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Crohn’s disease (CD) is a lifelong inflammatory bowel disease with a rapidly rising 
incidence in the pediatric population. A common complication of CD is the develop-
ment of fibrotic strictures, which may be present at initial diagnosis or develop many 
years later. Clinical presentation depends on stricture location and degree of obstruc-
tion, and strictures frequently contain a mixture of inflammatory and fibrotic tissue. 
Histological examination of Crohn’s strictures shows thickening of the muscular layers 
and the submucosa, where increased collagen deposition by activated myofibroblasts 
is concentrated around islands of smooth muscle cells and at the superficial margin of 
the muscularis propria. No antifibrotic therapies for Crohn’s strictures exist. Profibrotic 
transforming growth factor-β (TGFβ)/bone morphogenetic protein signaling stimulates 
myofibroblast differentiation and extracellular matrix deposition. Understanding and 
targeting TGFβ1 downstream signaling is the main focus of current research, raising 
the possibility of specific antifibrotic therapy in CD becoming available in the future.

Keywords: Crohn’s disease, inflammatory bowel disease, fibrosis, intestine, reactive oxygen species,  
nADPH oxidase

inTRODUCTiOn

The incidence of Crohn’s disease (CD) is rapidly rising in the pediatric population (1). Crohn’s 
inflammation is transmural and can occur throughout the gastrointestinal tract, unlike ulcerative 
colitis where mucosal inflammation is confined to the colon. CD is phenotyped according to disease 
behavior (inflammatory/penetrating/stricturing) and location using the Paris classification for 
pediatric patients (2), a modification of the Montreal classification (3). Fibrotic narrowing of the 
intestinal tract (stricturing disease) is present in approximately 10–17% of children at diagnosis (4), 
affecting up to 40% by 10 years after diagnosis (5–7). Strictures occur predominantly in the ileum, 
reflecting the common distribution of inflammation, but can arise throughout the digestive tract (8). 
Presenting features vary from overt intestinal obstruction to subacute and non-specific symptoms. 
The conventional conceptual framework of the pathobiology of fibrosis in CD is one of chronic 
inflammation leading to ongoing frustrated attempts at healing with formation of disorganized tis-
sue. If this occurs circumferentially in a relatively narrow diameter organ such as the small intestine, 
the result is a fibrotic stricture. Here, we will describe current knowledge and recent advances regard-
ing the diagnosis and pathogenesis of intestinal fibrosis and will review potential future therapies.

CLiniCAL AnD PATHOLOGiCAL DiAGnOSiS

The clinical presentation of stricturing disease is highly variable, depending on the location and 
degree of obstruction. Presentations range from non-specific symptoms including abdominal 
discomfort, poor appetite, energy and/or growth, to overt obstruction with abdominal pain, vomit-
ing, and reduced bowel movements. Strictures may be inflammatory, fibrotic, or more commonly a 
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combination of both (8). Most strictures are in the small bowel, 
inaccessible to standard endoscopy, and even when accessible, 
endoscopy can only provide information (visual, histological) on 
the mucosa, while the fibrotic collagen deposition occurs submu-
cosally. Capsule endoscopy can provide visual information but no 
tissue samples and is contraindicated in the presence of suspected 
strictures due to the risk of retention. Therefore, clinicians usually 
rely on radiological tools for the diagnosis of stenotic disease.

A fibrotic stricture is inferred by the presence of a narrowed 
lumen with proximal dilation. Computed tomography (CT) and 
magnetic resonance enterogram (MRE) are preferred to X-rays 
with enteral contrast [small-bowel follow through (SBFT)] as they 
allow assessment of extraintestinal as well as intestinal complica-
tions of CD and have similar sensitivity and accuracy. CT and 
MRE permit a transmural assessment of the bowel wall, enabling 
the classification of strictures as inflammatory, fibrotic, or mixed. 
Inflammation is suggested by avid enhancement and mesenteric 
inflammation (hypervascularity, fat stranding), whereas fibrosis 
is characterized by a thickened bowel wall with a featureless 
appearance, minimal or no enhancement and the absence of mes-
enteric inflammation. MRE has comparable (9–12) or superior 
(13) sensitivity and specificity to CT for the detection of fibrosis 
in the presence of inflammation in adult and pediatric patients, 
while MRE has greater sensitivity for the detection of fibrosis 
alone (10). A recent prospective pediatric study demonstrated 
73% sensitivity and 81% specificity for the detection of strictures 
using MRE compared to 42% sensitivity and 68% specificity 
for CT enterograms (12). Due to its lack of ionizing radiation 
and its capacity to provide accurate diagnosis of both intra- and 
extraintestinal complications, MRE is the preferred modality in 
the pediatric population, although technical limitations (institu-
tional access, need for general anesthesia) ensure a retained role 
for CT and SBFT. Recent advances in ultrasound elastography as 
a measurement of tissue stiffness have shown promising results in 
the differentiation between inflammatory and fibrotic strictures 
(14, 15), but have not yet reached routine clinical practice. As 
sensitivity does not reach 100% with any modality, clinical judg-
ment is required in conjunction with imaging findings to decide 
about surgical exploration/intervention.

HiSTOPATHOLOGY

Fibrosis is defined as the permanent and abnormal deposition 
of extracellular matrix (ECM), primarily collagen, within tissues, 
resulting in a distortion of structure and impeding normal tissue 
and organ function. It is understood to be an aberrant response 
to ongoing inflammation, where tissue remodeling in response 
to injury, through ECM deposition and subsequent breakdown, 
becomes self-perpetuating. In the normal small bowel, the 
mucosa consists of a single layer of epithelium, lamina propria, 
and basement membrane. Deep to the intact mucosa is the 
muscularis mucosa, a thin layer of smooth muscle cells, and then 
the submucosa. The submucosa is a loose connective tissue layer 
with fibroblasts as main cell type within an ECM traversed by 
blood vessels and nerves (16). The ECM is a complex biochemical 
structure where collagen types I and III predominate (17). Deep 
to the submucosa is the muscularis propria with its inner circular 

and outer longitudinal layers of smooth muscle cells. The collagen 
strands of the submucosa tend to be concentrated at its border 
with the muscularis propria.

Histological examination of CD strictures reveals abnormali-
ties in both the submucosal space and muscular layers (Figure 1). 
The submucosa is increased in volume and density, with increased 
collagen deposition being concentrated around islands of smooth 
muscle cells and at the superficial margin of the muscularis 
propria. Studies have shown an increase in total protein and col-
lagen content, especially collagen subtypes I, III, and V in these 
strictures. Although increased in absolute terms, the relative 
proportions of types I and III collagen appear to be comparable 
between strictures and healthy intestine, and although the pro-
portion of type V collagen is relatively amplified, type I collagen 
remains dominant (16, 17). Myofibroblasts, differentiated from 
fibroblasts, are the primary source of ECM production and secre-
tion. Increased numbers of local fibroblasts and myofibroblasts 
in fibrosis have been attributed to a variety of mechanisms 
including the proliferation of existing fibroblasts in the local 
area (18), the induction of epithelial-to-mesenchymal transition 
(19), the recruitment and differentiation of bone marrow-derived 
fibrocytes (20), as well as endothelial-to-mesenchymal transition 
(21), but the relative contribution of each process is unknown. 
Thickening of the muscularis mucosa and muscularis propria as 
well as smooth muscle cell proliferation within the submucosa 
itself have been observed. In some instances, the proliferation of 
smooth muscle cells within the submucosa can be so pronounced 
that it results in the obliteration of the submucosa (22). The com-
bined overall effect of increased ECM deposition and muscular 
hypertrophy is transmural thickening and stiffening, which when 
occurring circumferentially causes narrowing and obstruction of 
the intestinal lumen.

SiGnALinG AnD THe FiBROTiC 
ReSPOnSe

Various growth factors and cytokines have been implicated in 
the development of fibrosis including IL-13, platelet-derived 
growth factor (PDGF), connective tissue growth factor, basic 
fibroblast growth factor, insulin-like growth factor, bone mor-
phogenetic proteins (BMPs), and transforming growth factor-β 
(TGFβ) (23). The TGFβ family is secreted by a wide variety 
of cells throughout the body and its effects are highly varied 
and complex. As well as being responsible for cell proliferation 
and differentiation, anti-inflammatory control, wound healing, 
tumor suppression in healthy tissues and cancer progression 
in neoplastic tissues, TGFβ is the primary cytokine driving 
the development of fibrosis in tissues throughout the body. 
Differences in TGFβ subtype, receptors, cofactors, and signaling 
pathways allow this group of cytokines to display such versatility 
(24). TGFβ1 is the most common subtype and its role in the 
development of tissue fibrosis through the recruitment of fibro-
blasts, transdifferentiation to myofibroblasts, and stimulation of 
ECM secretion has been convincingly demonstrated in many 
organs including in intestinal fibrosis (25–28).

TGFβ1 is a homodimeric signaling molecule produced by 
myofibroblasts and inflammatory cells (e.g., macrophages), 
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FiGURe 1 | In intestinal fibrosis, hypertrophy and hyperplasia of smooth muscle cells cause thickening of the muscularis mucosa and muscularis propria; smooth 
muscle cells proliferate in the thickened submucosa, where activated myofibroblasts secrete extracellular matrix proteins.
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platelets, and parenchymal cells during the hemostasis and 
inflammation phases of tissue injury and healing. This para- and 
autocrine signaling is anti-inflammatory and supports wound 
healing but drives fibrosis. The TGFβ receptor is a transmem-
brane complex of two dimers: two type I receptors (ALK5, also 
called TGFBR1 or TβTI) and two type II receptors (TGFBR2); 
both are serine/threonine kinases and binding of TGFβ results 
in phosphorylation of ALK5 by TGFBR2 with subsequent 
binding and phosphorylation of downstream signaling proteins 
SMAD2 and SMAD3 by ALK5 (Figure 2). Once phosphorylated,  
SMAD2 and SMAD3 form a trimer with SMAD4, which translo-
cates to the nucleus and binds to target DNA. The transcriptional 
targeting, nuclear translocation, and longevity of these SMAD 
transcription factors is modulated by the binding of a wide variety 
of effector molecules. SMAD2/3 binding to ALK5 is antagonized 
by SMAD7. SMAD7 antisense oligonucleotides (mongersen) 
showed promise in the treatment of inflammatory CD by restor-
ing the TGFβ1–SMAD2/3 pathway (29); no associated increase 
in fibrosis has been observed but longer term follow-up is 
required. Several non-canonical TGFβ signaling pathways have 
been described (30). Phosphorylated TGFBR1 and TGFBR2 lead 
to activation of mitogen-activated protein kinases (MAPKs), 
which regulate multiple pathways including those leading to 
transcription. MAPKs also regulate the canonical TGFβ pathway 
by phosphorylating active SMAD to promote its proteasomal 
degradation. TGFβ activates phosphoinositide 3-kinase, leading 
to downstream activation of Akt, mTOR, and upregulation of 
protein translation. Akt interacts directly with SMAD3 to prevent 
its activation and indirectly inhibits SMAD-mediated transcrip-
tion through phosphorylation of FoxO transcription factors, 

thus blocking their translocation to the nucleus. A more detailed 
review of the complexity of TGFβ signaling can be found in the 
study by Massague (24).

The pleiotropic and multifunctional effects of TGFβ1 signaling 
make it an unattractive therapeutic target in fibrosis. Substantial 
effort has been directed at characterizing downstream signaling 
pathways of TGFβ where fibrosis-specific pharmacologic inter-
vention might be achievable. Reactive oxygen species (ROS) have 
been implicated as mediators of the profibrotic effect of TGFβ1. 
ROS can be produced non-enzymatically (e.g., by radiation, toxic 
chemicals) or enzymatically. Most cellular ROS is produced in 
the mitochondria during cellular respiration. Other ROS sources 
include the cytochrome P450 family, cyclooxygenases, peroxiso-
mal oxidases, xanthine oxidoreductase, and the family of NADPH 
oxidases (NOX). The NOX family is unique as its only known 
biological role is ROS production, and NOX enzymes appear to 
be intimately involved in fibrogenesis. NADPH oxidase 4 (NOX4) 
is a constitutively active, transcriptionally regulated producer of 
H2O2. An accumulating body of evidence suggests that TGFβ1 
upregulates NOX4 expression and that NOX4, through the 
production of H2O2, promotes myofibroblast differentiation and 
secretion of ECM proteins (31–33). In a rat model of renal fibrosis 
and in cell-based assay systems, TGFβ1 stimulation was associ-
ated with increased NOX4 expression and H2O2 production, 
while reduced NOX4 expression by siRNA-mediated knockdown 
decreased ROS production and expression of profibrotic proteins 
including collagen, α-SMA, and fibronectin (34). These findings 
have been replicated using cell-based assays, mouse models, and 
patient samples in the lung (35–38), skin (39), and liver (40–42). 
A study by Jung et al. using fibroblasts and a mouse model of renal 
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FiGURe 2 | TGFβ1 signaling induces SMAD2 and SMAD3 phosphorylation and activation of non-canonical mitogen-activated protein kinase (MAPK) and 
phosphoinositide 3-kinase (PI3K) pathways, which upregulate the expression of profibrotic genes including NADPH oxidase 4 (NOX4). Reactive oxygen species 
(ROS) generated by NOX4 and/or mitochondria promote further release of active TGFβ1.
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fibrosis suggested that NOX4 upregulation by TGFβ1 depends 
on activation of SMAD2 and Akt (43). Latella and coworkers 
reported that SMAD3 was necessary for the development of 
intestinal fibrosis in a chronic TNBS model (44), suggesting 
that NOX4 mediates the effect of TGFβ1 through canonical and 
non-canonical pathways. Somewhat contradictorily, NOX4 was 
protective in a renal fibrosis model (45), and there is evidence 
from mice and patient data that NOX4 may be protective against 
atherosclerosis (46–49). Another mouse model showed preserved 
myofibroblast differentiation but impaired wound healing in 
NOX4−/− mice (50), suggesting that the requirement of NOX4 
for myofibroblast differentiation and collagen secretion may be 
tissue and/or context dependent (acute versus chronic insult). 
Despite the growing evidence for a fundamental role of NOX4 
in fibrosis, only limited studies exist for the intestine. Hotta and 
coworkers demonstrated a reduction in TGFβ1-dependent colla-
gen I production by murine intestinal myofibroblasts treated with 
a pan-NOX inhibitor or NOX4 siRNA (51). Data from RNA-Seq 
analysis of intestinal fibroblasts showed variable upregulation of 

NOX4 transcription in three patients with CD compared to three 
healthy controls (52). BMPs belong to the TGFβ superfamily and 
signal via phosphorylation and complex formation of SMAD 1, 5, 
and 8 (53). BMP7 may protect against colitis and prevent fibrosis 
by antagonizing TGFβ signaling (54–56). Angiopoietin-like pro-
tein 2 (ANGPTL2) modulates BMP signaling and initial studies 
suggest that organ damage in ANGPTL2 knockdown mice is 
linked to NOX4 (57, 58).

TGFβ1 signaling stimulated the production of mitochondrial 
ROS (mtROS), possibly by inhibition of complex III and IV and 
via the mTOR signaling pathway, with subsequent increase in 
profibrotic gene expression. Reduction of mtROS by the anti-
oxidant MitoQ reduced TGFβ1 expression, SMAD2 and SMAD3 
activation, and collagen deposition in a liver fibrosis model (59). 
mtROS and NOX4 may interact through a positive feedback loop 
to promote TGFβ1-driven fibrosis. NOX4-derived ROS caused 
mitochondrial dysfunction and increased mtROS, while mtROS 
amplified the TGFβ1-mediated increase in NOX4 expression 
(60). Additionally, increased TGFβ1 inhibited the antioxidant 
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response, thereby exacerbating the prooxidant shift and further 
driving fibrosis (61).

Key enzymes in cross-linking and stabilizing the network 
of collagen fibrils are H2O2-generating lysyl oxidase (LOX) and 
the lysyl oxidase-like proteins (LOXL1–4), which are copper-
dependent amine oxidases that oxidatively modify the ε-amino 
group of lysine side chains in collagen and elastin for formation of 
inter- and intrachain cross-links. Clinical and animal-based stud-
ies in the liver and myocardium demonstrate that LOXs promote 
tissue stiffening through cross-linking of existing collagen and 
elastin fibrils and that inhibition of LOXL2 may inhibit and even 
reverse fibrosis (62–65). Studies in rat and human lung fibroblasts, 
human trabecular cells, and human osteoblasts suggest that 
TGFβ1 upregulates LOXs, which in turn modify the actions of 
TGFβ1 (66–69). It is important to note that TGFβ1 is secreted and 
stored extracellularly bound to a latent TGF-β-binding protein 
and a latency-associated peptide. This inactive complex is bound 
to the ECM via integrins, and active TGFβ is released by protease 
cleavage or conformational changes caused by increased stiffness 
of the ECM (61, 70). This provides a possible explanation for 
TGFβ1’s effects in the absence of active inflammation (71, 72) as 
well as the finding that a stiff matrix is required for myofibroblast 
differentiation (62, 73).

CURRenT TReATMenTS AnD FUTURe 
POSSiBiLiTieS

Although improved management of CD inflammation by anti-
TNFα therapy (infliximab, adalimumab) appears to reduce the rate 
of stricture development (74), there is currently no medical therapy 
directly targeting fibrosis in CD. Patients whose strictures fail to 
respond to anti-inflammatory therapies (aimed at any inflamma-
tion and edema coexisting with fibrosis) require surgical interven-
tion. Endoscopic balloon dilatation (EBD) is an option for single, 
short, and uncomplicated strictures accessible by endoscopy, for 
instance, stricture recurrence at ileocecal anastomoses. Although 
technical success rates are high, with a low rate of complications, 
retrospective data from adult patients demonstrate that 42–70% 
of patients will require repeat EBD or surgical intervention by 
5 years (75–77). Pediatric data are limited, but support the feasibil-
ity and safety of EBD (78, 79). Given the predominance of mixed 
fibrotic/inflammatory strictures over purely fibrotic strictures, 
intrastricture injection of corticosteroids has been proposed as 
an adjunct to balloon dilation. A prospective randomized control 
trial including nine adult patients showed no difference in stricture 
recurrence rates at 1 year (80), while a prospective RCT including 
29 pediatric patients showed earlier stricture recurrence in patients 
treated with placebo (79). Due to the small trials and number of 
patients studied, the benefit of intralesional steroid injection has 
not been confirmed (81). Surgery is the mainstay of treatment for 
fixed Crohn’s strictures. Simple, short strictures can be treated with 
bowel preserving strictureplasty; longer, multiple, or complicated 
strictures (e.g., significant inflammation, penetrating disease, and 
suspected cancer) are treated with resection and primary anas-
tomosis. Resection carries its own risks, including anastomotic 
dehiscence and disease recurrence at the site of the anastomosis, 

malabsorptive issues following terminal ileal resection including 
vitamin B12 deficiency and bile salt malabsorption, and, in cases 
requiring repeated resections for recurrent strictures, short bowel 
syndrome leading to a dependence on parenteral nutrition.

Medical therapies to prevent and reverse fibrosis are eagerly 
sought and much of the focus for new therapies has been for 
pulmonary and hepatic disease. As our understanding of the 
pathophysiology of fibrosis improves, we are discovering more 
potential drug targets. Pirfenidone, a growth factor inhibitor, has 
been licensed for use in idiopathic pulmonary fibrosis (IPF), based 
on positive results from Phase 2 and 3 trials (82, 83). Nintedanib, 
a kinase inhibitor that acts on vascular endothelial growth factor 
receptors, PDGF receptors, and fibroblast growth factor recep-
tors, showed efficacy and safety in Phase 2 and 3 trials and is 
licensed for use in IPF (83). Specific NOX4 inhibitors are still not 
available, albeit a NOX inhibitor (GKT137831) performed well 
in preclinical models (35, 42) and a Phase 1 clinical trial (84).  
A Phase 2 trial confirmed safety but not efficacy in the treatment 
of diabetic kidney disease; recruitment for a Phase 2 trial in 
patients with primary biliary cirrhosis is ongoing. Integrin αvβ6 
is another target of interest; it mediates the conformational release 
of active TGFβ from its latent complex (72) and Phase 2 trials of 
a monoclonal antibody in the treatment of IPF are ongoing (85). 
Given the complex interaction between TGFβ secretion and tis-
sue stiffness mediated by myofibroblast contraction, ECM depo-
sition, and cross-linking with further TGFβ release, it is possible 
that the effective treatment of fibrosis will require combination 
therapy. For example, both Simtuzumab, a monoclonal antibody 
to LOXL2, and Relaxin (an inhibitor of myofibroblast contrac-
tion) have individually lacked efficacy for fibrotic disease in Phase 
2/3 trials (86). However, a recent preclinical trial demonstrated 
a reduction in airway fibrosis using Relaxin and anti-LOXL2 
antibody together (87).

Clinical trials assessing antifibrotic efficacy of currently 
available drugs in CD have not yet been initiated. Three times 
daily oral doses of pirfenidone commenced at time of transplan-
tation and continued for 7 days reduced TGFβ expression and 
intestinal fibrosis in an intestinal transplant mouse model (88), 
suggesting that it may prevent fibrosis in CD. Animal models of 
intestinal fibrosis will provide an opportunity for preclinical test-
ing of future drugs that target signaling pathways (23, 89), and 
therapies to reverse as well as prevent fibrosis will be required 
(35). A separate but related challenge still to be addressed will 
be the development of biomarkers for the accurate categoriza-
tion of patients at risk of, or in the early stages of fibrosis, in 
order to intervene in CD at an early stage with existing or future 
antifibrotic drugs.
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