.,
2021a). At present, hiPSCs can specifically differentiate into
cardiomyocytes, endothelial cells, insulin-producing cells, germ
cells, neuronal cells, osteoblasts, retinal pigment epithelium and
so on (Figure 1). These cells could be ultilized for research of
human development and diseases (Luo et al., 2021c). Hence, this
review aims to systematically summarize the regulatory roles of
miRNAs in development identified by iPSC-derived models.

CARDIOMYOCYTES

Cardiovascular diseases (CVDs), such as myocardial infarction
(MI) and cardiomyopathy, are recognized as the leading lethal
causes around the world and are often associated with
degeneration of cardiomyocytes (CMs). CMs are fully
differentiated cells with minimal proliferative potential. Given
the restricted effectiveness of drug therapy in treating myocardial
injuries, the development of novel therapeutic approaches for
curing these disorders is of urgency. HiPSC-derived CMs (iPS-
CMs) introduce a new prospect for CVD treatment. However, the
molecular mechanisms regulating the development of these cells
is a pivotal problem that should be solved prior to clinical usage.

For instance, a study has compared the mRNA and miRNA
expression profiles of iPS-CMs and biopsies from fetal, adult and
hypertensive hearts to find out the core miRNA network, which
revealed miRNAs associated with human heart development
(Babiarz et al., 2012). Further studies profiled the miRNAs in
human iPS-CMs and revealed 96 miRNAs that could promote
CM proliferation (Diez-Cuñado et al., 2018). The CM
proliferation-associated miRNAs in human were quite
different from those of rodent (Eulalio et al., 2012). Most
human CM proliferation-associated miRNAs function by
targeting the Hippo pathway, an evolutionarily conserved
pathway regulating organ size (Yu and Guan, 2013). Another
study also confirmed that the mRNAs encoding most
components of the Hippo pathway were recruited into the
RNA-induced silencing complex (RISC) in iPS-CMs (Diez-

FIGURE 1 | Schematic representation of investigating the regulatory roles of miRNAs in iPSC-derived cellular models.
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Cuñado et al., 2018). In addition, some studies have
demonstrated that miR-302d promoted CM proliferation by
inhibiting LATS2 of the Hippo pathway (Xu F. et al., 2019).

Recently, miR-24 has been demonstrated as an important
regulator for human heart development by using iPS-CM
models (Guo et al., 2015). This is an execllent example of the
complex regulatory roles of miRNAs in human development. On
one hand, miR-24 has been demonstrated to suppress CM
apoptosis. It is shown that delivery of miR-24 into CMs
significantly alleviates cardiomyopathies, suggesting that
modulating miRNA levels might be a novel therapeutic means
for cardiac diseases (Qian et al., 2011; Guo et al., 2015). One study
showed that miR-24 promoted functional implantation of
cardiovascular progenitor cells (CPCs), in which miR-24 was
utilized as a component of the antiapoptotic cocktail to enhance
the survival of CPCs implantated into the MI heart tissues (Hu
et al., 2011). Other studies have also identified other prosurvival
roles of miR-24 in cardiac fibrosis and found that overexpression
of miR-24 through lentivirus-mediated transduction reduces
fibrosis and improves cardiac function in MI hearts,
confirming the beneficial role of miR-24 (Guo et al., 2015).
On the other hand, miR-24 has been demonstarted to exert
proapoptotic effects. MiR-24 is characterized as a proapoptotic
miRNA in cardiac endothelial cells, and blocking its function by
injection of miR-24 antagonists can prevent apoptosis, enhance
vascular distribution, and improve cardiac function after MI
(Fiedler et al., 2011). However, these experiments in earlier
studies were performed by viral transduction or polymeric
transfection of miR-24 mimics or inhibitors, in which the
protective effect observed might be partly caused by their off-
target effects in non-CM cells (Guo et al., 2015).

In addition, some studies have also found that pri-miR-22/
miR-22-3p is the top-ranked expressed primary miRNA
transcript in heart tissues and iPS-CMs, and contributes to
myocardial ischemia/reperfusion injury (Du et al., 2016; Sun
et al., 2019). Some studies have confirmed the pro-apoptotic
effect of miR-22 in iPS-CM (Pan and Zhu, 2018; Sun et al., 2019).
Hypoxia-mediated apoptosis was augmented by miR-22
overexpression but resuced by miR-22 knockdown in iPS-CMs
(Gidlöf et al., 2020). Meanwhile, this study also demonstrated that
the long non-coding RNA Neat1 in the paraspeckles is the
essential factor for pri-miR-22 processing in CMs. Knockdown
of Neat1 could lead to significant accumulation of pri-miR-22
and consumption of mature ones in iPS-CMs (Gidlöf et al., 2020).

VASCULAR ENDOTHELIAL CELLS

MiR-199b is a highly conserved miRNA across species and
capable of guiding the hiPSCs to differentiate into vascular
endothelial cells (ECs) by regulating key molecular pathways,
such as Notch signaling, in response to angiogenic signals. In
particular, miR-199b regulates EC fate by targeting the Notch
ligand JAG1, which leads to expression and secretion of VEGF via
STAT3-mediated trascription (Chen et al., 2015). Nevertheless,
the molecular mechanism underlying the upstream regulation
remains unclear. Moreover, VEGF-induced miR-155 promotes

angiogenesis by directly silencing E2F2, a E2F family
transcriptional factor involved in cell proliferation, apoptosis
and death (Dimova and Dyson, 2005), during EC
differentiation from hiPSCs (Yang et al., 2016).

MiR-495 is a member of the DLK1-Dio3 miRNA cluster and
exerts antiangiogenic effects. It is abundant in the non-EC
portion while downregulated in the EC portion. It induces
endothelial or angiogenic gene expression by downregulating
VEZF1, a major transcriptional factor regulating EC genes,
such as IGF1 and CD31, during EC differentiation and
angiogenesis (Zou et al., 2010). In contrast, increasing VEZF1
expression via miR-495 blockage promotes angiogenesis post
implantation of hiPSCs via enhancement of EC production.
Studies have shown that the derived ECs significantly
augmented the formation of new blood vessels in infarcted
hearts, prevented functional deterioration and restricted the
expansion of infarcted areas post transplantation in MI mice
(Liang et al., 2017).

Additionally, miR-21 overexpression could enhance the Akt/
TGF-β2 signal by downregulating PTEN on chromosome 10,
thereby increasing the amount of ECs derived from hiPSCs (Zeng
et al., 2018). Overexpression of miR-21 increased the mRNA and
protein levels of TGF-β2, which is an essential cytokine for cell
survival proliferation, migration and differentiation (Vargel et al.,
2016). Neutralizing TGF-β2 by antibodies prohibits the
expression of miR-21-induced EC markers, such as VE-CAD
and CD31 (Di Bernardini et al., 2014).

INSULIN-PRODUCING CELLS

The generation of insulin-producing cells (IPCs) from hiPSCs is a
promising approach to investigate the molecular mechanisms of
pancreatic development and a potential source of treatment for
type I diabetes (Zeng et al., 2018). MiRNAs are major
posttranscriptional regulators of gene expression and thus
might involve in the control of β cell development in the pancreas.

For examples, miR-375 is essential for pancreatic endocrine
function as its blockage results in glucose imbalance, α cell
increment and β cell reduction (Poy et al., 2009). MiR-375 and
miR-186 overexpression in hiPSCs leads to differentiation into
insulin-secreting β-like cells that expressing pancreatic endocrine
markers, such as PDX1, GLUT2, NGN3, PAX4 and PAX6. Despite
secreting less insulin than natural β cells, these hiPSC-derived β-like
cells could rescue blood glucose levels after transplantation into
diabeticmice (Shaer et al., 2014). In addition, miR-375 affects insulin
secretion by regulating the expression of muscular dystrophy protein
in MIN6 cells (Poy et al., 2004; Krek et al., 2005).

The development of organisms is a result of the
reprogramming of gene regulatory networks (Hornstein and
Shomron, 2006). Some studies have described miR-375 as a
key regulator of pancreatic development in humans (Poy et al.,
2004; Lynn et al., 2007; Bravo-Egana et al., 2008; Avnit-Sagi et al.,
2012). Mice lacking miR-375 showed α/β cell imbalance and
reduced β cell propagation in spite of insulin insufficiency (Avnit-
Sagi et al., 2012). Studies have shown that miR-7, miR-9, miR-375
and miR-376 are dramatically upregulated throughout the islet
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development (Wei et al., 2013). Some studies have found that
miR-186, miR-199a and miR-339 are also upregulated during the
formation of IPCs in vitro. The target genes of these three
microRNAs include LIN28, PRDM1, CALB1, GCNB2, RBM47,
PLEKHH1, RBPMS2 and PAK6 mRNA. (Joglekar et al., 2009;
Chen et al., 2011; Kredo-Russo et al., 2012).

Studies have shown that miR-181c-5p accumulates gradually
during the derivation of IPCs from hiPSCs. Increased
phosphorylation of Smad2/3 is observed in iPSC-derived cells,
and treatment with a Smad2/3 inhibitor after overexpression of
miR-181c-5p had the opposite effect on IPC formation (Li et al.,
2020). Similarily, other studies have also shown that miR-181c-5p
is abundant in the late differentiation steps of hESC-derived IPCs,
fetal pancreas, and adult islets (Liao et al., 2013; Fogel et al., 2015).
Furthermore, miR-181c-5p was differentially expressed between
the pancreas and the liver despite the common developmental
origin of both tissues, with upregulation in the former and
downregulation in latter (Porciuncula et al., 2013). Therefore,
it is speculated that miR-181c-5p might play a pancreatic-
specific role.

On the other hand, miR-690 overexpression dramatically
delayed iPSC-derived IPC maturation and reduced insulin
secretion in vitro and in vivo. Bioinformatic analysis suggested
that its putative targets, such as CTNNB1, STAT3 and SOX9,
were essential factors for of pancreatic endocrine development.
Elevated miR-690 expression levels disrupt IPC differentiation by
directly binding to Sox9. Subsequent experimental studies suggest
that miR-690 could negatively modulate the Wnt signalling
pathway during the pancreatic developmental process (Xu Y.
et al., 2019).

In conclusion, these findings may help us better understand
the process of pancreatic differentiation of hiPSCs in vitro and the
underlying mechanisms involving miRNAs. As miRNAs could
modulate certain transcriptional factors throughout the
pancreatic developmental process, they could serve as novel
therapeutic targets for diabetes treatment.

NEURONAL CELLS

HiPSC-derived neurons and neural progenitor cells (NPCs) are
important models for investigating neurogenesis and
synaptogenesis as well as their disruption in disorder statuses.
Moreover, they are promising therapeutic vectors for brain
disorders in the future (Zhu et al., 2013; Zhu et al., 2014).
HiPSC-derived cellular and organoid models serve as an
important bridge between model organism research and
human postmortem brain research by providing living human
cells, consisting of hiPSCs and their derived NPCs and neurons,
with the composite genetic background present in patients.
Hence, there is a quickly growing body of research projects
using patient-specific iPSC-derived neurons to investigate
neurogenesis.

For instance, iPSCswithmutations in the LRRK2 and α synuclein
gene families were used to generate dopamine (DA) neurons, which
exhibited higher sensitivity to oxidative stress and susceptibility to
apoptosis (Byers et al., 2011; Reinhardt et al., 2013). Such phenotypes

were also observed in iPSC-derived DA neurons from idiopathic
Parkinson’s disease (PD) patients (Sánchez-Danés et al., 2012);
meanwhile, apoptotic markers were also detected in the
postmortem brain of PD patients (Hartmann et al., 2000; Mogi
et al., 2000). Apoptosis-related miRNAs are also associated with
neuronal differentiation (Aranha et al., 2011). For examples, miR-14,
let-7a and miR-34a are elevated during neural stem cell
differentiation (Heman-Ackah et al., 2013).

A large number of investigations have demonstrated that
miRNAs play important roles in neural development (Hsu et al.,
2012; Jimenez-Mateos et al., 2012; Liu et al., 2012). In addition,
abundantmolecular evidences support the essential roles ofmiRNAs
in development of schizophrenia and other neural diseases (Green
et al., 2013). For instance, miRNA-seq analysis was performed to
distinguish differentially expressed miRNAs in iPSC-derived
neurons from schizophrenia patients with 22q11.2 deletions
compared to those from healthy donors (Yang et al., 2010). They
discovered that miRNA expression levels in the deleted region
decreased to approximately half the normal levels, and the levels
were also altered in several other miRNAs out of the deleted region.
The functional annotations of the putative targets of these
dysregulated miRNAs were enrich in neurological diseases,
neuronal development, axon formation and other important
pathways relevant with the nervous system (Zhao et al., 2015).

Finally, posttranscriptional modifications could be identified
by transcriptome analysis. RNA editing is a posttranscriptional
event. Adenosine to inosine (A-to-I) transition is the dominate
RNA editing process and happens most frequently in RNA
molecules relevant with neurotransmission (Sanjana et al.,
2012), especially in a lot of brain-specific miRNAs (Nishikura,
2010). Intriguingly, comparing postmortem cerebellum of autism
patients with the control ons discovered that RNA editing was
more abundant in the autism samples (Eran et al., 2013). Total
transcriptome analysis can also detect fusion genes (Zhang Y.
et al., 2014), which is valuable for building coexpression networks
that can help researchers discover gene networks and pathways
that are disrupted in neuropsychiatric disorders.

MiRNAs are believed to exert key regulatory effects in a
wide spectrum of neural developmental processes, such as
neurogenesis, neuronal maturation, axon regeneration,
synaptic development and brain plasticity (Giraldez et al.,
2005; Weston et al., 2006). Let-7 family miRNAs are the
highest expressed miRNAs in the mammalian brains
(Lagos-Quintana et al., 2002). They were firstly identified in
Caenorhabditis elegans (Roush and Slack, 2008) and highly
conserved across species. They are the key regulators for
organism development, such as cell proliferation, cell
specification and terminal differentiation (Nishikura, 2010).
In the developing brain, Let-7 miRNAs participate in control
of various developmental processes, such as neuronal
differentiation (Schwamborn et al., 2009), neuronal subtype
specification (Weick et al., 2013), neuronal regeneration (Li
et al., 2015) and synaptic formation (Edbauer et al., 2010).
Albeit in silico models suggest that the Let-7 miRNAs are
involved in modulating postsynaptic gene expression (Paschou
et al., 2012), their direct functions in mature human neurons
remain unclear.
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One of the Let-7 members, Let-7c is located on chromosome
21; thus, it exists in an extra copy of trisomy 21 (T21) and is
associated with the symptoms of mild to moderate mental
retardatoin featured in this neurodevelopmental syndrome
(Antonarakis, 2017). It has been reported that miRNAs
encoded by chromosome 21 may be important for a
comprehensive understanding of the pathophysiology of T21-
related neural diseases (Izzo et al., 2017). Taken together, these
investigations indicate that the Let-7 family plays an important
role in modulating human neurodevelopment and provide clues
to illustrating the complicated molecular aetiology of
neurodevelopmental syndromes (McGowan et al., 2018).

GERM CELLS

In humans, genetic information is passed on to their offspring via
germ cells (Luo et al., 2021b; Zhou et al., 2022). At present, ESCs,
iPSCs and spermatogonial stem cells are the major cell sources
used for generation ofmale germ cells expressing functional genes
(Saito et al., 2015). However, their clinical utility is still challenged
by several safety issues (Zhang D. et al., 2014). MiRNAs have
recently emerged as important factors in translation regulation
and the epigenetic control of stem cell self-renewal and
pluripotent capacities (Gangaraju and Lin, 2009). Key roles of
miRNA pathways in germline stem cell maintenance have been
reported in vertebrate iPSCs (Gangaraju and Lin, 2009). In
addition, miRNAs are very important in spermatogenesis and
might play key roles in sperm mitosis, meiosis and postmeiotic
stages (Wang and Xu, 2015).

The role of miRNAs in germ cell development has been
functionally proven (Fernández-Pérez et al., 2018). For
examples, RNA binding protein Lin28 blocks Let-7 and
desuppresses Blimp1 translation in the initial stage of germ
cell development (West et al., 2009). In addition, miR-125
posttranscriptionally suppress Oct4 during sperm meiosis in
males (Medrano et al., 2013).

Further experimental evidence should be pursued to identify
specific microRNAs that are regulating the three stages of human
spermatogenesis, pachytene spermatocytes, spermatogonial cells
and round spermatozoa cells (Liu Y. et al., 2015). For examples,
miR-34c increased in pachytene spermatocytes and round sperm
cells and prohibited survival by targeting the transcription factor
ATF1 (Romero et al., 2011). In addition, miR-469 inhibited
protamine and transition protein 2 (TP2) mRNA in pachytene
spermatocytes and round sperm cells (Dai et al., 2011). Moreover,
during spermatogenesis, miR-122a and miR-18 downregulate
TP2 and heat shock factor 2, respectively (Chen et al., 2017).

RETINAL PIGMENT EPITHELIUM

The retinal pigment epithelium (RPE) is a special layer arranged
at the rear of retina. Injury or RPE dysfunction can severely affect
the health of photoreceptors and visual function, which is a result
of potential RPE pathological blinding disease. Examples include
age-related macular degeneration (AMD), Stargardt disease and

retinitis pigmentosa (Greene et al., 2014). So far, there is no
efficient therapy to rescue the vision; thus, iPSC-derived RPE
(iPS-RPE) cells might be a source of cells to regenerate the
disrupted RPE. However, before iPS-RPE cells can be used
clinically, as much information as possible about the factors
that modulate RPE development is of urgency to increase the
production and quality of the cells for therapeutic use (Greene
et al., 2014).

A study has identified 155 potential miRNA markers in iPS-
RPE cells (Wang et al., 2014). Upregulated miRNAs, such as miR-
181c and miR-129-5p, might drive cell specification (Naguibneva
et al., 2006; Ryan et al., 2006), while downregulated miRNAs,
including miR-367, miR-18b and miR-20b, are associated with
mitotic division (Budde et al., 2010; Murakami et al., 2013).
Putative targets of these miRNAs are relevant with cell survival,
cell cycle and development.

It is of interest to evaluate the possible role of iPS-RPE
miRNAs in tumorigenesis. On one hand, some iPS-RPE-
upregulated miRNAs are tumour suppressors. For instance,
miR-34 is a typicall tumour suppressor that prohibits tumor
growth, metastasis, invasion and epithelial-mesenchymal
transformation (EMT) via downregulating TP53 (Zhang et al.,
2007; Nana-Sinkam and Croce, 2013). MiR-34 is generally
silenced in multiple cancer types. MiR-34 expression was
amplified in iPS-RPE cells by 5-fold, indicating an extremely
low proliferative capacity in these terminally differentiated cells
(Hermeking, 2012). Similarly, miR-16 is a tumour suppressive
miRNA targeting multiple oncogenes, including EGFR, JUN and
BCL2. In contrast, many iPS-RPE-downregulated miRNAs are
oncogenic miRNAs (Wang et al., 2014).

MiRNAs in extracellular vesicles (EVs) derived from RPE cells
might exert effects in the malignant inflammatory cycle. A specific
enrichment of miR-494-3p was identified in EVs secreted from iPS-
RPE cells after interaction with MPs, which might be a potential
therapeutic target for the treatment of AMD (Mukai et al., 2021).
AMD is the first and the third top causes of blindness in developed
countries and around the world, respectively (Kuo et al., 2012). MiR-
184 on chromosome 15q25.1 is a highly conserved miRNA across
species (Nomura et al., 2008). MiR-137 is gradually upregulated
during the differentiation of hiPSCs into RPE cells and it will
downregulate PKBβ (also known as Akt2), the major downstream
effector of rapamycin (mTOR) signalling pathway (Jiang et al., 2016).
Hence, dysregulation of miR-137 is an important molecular event
during the progression of AMD (Jiang et al., 2016).

OSTEOBLASTS

HiPSCs could provide a rich cell source for regenerative
medicine and to create patient-specific cellular and
organoid models to investigate both intracellular and
extracellular agents in bone repair and osteoarthritis
(Diekman et al., 2012). Several histone deacetylase (HDAC)
inhibitors have been shown to promote osteoblast maturation
and specific gene expression by upregulating Runx2 gene
expression in bone marrow stem cells (Hu et al., 2013).
HDAC1 changes the expression of many genes associate

Frontiers in Genetics | www.frontiersin.org May 2022 | Volume 13 | Article 8998315

Chen et al. miRNA and iPSC Developmental Models

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


TABLE 1 | Roles of miRNAs in development of various iPSC-derived cell lineages.

iPSC-Derived Cell
Lineages

miRNA Target Effect References

Cardiomyocytes miR-24 Bim Inhibit apoptosis Guo et al. (2015)
miR-22 HIF1A/SIRT1 Promote apoptosis Du et al., 2016

Sun et al., 2019
Gidlöf et al. (2020)

miR-302d LATS2 Promote cell proliferation Xu et al. (2019a)

Endotheliocyte miR-199b JAG1 Promote transcription, activation and secretion of VEGF Chen et al., 2015
Yang et al., 2016
Dimova and Dyson,
(2005)

miR-495 VEZF1 Inhibit EC differentiation and angiogenesis Zou et al., 2010; Liang
et al., 2017

miR-21 PTEN/VE-cad/CD31 Promote cell proliferation and differentiation Zeng et al., 2018
Di Bernardini et al., 2014
Vargel et al. (2016)

miR-155 E2F2 promotes angiogenesis Dimova and Dyson,
2005
Yang et al. (2016)

Insulin-producing
cells

miR-375 HNF6/INSM1/PDX1 Its increase promotes islet formation and its decrease
promotes ß -cell maturation and function

Shaer et al., 2014
Poy et al., 2004
Krek et al., 2005
Hornstein and Shomron,
2006
Lynn et al., 2007
Bravo-Egana et al., 2008
Avnit-Sagi et al., 2012
Wei et al. (2013)
(Joglekar et al., 2009
Chen et al., 2011
Kredo-Russo et al.
(2012)

miR-181c-5p Smad7/TGIF2 Maintain cell-specific function Li et al., 2020
Liao et al., 2013
Fogel et al. (2015)

miR-690 SRY-Sox9 Inhibit cell differentiation and insulin production Xu et al. (2019b)
miR-186, miR-
199a, miR-339

LIN28/PRDM1/CALB1/GCNB2/
RBM47/PLEKHH1/RBPMS2/
PAK6

Formation of IPCs in vitro Joglekar et al., 2009
Chen et al., 2011
Kredo-Russo et al.
(2012)

Neuronal cells miR-137 NRXN1 Inhibit synaptic growth and maturation in the hippocampus
and cortical

Green et al. (2013)

Let-7 LIN28B Regulates neuronal differentiation, neuronal subtype
regulation and synaptic formation, as well as cell cycle
regulation and tumor suppression

Giraldez et al., 2005
Weston et al., 2006
Lagos-Quintana et al.,
2002
Roush and Slack, 2008
(Schwamborn et al.,
2009
Weick et al., 2013
Li et al., 2015
Edbauer et al., 2010
Paschou et al., 2012
Antonarakis, 2017
Izzo et al. (2017)

Germ cells miR-34c ATF1 Cause round sperm cells and trigger apoptosis Romero et al. (2011)
miR-125 Oct4 Inhibit sperm meiosis Medrano et al. (2013)
miR-469 TP2 Inhibit sperm meiosis Dai et al. (2011)
miR-122a,
miR-18

TP2/heat shock factor 2 Involved in spermatogenesis Chen et al. (2017)

(Continued on following page)
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with cell growth, survival, subtype specification and genome
integrity (Buurman et al., 2012). One miRNA, miR-449a,
specifically interferes with HDAC1 expression (Jeon et al.,
2012; Okamoto et al., 2012). Exogenous miR-449a silencing
endogenous HDAC1 expression keeps histone acetylation,
induces Runx2 expression, which is a regulator of
osteoblast genes (Nishimura et al., 2012), and accelerates
osteoblast derivation from iPSCs (Liu T. et al., 2015).

In addition, an independent study demonstrated that a
group of six miRNAs, miR-10a/b, miR-19b, miR-9, miR-
124a, and miR-181a, are key regulators of the iPSC
differentiation into osteoblasts (Okamoto et al., 2012).
Moreover, another study has shown that miR-211 promoted
iPSC differentiation into osteoblast-like cells via upregulating
the expression of autophagy-related genes like ATG14 (Ozeki
et al., 2017).

DISCUSSION

MiRNAs are functioning within the RNA-protein complexes
known as RNA-induced silencing complexes (RISC), which
regulates gene expression posttranscriptionally in higher
eukaryotes (Ameres and Zamore, 2013). Their roles in
human development are rapidly being discovered
(Table 1). MiRNAs are undoubtedly involved in many
stages of normal cell development through their ability to
block or promote development. They can be regulated by
epigenetics, which may lead to other regulatory effects. In
addition, they could serve as valuable markers for patient
diagnosis and prognosis, as well as promising therapeutic

targets. Although the multifaceted role of miRNAs in some
diseases has been extensively studied over the past few years,
important information is still missing, and no single molecule
has been proven to be an effective regulator of the many
pathogenic pathways of disease (Katsaraki et al., 2021).

IPSC-derived models are promising tools for deepening the
understanding of early developmental processes (Dvash and
Benvenisty, 2004). The major advantage of iPSC-derived models
over primary cells is their capacity of repeatly generating cells with
specific genetic background of the donors. With this property along
with their pluripotency, hiPSCs can serve as a powerful tool for
human cell replacement therapies and as an in vitro platform for
personalized drug screening and discovery (Pouton and Haynes,
2007; Stadtfeld and Hochedlinger, 2010).

The reprogramming of somatic cells derived from patients and
healthy donors into iPSCs is an important step to establish
human-relevant models for illustrating the molecular and
cellular mechanisms underlying the disease pathology.
Notably, iPSCs can also be used to develop and test new
therapies in vitro. Here, we discuss the regulatory role of
miRNAs in iPSC-derived models for human development. In
the future, miRNA-related studies need to be further improved to
utilize hiPSCs as powerful tools in research of developmental
biology. To address this issue, new methods, such as employing
ectopic miRNAs as epigenetic modulators, should also be
developed to optimize existing cell reprogramming and
differentiation protocols (Ferreira et al., 2018).

There is a need tomore thoroughly explore the role of miRNAs in
human developoment. Given their relevance, we expect miRNAs to
be exploited as diagnostic markers and as therapeutic targets for
developmental diseases soon.

TABLE 1 | (Continued) Roles of miRNAs in development of various iPSC-derived cell lineages.

iPSC-Derived Cell
Lineages

miRNA Target Effect References

Retinal pigment
epithelium

miR-16 BCL2/JUN/EGFR Inhibits cell proliferation, epithelial-mesenchymal
transformation (EMT), metastasis, and invasion and acts as a
strong tumor suppressor

Zhang et al., 2007
Nana-Sinkam and
Croce, (2013)

miR-181c HOX-A11 Promote cell differentiation Naguibneva et al., 2006
Ryan et al. (2006)

miR-129-5p CDK6/EIF2C3/CAMTA1 Antiproliferative effect Naguibneva et al., 2006
Ryan et al. (2006)

miR-367 HDAC2 Downregulation is associated with cell proliferation Budde et al., 2010
Murakami et al. (2013)

miR494-3p TNF-α/PEDF Candidate molecular targets for diagnosis and treatment Mukai et al. (2021)
miR-34 TP53/EGFR/JUN/BCL2 Inhibit tumor growth, metastasis, invasion and EMT Zhang et al., 2007

Nana-Sinkam and
Croce, (2013)

miR-184 mTOR Affect AMD progress Kuo et al., 2012
Nomura et al., 2008
Liu et al., 2014
Jiang et al. (2016)

Osteoblasts miR-449a HDAC1/Runx2 Promote differentiation of iPS osteoblasts and growth
stagnation of tumor cells

Buurman et al., 2012
Jeon et al., 2012
Okamoto et al. (2012)

miR-211 Atg14 Promote cell differentiation Ozeki et al. (2017)
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