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Abstract: An indole-based fluorescent chemosensor IH-Sal was synthesized to detect Zn2+. IH-Sal
displayed a marked fluorescence increment with Zn2+. The detection limit (0.41 µM) of IH-Sal for
Zn2+ was greatly below that suggested by the World Health Organization. IH-Sal can quantify Zn2+

in real water samples. More significantly, IH-Sal could determine and depict the presence of Zn2+

in zebrafish. The detecting mechanism of IH-Sal toward Zn2+ was illustrated by fluorescence and
UV–visible spectroscopy, DFT calculations, 1H NMR titration and ESI mass.
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1. Introduction

Zinc ion, the second richest in body, has essential roles related to various physiological
functions like gene transcription and immune and brain functions [1–8]. However, the
imbalance of zinc ions may result in several pathological problems, such as epilepsy,
infantile diarrhea, Parkinson’s disease, ischemic stroke and Alzheimer’s disease [9–11].
Thus, effective probing and monitoring of zinc ions in biological systems has become an
important issue [12].

Various analytical methods, like electrochemical methods, inductively coupled plasma
atomic emission spectroscopy (ICP-AES) and atomic absorption spectrometry (AAS), have
been applied for determining zinc ions [13,14]. However, they require complicated sam-
ple preparation, expensive instruments and time-consuming procedures [15]. By con-
trast, fluorescent chemosensors have merits such as high selectivity, simplicity and low
cost [16–22]. Moreover, fluorescent chemosensors could be applied to living organisms for
bio-imaging [23–27]. Meanwhile, it is a huge obstacle to distinguish zinc ions from cad-
mium ions, since they show similarity in chemical properties [28–30]. Thus, chemosensors
capable of discriminating zinc ions from cadmium ions are especially needed.

Indole derivatives have been widely applied to chemosensors for detecting various
ions, such as F−, CN−, I−, Cu2+ and Hg2+ [31–35], because of their unique fluorescent
characters and good water solubility [36,37]. In addition, they are bio-compatible and
essential in biological systems [38–41]. As a result, some of the indole-based chemosensors
have shown applications in aqueous media, which contributed to bio-imaging [42–45].
Nevertheless, only five indole-based Zn2+ chemosensors have been reported to date, and
only one of them presented an application in living organisms [46–50].

Herein, we demonstrate an indole-based fluorescent probe IH-Sal for probing Zn2+,
that was provided by condensation reaction of 2-(1H-indol-3-yl)acetohydrazide and salicy-
laldehyde. IH-Sal showed efficient fluorescence turn-on for Zn2+ and could be applied to
recognize and quantify Zn2+ in real samples and zebrafish.
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2. Experiments
2.1. Materials and Equipment

Reagents were provided commercially. Electrospray ionisation mass spectrometry
(ESI-MS) and nuclear magnetic resonance spectroscopy (NMR) data were provided with a
Thermo Finnigan quadrupole instrument (Thermo Finnigan LLC, San Jose, CA, USA) and
a Varian spectrometer (Varian, Palo Alto, CA, USA). Fluorescent and UV–visible spectra
were provided by Perkin Elmer spectrometers (Perkin Elmer, Waltham, MA, USA).

2.2. Synthesis of IH-Sal ((E)-N′-(2-hydroxybenzylidene)-2-(1H-indol-3-yl)acetohydrazide)

Following the method for synthesizing IH-Sal reported in the literature [51], salicy-
laldehyde (61.1 mg, 5× 10−4 mol) was added to 2-(1H-indol-3-yl)acetohydrazide (100.3 mg,
5.3 × 10−4 mol) in methanol (2 mL) with stirring for 2 h at 23 ◦C (Scheme 1). A white
precipitate was filtered, rinsed with methanol and dried (118.1 mg; 80.5%); 1H NMR in
DMSO-d6: δ 11.77 (s, 0.67H), 11.27 (s, 0.33H), 11.16 (s, 0.67H), 10.94 (s, 0.67H), 10.88 (s,
0.33H), 10.12 (s, 0.33H), 8.41 (s, 0.67H), 8.28 (s, 0.33H), 7.72–6.86 (m, 9H), 4.01 (s, 0.67H),
3.65 (s, 1.33H). 13C NMR in DMSO-d6: δ 172.1 (0.33C), 166.9 (0.67C), 157.2 (0.67C), 156.2
(0.33C), 146.7 (0.67C), 136.0 (0.33C), 131.1 (1C), 130.8 (1C), 129.3 (1C), 127.0 (1C), 123.8
(1C), 123.7 (1C), 121.0 (1C), 120.7 (1C), 118.5 (1C), 118.3 (1C), 116.2 (1C), 111.4 (1C), 107.7
(1C), 31.3 (0.67C), 29.2 (0.33C). ESI-MS (m/z): [IH-Sal + H+ + DMSO]+: calculated, 372.14,
found, 372.25.
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Scheme 1. Synthesis of IH-Sal (see the experimental section for details).

2.3. Preparation of Spectroscopic Experiments

Sensor IH-Sal (2.93 mg, 10 µmol) was dissolved in DMSO (1 mL) for a stock solution
(10 mM). A Zn2+ stock (20 mM) was prepared by dissolving Zn(NO3)2 in bis-tris buffer
(1 × 10−2 M, pH 7). We also prepared other metal ion stocks using their nitrate salts or
perchlorate salts, such as Ga(NO3)3, Co(NO3)2, NaNO3, Cr(NO3)3, Fe(ClO4)2, Ca(NO3)2,
Fe(NO3)3, Pb(NO3)2, Mn(NO3)2, Ni(NO3)2, Cd(NO3)2, Mg(NO3)2, In(NO3)3, Cu(NO3)2,
Al(NO3)3 and KNO3. All spectroscopic experiments were conducted immediately after
mixing them for a few seconds.

2.4. Imaging in Zebrafish

Zebrafish embryos were reared under previously described conditions [52,53]. The
6-day-old embryos were treated with 2 × 10−5 M of IH-Sal (containing 0.02% DMSO in
E2 media) for 21 min. After washing with E2 media to eliminate the remnant IH-Sal, the
embryos were treated with two different amounts of Zn2+ solution (2.5 and 5.0 × 10−5 M)
in E2 media for 20 min and washed again. Before observing changes, the embryos were
narcotized by adding ethyl-3-aminobenzoate methanesulfonate. An imaging experiment
was performed with a fluorescent microscope and the intensity of the images was measured
by Icy software (Institut Pasteur, Paris, France).

2.5. Calculations

The results of theoretical calculations were given with the Gaussian 16 program (Gaus-
sian, Inc., Wallingford, CT, USA) [54]. Before calculating electronic states of IH-Sal and
IH-Sal-Zn2+ complex, their optimal geometries were provided with the density functional
theory (DFT) method [55,56]. The hybrid functional was B3LYP, and the 6-31G(d,p) basis set
was implemented for all atoms except for Zn2+ [57,58]. Additionally, the LANL2DZ basis
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set was applied for effective core potentials (ECP) to Zn2+ [59–61]. Imaginary frequency
was not shown in optimized forms of IH-Sal and IH-Sal-Zn2+, implying that they meant
local minima. With IEFPCM, the solvent effect of water was considered [62]. Based on
energy-optimized forms of IH-Sal and the IH-Sal-Zn2+ complex, the plausible UV–Vis
transition states were verified with the DFT method with the twenty lowest singlet states.

3. Results and Discussion
3.1. Structural Characterization of IH-Sal

The 1H NMR of IH-Sal showed pairs of singlets having a 1:2 ratio of integral value
for the protons H1, H6, H8, H9 and H14, implying that it has two isomeric forms originated
from keto-enol tautomerization (Figure S1). The compound IH-Sal was further verified by
13C NMR and ESI-MS.

3.2. Spectroscopic Examination of IH-Sal to Zn2+

To comprehend the fluorescent characteristic of IH-Sal, the fluorescent variation
was checked with varied cations in bis-tris buffer (Figure 1a). IH-Sal itself exhibited no
fluorescence emission. Upon the addition of the cations except for Zn2+, IH-Sal displayed
either no variation or a trivial increase in the fluorescent emissions. Meanwhile, the addition
of Zn2+ displayed a striking fluorescence increment at 465 nm (λex = 369 nm) with a large
stokes shift. The stokes shift was the largest among indole-based Zn2+ sensors (Table S1).
The quantum yields (Φ) of IH-Sal and IH-Sal-Zn2+ were calculated to be 0.014 and 0.153,
respectively. Therefore, IH-Sal can work as a fluorescence sensor for a clearly selective
probing of Zn2+. In the literature, the displacement of the indole moiety in IH-Sal by a
benzene ring or tetraphenylethylene showed that the sensors sensed Zn2+ ions only in
organic or semi-aqueous solvents [63,64], confirming that the indole moiety might play an
important role in increasing water solubility of IH-Sal.
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To demonstrate the sensing characteristics of IH-Sal to Zn2+, a fluorescence titration
of IH-Sal and Zn2+ was conducted (Figure 1b). The fluorescence intensity of IH-Sal at
465 nm consistently increased up to 8.5 equivalent (equiv) of Zn2+. The photophysical
characteristics of IH-Sal were also tested with UV–Vis spectrometry (Figure 1c). With the
addition of Zn2+ to IH-Sal, the absorption of 250 and 360 nm consistently increased, and
that of 290 and 320 nm decreased. There were clean isosbestic points at 257 and 340 nm,
implying that one species was provided by the complexation of IH-Sal with Zn2+. On the
other hand, the UV–Vis change in IH-Sal with various metal ions showed that IH-Sal was
not selective to Zn2+ (Figure S2).

To confirm the stoichiometry of complexation, the Job plot experiment was carried out
(Figure S3). The biggest intensity was shown at a mole fraction of 0.5, suggesting that IH-
Sal and Zn2+ formed a 1:1 binding compound. The 1:1 binding of IH-Sal-Zn2+ was verified
by ESI-MS analysis (Figure S4). Positive ion mass displayed that the peak of 511.58 (m/z)
was suggestive of [IH-Sal(-H+) + Zn2+ + 2DMSO]+ (calculated, 512.07). Based on the
stoichiometry, the Benesi–Hildebrand equation [65,66] was used to calculate K (association
constant) for IH-Sal-Zn2+ (Figure S5). The K value was given to be 1.6 × 104 M−1, which
was within the scope of those (1~1.0 × 1013) addressed for Zn2+ sensors.

The 1H NMR titrations were executed to demonstrate the binding interaction of IH-
Sal and Zn2+ (Figure 2). With the addition of Zn2+ to IH-Sal, the proton H14′ disappeared
and the proton H9 was slightly moved to upfield. These results implied that the enol form
of IH-Sal could interact with Zn2+ using the oxygen of the deprotonated phenol and the
nitrogen of the imine group (Scheme 2).
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We used IH-Sal to measure the amount of Zn2+ in real water samples, based on a
calibration plot of IH-Sal to Zn2+ (Figure S6). As real water samples, we chose tap and
drinking water (Table 1). Quantification of each sample was repeated twice and showed
proper recovery and relative standard deviation (R.S.D.), indicating that IH-Sal could work
as an efficient chemosensor for monitoring Zn2+ in real samples. From the calibration
curve, the detection limit of IH-Sal for zinc ions was calculated to be 0.41 µM based on
3σ/k, which was greatly below that suggested by the WHO (76.0 µM) for Zn2+ ions [67].
The value is the lowest among those previously found for indole-based Zn2+ chemosensors
in a near-perfect aqueous solution (Table S1).

Table 1. Determination of Zn2+. a

Sample Zn2+ Added
(µM)

Zn2+ Found
(µM)

Recovery
(%)

R.S.D. (n = 3)
(%)

Drinking water 0.0 0.0 - -
10.0 10.0 100.01 1.58

Tap water 0.0 0.0 - -
10.0 10.1 101.00 0.40

a Conditions: [IH-Sal] = 1 × 10−5 M in buffer.

To prove the practicability of IH-Sal as a practical probe for zinc ions, competitive tests
were executed (Figure S7). With the same amount of Zn2+ and other cations with IH-Sal,
most cations did not inhibit the sensing ability of IH-Sal for zinc ions. However, Cu2+,
Fe2+, Cr3+, Fe3+ and Co2+ interfered with the fluorescence emission of IH-Sal with Zn2+.

The pH dependence of IH-Sal-Zn2+ for biological application was tested with various
pH values (6–9, Figure S8). While there was no fluorescence emission at pH 6, IH-Sal-Zn2+

showed a remarkable fluorescence response between pH 7 and 9, indicating that IH-Sal
can clearly recognize Zn2+ by the fluorescence application within the environmental pH
range [68]. Based on the result of the pH dependence, fluorescence imaging of zebrafish
was performed to widen the biological application. While the zebrafish cultured with
IH-Sal (20 µM) alone did not show any fluorescent signal (Figure 3), blue emission on the
zebrafish cultured with IH-Sal gradually increased as the amount of Zn2+ increased from
0 to 50 µM. The mean intensity of the images was calculated with Icy software (Figure S9),
given the detection limit of 5.07 µM. These results supported the biocompatibility of IH-Sal
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as a useful fluorescent probe for sensing Zn2+ in live organisms. Importantly, this is the
second indole-based Zn2+ chemosensor for application to living organisms (Table S1).
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3.3. Calculations

With the results of the Job plot and ESI mass, the optimal structures of IH-Sal-Zn2+

and IH-Sal were provided with DFT calculation (Figure 4). IH-Sal with a dihedral angle of
−179.427◦ (1O, 2N, 3N, 4O) had a moderately distorted structure (Figure 4a). IH-Sal-Zn2+

had a structure with a flipped phenol group (Figure 4b), showing a dihedral angle of 2.495◦.
Based on the energy-optimized forms of IH-Sal and IH-Sal-Zn2+, transition energies and
molecular orbitals were examined with TD-DFT calculations. For IH-Sal, the main absorp-
tion of HOMO-1→LUMO transition (314.18 nm) exhibited π→π* transition (Figure S10).
The major absorption of IH-Sal-Zn2+ derived from HOMO→LUMO transition (358.71 nm,
Figure S11) also displayed π→π* transition (Figure S12). The red shift (320 to 360 nm)
shown in the UV–Vis spectra was greatly matched with the calculated transitions and
corresponded to a decreased energy gap. These outcomes implied that the fluorescence
turn-on of IH-Sal to Zn2+ may be a chelation-enhanced fluorescence (CHEF) effect [69].
With the Job plot, ESI-MS, 1H NMR titration and calculations, the appropriate structure of
IH-Sal-Zn2+ is proposed in Scheme 2.
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4. Conclusions

We illustrated an indole-based fluorescent probe, IH-Sal, which was produced from
the condensation of 2-(1H-indol-3-yl)acetohydrazide and salicylaldehyde. IH-Sal could
work as an effective fluorescent probe for monitoring Zn2+. The detection limit (0.41 µM)
for Zn2+ was significantly below that suggested by the WHO (76.0 µM). The value is
the lowest among those previously found for indole-based Zn2+ chemosensors in a near-
perfect aqueous solution. IH-Sal could be reliably applied to real samples and showed
its practical applicability to recognize Zn2+ in zebrafish. Importantly, this is the second
indole-based Zn2+ chemosensor for application to living organisms. Thus, we believe that
IH-Sal can be an efficient fluorescent chemosensor to determine Zn2+ in biological and
practical applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21165591/s1, Table S1: Examples of indole-based Zn2+ chemosensors found to date; Figure S1:
1H NMR spectrum of IH-Sal; Figure S2: UV–Vis changes in IH-Sal (1 × 10−5 M) with various metal
ions (8 equiv); Figure S3: Job plot for the binding of IH-Sal with Zn2+ (50 µM) in bis-tris buffer
(10 mM, pH 7.0); Figure S4: Positive-ion ESI mass spectrum of IH-Sal (100 µM) upon the addition of
1 equiv of Zn2+; Figure S5: Benesi–Hildebrand equation plot (at 465 nm) of IH-Sal (10 µM) based on
fluorescence titration, assuming 1:1 stoichiometry for association between IH-Sal and Zn2+; Figure S6:
Calibration curve of IH-Sal as a function of Zn2+ concentration; Figure S7: Competitive selectivity of
IH-Sal (10 µM) toward Zn2+ (8.5 equiv) in the presence of other metal ions (8.5 equiv, λex = 369 nm);
Figure S8: Fluorescent intensity of IH-Sal (10 µM) and IH-Sal-Zn2+ species, respectively, at different
pH values (6–9); Figure S9: Quantification of mean fluorescence intensity in Figure S7 (a2, b2 and c2);
Figure S10: (a) The theoretical excitation energies and the experimental UV–Vis spectrum of IH-Sal.
(b) The major electronic transition energies and molecular orbital contributions of IH-Sal; Figure S11:
(a) The theoretical excitation energies and the experimental UV–Vis spectrum of IH-Sal-Zn2+. (b) The
major electronic transition energies and molecular orbital contributions of IH-Sal-Zn2+; Figure S12:
The major molecular orbital transitions and excitation energies of IH-Sal and IH-Sal-Zn2+.
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