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Neurodegenerative diseases affect brain morphology and connectivity, making complex networks a suitable tool to investigate and
model their effects. Because of its stereotyped pattern Alzheimer’s disease (AD) is a natural benchmark for the study of novel
methodologies. Several studies have investigated the network centrality and segregation changes induced by AD, especially with a
single subject approach. In this work, a holistic perspective based on the application of multiplex network concepts is introduced.
We define and assess a diagnostic score to characterize the brain topology and measure the disease effects on a mixed cohort of 52
normal controls (NC) and 47 AD patients, from Alzheimer’s Disease Neuroimaging Initiative (ADNI). The proposed topological
score allows an accurate NC-AD classification: the average area under the curve (AUC) is 95% and the 95% confidence interval is
92%–99%. Besides, the combination of topological information and structural measures, such as the hippocampal volumes, was
also investigated. Topology is able to capture the disease signature of AD and, as the methodology is general, it can find interesting
applications to enhance our insight into disease with more heterogeneous patterns.

1. Introduction

Recent years have shown an increasing interest for graph-
based measures in magnetic resonance imaging (MRI)
and diffusion-weighted imaging (DWI) studies focused on
brain diseases [1–6]. Among neurodegenerative diseases,
Alzheimer’s disease (AD) is the most common type of
dementia affecting over 5 million people [7, 8] and is
characterized by a well-known stereotyped pattern involving
awhole brain left privileged atrophy, especially affecting some
regions related to cognitive functionality as the hippocampus
[9–13]. However, it is not clear yet whether the combined
use of MRI and DWI modalities can significantly enhance its
diagnosis.

Previous machine learning studies, investigating mixed
cohorts of normal controls (NC) and AD patients, have
reported conflicting results, an even more evident effect with
the inclusion of mild cognitive impairment (MCI) subjects.
In some cases the combination of DWI and MRI features

reported a significant classification improvement [14, 15]; in
others these results were not confirmed [16]. It is obvious
that a fair comparison should require common data sets
and validation techniques; nevertheless, it is manifest that
a primary role is played by the different features adopted.
Different features, in fact, not only provide a different base
of knowledge (which naturally affects the machine learning
models) but also capture different clinical aspects. Measures
based on directional diffusion, such as fractional anisotropy
(FA), have been extensively used as they are able to detect
the connectivity impairment effect of AD [17]. Some studies
revealed remarkable effects with axial and radial diffusivity
(𝜆1, RD) [18, 19]. In other cases huge effects were revealed in
RDormeandiffusivity (MD) [20]. Finally, even if it is FA to be
largely adopted, in some cases it can result in being insensitive
[21, 22].

It is worth noting that the vast majority of reported
results are focused on voxelwise DWI-related measures
more than global connectivity metrics. However, the recent
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developments of more accurate and sophisticated process-
ing pipelines for tractography reconstruction [23, 24] have
encouraged the exploration of connectivity and topological
measures to quantify the brain changes [25, 26]. Typical
findings especially inherent to AD are related to connectivity
disruption, eventually characterized by a loss of small world
[27, 28] or rich club organization of the brain [29, 30].
AD patients exhibit a decreased network efficiency, implying
abnormal topological organization [31, 32].

These studies are based on two, not necessarily compet-
ing, underlying hypotheses; that is, brain dysfunctions can be
yielded by (i) a local connectivity impairment [33] or by (ii) an
abnormal overall organization of the brain [34, 35]. The local
impairment hypothesis has been largely confirmed. However,
for the second hypothesis encouraging results have been
reported. Indeed, topological measures can have detectable
effect size [36, 37].

A holistic approach which describes the AD effects from
a topological perspective is adopted here. More than focusing
on local impairments we look for discriminating patterns in
the brain connectivity organization; thus, DWI tractography
is used to introduce a diagnostic topological score. As for
the chosen cohort T1 MRI scans were also available; the
score is compared and combined with volumetric measures
to assess its informative content.The presented methodology
is general, even tested in this case on Alzheimer’s disease.
It allows a description of the overall brain topology; thus,
its application to diseases with less stereotyped patterns
[38], such as Schizophrenia or Multiple Sclerosis, could give
further insight.

2. Materials and Methods

2.1. BrainConnectivityMatrices. Data used in the preparation
of this article were obtained from Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database (http://adni.loni.usc
.edu). The ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator MichaelW.Weiner,
MD. The primary goal of ADNI has been to test whether
serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biologicalmarkers, and clinical and
neuropsychological assessment can be combined to measure
the progression of mild cognitive impairment (MCI) and
early Alzheimer’s disease (AD).

For the present study 99 subjects from Alzheimer’s
Disease Neuroimaging Initiative (ADNI) including normal
controls (NC) and Alzheimer disease (AD) patients were
analyzed. We chose this cohort in order to have for each
subject both T1 MRI and DWI brain scans. T1-weighted
sequences (voxel size = 1.2 × 1.0 × 1.0mm3; TI = 400ms;
TR = 6.98ms; TE = 2.85ms; flip angle = 11) and DWI scans
(voxel size = 2.7×2.7×2.7mm3) are described in detail on the
ADNIwebsite (http://adni.loni.usc.edu/wp-content/uploads/
2010/05/ADNI2 GE 3T 22.0 T2.pdf); in particular for DWI
46 separate images were acquired: 5 T2-weighted (𝑏 =
0 s/mm2 images) and 41 diffusion-weighted images (𝑏 =
1000 s/mm2). Demographics and clinical information are
shown in Table 1.

Table 1: Data size, age range, gender, and a cognitive score (Mini
Mental State Examination (MMSE)) are shown for each diagnostic
group: normal control (NC) and Alzheimer’s disease (AD) subjects.
Mean and standard deviation are shown when appropriated.

Size Age Gender MMSE
NC 52 73 ± 6 M/F 26/28 29 ± 1
AD 47 75 ± 9 M/F 29/18 23 ± 2

For each subject DICOM images were acquired from
ADNI database. MRICRON software was used to convert
DICOM to NIFTI format, with the dcm2nii suite. Then
FMRIB Software Library (FSL) by the Oxford Centre for
Functional MRI of the Brain, and in particular its diffusion
toolkit FDT, was used for the complete image processing
pipeline; see Figure 1 for the overall flowchart:

(1) Eddy current correction was performed to mitigate
artifacts caused by eddy currents in the gradient coils.

(2) Brain extraction was performed to erase nonbrain
tissue from each subject scan, thus reducing the
computational burden of the analysis.

(3) An affine registration of all scans was employed to
spatially normalize the whole data set to the MNI152
template. With this step the image processing phase
was concluded.

(4) Bayesian estimation of diffusion parameters and the
inherent tensor fitting was obtained with sampling
techniques at each voxel.This stepwas preparatory for
running the subsequent probabilistic tractography.

(5) Finally, probabilistic tractography was performed
to obtain the connectivity matrix of each subject.
Specifically, the Harvard-Oxford cortical atlas (http://
neuro.imm.dtu.dk/wiki/Harvard-Oxford Atlas) was
used, thus resulting in a brain parcellation of 96
regions, 48 per hemisphere.

The final output was a weighted symmetric connectivity
matrix W whose elements 𝑤𝑖𝑗 represented the strength of
connectivity, that is, the number of fibers, between the 𝑖th and
𝑗th regions. The fundamental step of the whole image pro-
cessing was the fiber reconstruction. The FDT tool generates
a probabilistic streamline or a sample from the distribution
on the location of the true streamline. By taking many such
samples the histogram of the posterior distribution on the
streamline location or the connectivity distribution is then
built. Finally, themost probable traits connecting two regions
are computed. We averaged the traits connecting region 𝑖 to
𝑗 and vice versa 𝑗 to 𝑖 to obtain a symmetric matrix. We
considered all non-null connections, disregarding the weight
information and obtaining a binary connectivity matrix C
whose elements 𝑐𝑖𝑗 were straightforwardly defined:

𝑐𝑖𝑗 =
{
{
{

1 if 𝑤𝑖𝑗 > 0
0 otherwise.

(1)

As the focus of this study was the topological organization
of the brain, we privileged the study of C; nonetheless, we

http://adni.loni.usc.edu
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Figure 1: The figure shows the processing pipeline underwent by brain DWI scans. The dotted box includes the dedicated image processing
steps: (a) eddy correction, (b) brain extraction, and (c) affine registration. For each voxel the diffusion tensor was estimated, (d) thus allowing
the probabilistic fiber reconstruction. Using the Harvard-Oxford atlas, the connectivity matrix derived from tractography was computed for
each subject.

also investigated the information carried by the connectivity
weights. In principle, weight information should help the
cohort discrimination as weights are directly affected by the
impairment caused by the disease. However, it is worthwhile
to note that tractography is very sensitive to artifacts and
noise due to reconstruction algorithms and as a consequence
it sometimes shows biological insights difficult to interpret.

2.2. Topological Overlap. The binary connectivity matrix C𝛼
of each subject 𝛼 in the cohort is a compact representation
of connected brain regions. A reasonable and partially con-
firmed hypothesis, deriving from the AD peculiarity of being
a neurodegenerative disease, is that connectivity impairment
should have a direct effect on the network topology. Besides,
the impairment should reflect the severity of the pathological
condition; thus, it should be expected that, for severe AD
conditions, topology should manifest more evident changes.
Nonetheless, natural biological variability can sometimes
conceal these local effects and a huge statistical power will
be required to investigate each brain connection and get a
significant measurement.

We propose instead of describing the connectivity loss
with a global indicator, trying to capture the whole brain

behavior. To capture the whole informative content of the
cohort in one comprehensive model we chose to adopt the
novel multiplex network framework. A multiplex network,
from now onward simply multiplex, is by definition a col-
lection of networks sharing the same nodes [39]. Generally
adopted in social sciences, this concept is naturally intro-
duced to describe system with heterogeneous interactions.
As an example, scientific authors with a common publication
can be represented as a network; if this operation is stratified
considering, for example, different journals or editors, a mul-
tiplex description arises. Another common example concerns
the different relationships a group of people can share: social,
geographical, and physical, just to mention a few.

The same concept applies here if we consider the anatom-
ical districts as the fixed nodes of a network and build a
network for each subject as if subjects were representing a
stratification factor. Given a collection of these single subject
networks, the multiplex can be visually represented as a 3D
structure formed by𝑀 layers, one layer for each subject 𝛼, as
shown in Figure 2.

LetC = (C1, . . . ,C𝛼, . . . ,C𝑀) be themultiplex with each
single subject graph C𝛼 formed by 𝑁 nodes, the 96 labeled
regions of the Harvard-Oxford atlas, and 𝑀 layers (layers
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Figure 2: All subjects of the cohort are represented through graphs with exactly the same nodes (in red), corresponding to brain anatomical
districts, but with different connections. For example, the figure shows the case of two nodes (1, 2) connected for all subjects and two nodes
(1, 3) connected only in the first two subjects. The presence of a link in different subjects is also outlined (blue dashed lines). For each link in
the networks it is possible to measure the fraction of subjects having a link in common, the so-called link overlap.

and subjects in this work will be interchangeably used). For a
generic node of the multiplex 𝑖 and for two generic subjects 𝛼
and 𝛼 it is possible to define the local node overlap 𝑛𝛼,𝛼𝑖 [40]
which is the total number of nodes 𝑗 linked to the node 𝑖 in a
couple of layers 𝛼 and 𝛼:

𝑛𝛼𝛼𝑖 =
𝑁

∑
𝑗=1

𝑐𝛼𝑖𝑗𝑐𝛼


𝑖𝑗 . (2)

This is really useful information when investigating how cen-
tral the node is within each layer, for example, to understand
if there is a direct association between the kind of relationship
defining the layer and the role played within it by a particular
node.

However, from a topological point of view this is not
very useful information, because what defines topology is not
how intense the connections are, but their existence. Thus,
adopting the same strategy to our case, we introduce here the
link overlap matrix O and its elements 𝑜𝑖𝑗:

𝑜𝑖𝑗 =
1
𝑀
𝑀

∑
𝛼=1

𝑐𝛼𝑖𝑗 . (3)

This matrix counts the number of times a link is present
within each layer𝑀. It is therefore a symmetricmatrix whose
values lie in the [0, 1] interval.

It is reasonable to expect that link overlap should charac-
terize important correlations among the different layers. One
of the questions addressed by the present work is whether
this measurement can detect the cross-sectional differences
within a mixed NC/AD cohort. Accordingly, we built the
multiplexes of NC subjects and AD patients. For both cases,
the link overlap matrices ONC and OAD were computed.
These matrices became binary with a 0.5 threshold for both
NC and AD cohorts, considering it a likelihood measure
assigned to each link.

The link overlap matrices represent the connectivity
backbone of each population; in fact a qualitative difference

can be directly observed by comparing the NC and the AD
cases as shown Figure 3.

The overlap difference matrixD defined as

D = ONC − OAD (4)

has some interesting properties. It is a symmetric matrix
whose elements 𝑑𝑖,𝑗 are 0 for all connections with an identical
behavior in both NC and AD cohorts and ±1 for those
connections present, respectively, only in ONC or OAD. To
emphasize these differences we introduce for each subject 𝛼
a topological connectivity scoreS𝛼 as the Hadamard, that is,
element-wise, product ofC𝛼 andD:

S
𝛼 =
𝑁

∑
𝑖,𝑗=1

1
2𝑐
𝛼
𝑖j𝑑𝑖𝑗 (5)

with 𝑑𝑖𝑗 representing the elements of D and the division
by 2 takes into account the symmetry of C𝛼 and D. In
the same way a weighted connectivity score S𝛼𝑤 can be
introduced by considering in the previous equation the
original connectivity matrixW𝛼 and its elements 𝑤𝑖𝑗:

S
𝛼
𝑤 =
𝑁

∑
𝑖,𝑗=1

1
2𝑤
𝛼
𝑖𝑗𝑑𝑖𝑗. (6)

The topological score is designed to capture how disease
affects the topological organization of the brain. Its weighted
version, which includes the information inherent to the con-
nectivity strength, could in principle enhance the segregation
capability of the two cohorts. In fact, we will directly address
this aspect in the following sections. The two scores were
finally normalized to get a direct probabilistic interpretation
as diagnostic scores.

3. Results and Discussion

3.1. Quantitative Assessment of S and S𝑤 Scores. To evaluate
the capability of bothS andS𝑤 to capture the effects yielded
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Figure 3: The figure shows the overlap matrices computed for the AD (a) and the NC (b) cohorts represented by the angular order of the
eigenvectors. (c) shows the overlap difference between the controls and patients. AD patients have a lesser number of edges 𝐸AD = 1463 <
1523 = 𝐸NC. Interestingly, AD and NC seem to show different patterns of connectivity more than an overall impairment.

by disease on brain organizationwe computed them adopting
a leave-one-out cross-validation framework.Thus, each score
was computed using the difference overlapD resulting from
the remaining subjects in the cohort.The separation between
ADandNC, as shown in Figure 4, denoted a significant effect.

In fact, the topological score S resulted in a Wilcoxon 𝑝
value 𝑝 = 2 ⋅ 10−13 while for S𝑤 we found 𝑝𝑤 = 2 ⋅ 10−11.
Even if both 𝑝 values showed a 0.01 significance, the relative
effect measured in terms of Cohen’s ℎ distance revealed that
S had a larger effect, almost double, than S𝑤 with ℎ = 1.4 >
0.8 = ℎ𝑤. The effect was also qualitatively manifest when
comparing the score distributions, shown in Figures 4(b) and
4(c). The weighted scores of NC and AD showed a greater
superimposition if compared with topological scores.

These results demonstrated that the proposed topological
scores had a significant association with the disease effect, or
in other words, they were proper measurement of the topo-
logical differentiation affecting a diseased brain. Provided
that the topological score resulted in a diagnostic index being

more effective than its weighted variant, they were obviously
correlated measures, as shown in Figure 5.

However, their Pearson’s correlation 𝑟 = 0.61 was not
so high as one could have expected. This result showed
that the information carried by both the scores was not
redundant. Besides, this result can be interpreted in terms
of the quality of the information content carried by both
scores. Interestingly, the topological score furnishes better
quality information even disregarding the additional weight
information. Nonetheless, the weighted topological score
should deserve further studies, especially aimed at removing,
as previously explained, noisy connections and artifacts
yielded by the tractography reconstruction algorithms which
obviously negatively affected its discriminating power.

3.2. Brain Topology and Anatomy. Another important aspect
concerning the topological score interpretation and its
weighted version is whether they can or cannot directly be
related to brain anatomy. This analysis in particular aims at
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Figure 4:The figure shows (a) the boxplot of topologicalS and weightedS𝑤 scores.The separation effect is more evident when usingS.This
is also evident when looking at the score distributions: the weighted score (c) shows a consistent overlap between NC and AD if compared
with topological score distribution (b).

quantifying whether an association exists from the topolog-
ical organization of the brain and the atrophy of particular
brain regions related to the disease. This test should outline
in particular how structural MRI and DWI can be combined
to better characterize and distinguish the diseased patterns.

Firstly, we computed the volumes of subcortical features
of interest for AD. Specifically, we measured the volumes of

Left Thalamus (L-Th), Left-Caudate (L-Cd), Left Putamen
(L-Pt), Left Pallidum (L-Pa), Left Hippocampus (L-Hp), Left
Amygdala (L-Am), Left Accumbens (L-Ac), Right Thalamus
(R-Th), Right Caudate (R-Cd), Right Putamen (R-Pt), Right
Pallidum (R-Pa), Right Hippocampus (R-Hp), Right Amyg-
dala (R-Am), and Right Accumbens (R-Ac) with the FSL
FAST tool.Then wemeasured Pearson’s correlations between
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Figure 5: The figure shows moderate Pearson’s 𝑟 = 0.61 correlation
characterizing the topological score S and its weighted variant S𝑤.
A higher correlation could have been expected; nonetheless, artifacts
and noise yielded by reconstruction tractography algorithms have
obviously a greater effect on computed weights, more than their
presence.

each regions and our proposed scores S and S𝑤. Results are
shown in Figure 6.

The correlations were ordered by hierarchical clustering,
in this way the more correlated regions tended to be placed
together in the correlation matrix. This is the reason, for
example, for the manifest pairing of left/right regions. It is
worth noting that both S and S𝑤 were poorly correlated
to structural features. This result would suggest that the
topological brain organization contains intrinsic information
that it does not sharewith structuralmeasurements.Themost
correlated structural features to the proposed scores (𝑟 ∼ 0.3)
were the hippocampal volumes.

To measure the information content provided by S
and S𝑤 we trained with both of them (as we previously
demonstrated they were not redundant) a support vector
machine model with 500 5-fold cross-validation. Obviously,
to avoid any bias in this step the computation of matrices
ONC, OAD, and D was performed again, but considering
only the training sample. This test allowed also assessing
the information contained in S and S𝑤, when compared
with the structural features derived from T1 scans. For this
measure we adopted the area under the curve (AUC) of the
receiver operating characteristic (ROC) curve. Results are
summarized in Figure 7.

The average AUC corresponding to S and S𝑤 scores
was 95% with a 95% confidence interval of 92%–99%. For
what concerns structural features the performance had a
drastic drop with an AUC of 76% and confidence interval of
66%–86%. Interestingly, when combining the information of
structural features with the topological one not a significant
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Figure 6: The figure shows Pearson’s correlation between the
proposed topological S and weighted S𝑤 scores and the structural
measurements of Left Thalamus (L-Th), Left-Caudate (L-Cd), Left
Putamen (L-Pt), Left Pallidum (L-Pa), Left Hippocampus (L-Hp),
Left Amygdala (L-Am), LeftAccumbens (L-Ac), RightThalamus (R-
Th), Right Caudate (R-Cd), Right Putamen (R-Pt), Right Pallidum
(R-Pa), Right Hippocampus (R-Hp), Right Amygdala (R-Am), and
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Figure 7: A comparison of the receiver operating characteristic
curves for S and S𝑤 scores (red), the structural features (black),
and their combination (blue) is presented. Corresponding AUC
performance is 95%, 93%, and 76%.

effect shows up. In fact, AUC was 93% with a 95% confidence
interval of 0.88–0.98.

Structural and topological features are not correlated as
shown in Figure 6; therefore, one could expect an improve-
ment of classification when combining the two typologies of
features. However, as previously mentioned, this is still an
open question. For what concerns this study, these results
made us hypothesize that there could be a misleading effect
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driven by confounding features. To test this hypothesis we
used among structural features only hippocampal volumes;
the measured AUC (88%, 95% confidence interval 75%–91%)
was slightly higher than using the whole set of structural
features; its effect also improved, even if not significantly, the
overall classification performance with topological features
(AUC 97%, 95% confidence interval 94%–100%).

This result suggests that a careful feature selection strategy
should be applied to gain an effective information contribu-
tion from different imaging modalities.

4. Conclusions

In this study a novel approach to characterize the brain
organization from a topological perspective is presented.
In particular, because of the well-known and stereotyped
pattern characterizing AD, we chose to use this pathology
as a benchmark. A topological score and a weighted variant
have been defined and used to train support vector machines
on a mixed NC/AD cohort. Results showed that topological
information was able to efficiently detect diseased patterns
(AUC = 95%, 95% confidence interval 92%–99%).

We also addressed in this study the problem of quan-
tifying the effect of combining MRI-based features with
topological ones. We found that their combination can
improve classification accuracy; nonetheless, this is strictly
related to the quality of structural features used. In fact,
when using all MRI features available the classification
performance decreased; on the contrary, it was slightly raised
using hippocampal volumes whose association with AD is
well known. A subtle effect should be better investigated on
larger cohorts.

The performance obtained is comparable with best results
reported in the literature so far, but possible improvements
could include a more refined study of weighted networks,
instead of their binary version; nevertheless, this cannot be
considered a limitation of the present study, whose main goal
was to investigate the brain topology and understandwhether
the topological measures proposed were suitable for clinical
purposes.

The presentedmethodology is general, even if in this case
it has been tailored on Alzheimer’s disease. For future work,
we propose to investigate the application of this methodology
tomixed cohorts including alsoMCI subjects, trying to tackle
the discrimination problem between subjects converting to
AD or not, and the early diagnosis of AD. Patients affected
by neurodegenerative diseases incur a cognitive impairment
which could be effectively diagnosed and monitored by these
measurements, a useful trait for technological innovations
in the e-health field, for example, for remote medicine
applications, or for pharmacological industries, aiming at the
development of drug therapies and clinical trials. Further
investigations could be aimed at diseases affecting the brain
organization with less stereotyped patterns.
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