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Abstract: Influenza virus is a highly contagious zoonotic respiratory disease that causes seasonal out-
breaks each year and unpredictable pandemics occasionally with high morbidity and mortality rates,
posing a great threat to public health worldwide. Besides the limited effect of vaccines, the problem
is exacerbated by the lack of drugs with strong antiviral activity against all flu strains. Currently,
there are two classes of antiviral drugs available that are chemosynthetic and approved against
influenza A virus for prophylactic and therapeutic treatment, but the appearance of drug-resistant
virus strains is a serious issue that strikes at the core of influenza control. There is therefore an
urgent need to develop new antiviral drugs. Many reports have shown that the development of
novel bioactive plant extracts and microbial extracts has significant advantages in influenza treat-
ment. This paper comprehensively reviews the development and effects of chemosynthetic drugs,
plant extracts, and microbial extracts with influenza antiviral activity, hoping to provide some refer-
ences for novel antiviral drug design and promising alternative candidates for further anti-influenza
drug development.
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1. Background

Influenza virus is a negative-sense, single-stranded RNA virus belonging to the
Orthomyxovirus family, influenza virus genus. Influenza viruses can be classified according
to their antigenicity into four types—A, B, C and D [1]. Of these, influenza A viruses are
the most pathogenic to humans and have a wide range of hosts. Influenza A virus has
18 different hemagglutinin (HA) subtypes (H1–H18) and 11 different neuraminidase (NA)
subtypes (N1–N11), which together define the influenza A virus subtype [1–3]. The host
range of influenza B virus is relatively limited and its pathogenicity to humans is relatively
weak. According to epidemiological investigation, no influenza B virus pandemic has
ensued so far [3–6]. Type C influenza virus causes only mild respiratory disease in humans,
while type D influenza virus does not appear to be pathogenic to humans [7,8]. The most
important characteristic of influenza virus is its variability due to its segmental RNA
genome contributing to antigen variation, which makes it extremely difficult to develop
vaccines and drugs [9–11].

Influenza A virus causes seasonal epidemics worldwide every year and has been
responsible for several global outbreaks in history, such as the 1918 Spanish flu and the
2009 H1N1 pandemic [12,13]. Seasonal transmission of influenza virus varies according
to geographical location, population size, and population movement in different climatic
regions. Understanding the seasonal transmission of influenza virus in different climatic re-
gions can provide theoretical support for optimizing the efficiency of influenza vaccination
programs [14]. The annual financial impact of seasonal influenza in China and the world
is very large, but not as large as the financial impact of influenza pandemics, such as the
worldwide H5N1 and H1N1 outbreaks, which cost countries affected by the influenza virus
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more than $80 billion in financial losses [15]. Therefore, it can be said that the influenza
virus is a serious threat to the safety of public health. Thus far, the World Health Orga-
nization still believes that vaccines are the best way to prevent and control an influenza
pandemic; however, influenza viruses constantly undergo genetic changes and require
vaccines that match the circulating influenza strains to be effective, so seasonal influenza
vaccines have to be modified annually [16–19]. In addition, the application of vaccines has
also been limited due to the side effects and storage difficulty [17]. Therefore, the study
of antiviral drugs is increasingly imperative [16,20]. In this paper, the development and
effects of anti-influenza drugs from different sources are reviewed in order to provide new
ideas for the prevention and control of influenza in future.

2. Influenza Virus Invades Host Mechanisms

When influenza virus invades host cells, the HA protein of the virus first binds to
cellular receptors with α-2,3-linked or α-2,6-linked sialic acid. After that, influenza virus is
internalized through a variety of endocytic pathways, including cypermethrin-dependent
and non-cypermethrin-dependent pathways [21–23]. The cation channel of the M2 ion
channel protein of the virus then opens, reducing the pH value inside the virus, allowing
the viral envelope to fuse with the endosomal membrane in a low pH-dependent manner,
and the viral genome is released into the cytoplasm, where it is further transported to
the nucleus to begin genome replication [24,25]. During this process, influenza virus HA,
NA, M2, and vRNP complex play critical roles, making them potential targets for the
development of anti-influenza drugs. HA is a membrane protein that exists on the surface
of the virus and is composed of HA1 and HA2 [26–28]. Highly pathogenic avian influenza
virus strains (H5 and H7 subtypes) have the ability to infect humans due to their HA
receptor binding site (RBS) mutation, thereby enhancing the affinity of the virus to the
cell surface receptor (α-2,6-linked sialic acid) [27,29]. In addition to binding to host cells,
the second major function of HA is to mediate viral and cell membrane fusion [30,31].
This fusion process is essential for the introduction of the viral genome into cells [32–34].
Indeed, new antiviral drugs have been developed using HA as an antiviral target [35].

As an important weapon for influenza virus to destroy host cell receptor, NA can
prevent the accumulation of virus particles on the surface of host cells caused by the
adsorption function of HA, and can promote the release of virus progeny particles, which
also play an important role in the process of influenza virus infection of host cells [36,37].
HA-mediated attachment and NA-mediated release of influenza viruses need to keep a
balance in order to allow productive influenza virus infection [38–40]. NA inhibitors are
extensively used in the treatment and prophylaxis of influenza virus infection presently.

The vRNP complex consists of eight negative-sense, single-stranded RNAs, nuclear
protein, and RNA polymerases, which are the basic units of influenza virus replication [41].
The viral proteins that make up vRNP all have nuclear localization sequences (NLS).
vRNP is assembled in the cytoplasm and then enters the nucleus through nuclear localiza-
tion to complete viral replication and transcription [41,42]. The influenza virus polymerase
plays a major role in the replication and transcription of influenza virus. Polymerase synthe-
sizes viral mRNA via a unique “cap snapping” mechanism using short-end primers from
cellular transcripts [43]. Interference with the activity of the RNA-dependent RNA poly-
merase (RdRP) is an effective means to reduce viral resistance and inhibit viral replication,
and viral RdRP is one of the most promising targets for the development of novel influenza
antiviral drugs [43–47]. As a non-structural protein of the influenza virus, NS1 protein
can regulate the viral life cycle, the immune function of the host, and play an auxiliary
role in the process of influenza virus infection of host cells [48]. It has been reported that
compounds A9 and A22 inhibit the replication of influenza virus and the function of NS1
by blocking the interaction between CPSF30 and the NS1 effector domain, and the NS1
protein is also expected to be an important target for the development of new influenza
antiviral drugs [48–50]. The replication cycle of influenza virus and targets of anti-influenza
drugs are depicted in Figure 1.
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Figure 1. Replication cycle of influenza virus and targets of anti-influenza drugs. (a) Influenza virus hemagglutinin (HA) 
binds to sialylated host cell receptors, and then is internalised into endosomes through multiple endocytosis pathways. 
(b) Acidification of the endosome leads to activation of the M2 proton channel and virion acidification, resulting in virus 
uncoating and the release of viral genome into the cytoplasm, where it is further transported to the nucleus to begin 
genome replication. (c) In the nucleus, influenza virus begins to synthesize viral mRNAs. (d) HA, neuraminidase (NA) 
and M2 are processed in the Golgi body and the endoplasmic reticulum, and then transported to the cell surface. (e) 
Influenza virus polymerase can synthesize both viral mRNAs and vRNAs. vRNAs are first converted into positive-
stranded cRNAs, and then new vRNAs can be synthesized using cRNAs as templates. (f) Viral proteins and genomic RNA 
are transported to the cell surface to assemble progeny viruses. Then, influenza virus neuraminidase (NA) cuts off the 
HA-receptor bond to allow progeny viruses to be released from the surface of the infected cell and proceed to infect new 
cells. The sites of action of antiviral drugs are shown in red. 

Figure 1. Replication cycle of influenza virus and targets of anti-influenza drugs. (a) Influenza virus hemagglutinin (HA)
binds to sialylated host cell receptors, and then is internalised into endosomes through multiple endocytosis pathways.
(b) Acidification of the endosome leads to activation of the M2 proton channel and virion acidification, resulting in virus
uncoating and the release of viral genome into the cytoplasm, where it is further transported to the nucleus to begin genome
replication. (c) In the nucleus, influenza virus begins to synthesize viral mRNAs. (d) HA, neuraminidase (NA) and M2
are processed in the Golgi body and the endoplasmic reticulum, and then transported to the cell surface. (e) Influenza
virus polymerase can synthesize both viral mRNAs and vRNAs. vRNAs are first converted into positive-stranded cRNAs,
and then new vRNAs can be synthesized using cRNAs as templates. (f) Viral proteins and genomic RNA are transported to
the cell surface to assemble progeny viruses. Then, influenza virus neuraminidase (NA) cuts off the HA-receptor bond to
allow progeny viruses to be released from the surface of the infected cell and proceed to infect new cells. The sites of action
of antiviral drugs are shown in red.
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3. Development and Effects of Influenza Antiviral Drugs

Influenza viruses pose a significant threat to public health, strongly associated with
their high variability and recombination [51–53]. The known influenza virus strains con-
stantly mutate and the genomic segments may undergo reassortment to form new virus
subtypes [54,55]. Because of the variable nature of the viruses themselves, the development
of vaccines and drugs is facing great challenges. Nevertheless, research has led to the
development of two main types of compound drugs in clinical treatment of influenza
virus—NA inhibitors and M2 channel ion blockers [56,57]. NA inhibitors can inhibit the
NA activity of influenza viruses, weaken the release of influenza virus particles from
infected cells, and thus effectively inhibit the replication of the viruses. Among them,
the most representative NA inhibitors are oseltamivir, peramivir, and zanamivir [58,59].
M2 channel ion blockers mainly inhibit viral replication by blocking the hydrogen ion
channel activity of M2 protein of influenza virus. Representative drugs are amantadine
and rimantadine [60].

Because of resistance problems faced with the influenza virus for NA inhibitors and
M2 channel blocker drugs, research has focused on the influenza virus RNA polymerase
as a drug target due to its important role in regulating influenza virus replication and
transcription and the highly conserved RNA polymerases between different strains [61].
There are multiple potential antiviral drugs that could lead to effective antiviral activity,
including ribavirin and favipiravir [62]. In addition, because of the overuse of compound
drugs, a large number of drug-resistant strains have emerged. Natural antiviral drugs
are also being explored; in clinical application, traditional Chinese medicine has shown
ideal antiviral activity for drug-resistant strains, without the development of drug resis-
tance problems. These medicines include honeysuckle, Radix isatidis, Terminalia chebula,
puerarin, and Yinqiao powder, among others.

3.1. Development and Effects of Chemical Synthesis Drugs on Influenza Virus Resistance

Oseltamivir has been widely used in the treatment of influenza virus. Oseltamivir can
inhibit the replication of influenza virus by binding to the NA active site as competitive
inhibitors [63,64]. However, due to the evolution of influenza virus and the abuse of in-
fluenza antiviral drugs, a large number of drug-resistant strains have emerged, for example,
the H274Y/H1N1 influenza virus, which is the culprit leading to the H1N1 pandemic,
causing huge economic losses [64–66]. Therefore, the development of new drugs is urgent.
In addition, adverse effects after the clinical use of oseltamivir, such as inhibiting the pro-
duction of viral antigens, leading to the reduction of acquired antiviral humoral immunity
and increasing the probability of re-infection [67], have been observed. In order to reduce
the impact of adverse effects, Takahashi et al. demonstrated that Lactobacillus bulgaricus
OLL1073R-1YC has the ability to stimulate host humoral immunity against influenza virus
and can assist oseltamivir in the treatment of influenza virus [67]. L-NMMA, nitazoxanide,
etc., have emerged to synergistically fight against influenza viruses in order to make the
use of drugs more efficient [68]. L-NMMA is a nitric oxide inhibitor that can be used in
collaboration with oseltamivir in the treatment of the H1N1 influenza virus. Smee et al.
demonstrated, through animal experiments, that the synergistic effect of the two drugs can
significantly reduce the mortality [69]. Nitazoxanide is a thiazole compound that works in
conjunction with NA inhibitors against influenza viruses. Different from other influenza
antiviral drugs, it does not inhibit the expression of viral proteins but inhibits the replication
of influenza virus by blocking HA terminal glycosylation and intracellular transport [70].
An ongoing clinical trial has shown the significant antiviral activity of Nitazoxanide against
a wide range of human and avian IAVs as well as various non-influenza respiratory viruses,
indicating a wide and bright application foreground for the treatment of respiratory in-
fections [70,71]. Some drugs have also been developed to target current strains resistant
to oseltamivir, such as pyridine-containing oseltamivir derivative compounds 23B and
sodium baicalin. Compound 23B had a significant inhibitory effect on H5N1 NA as well as
a strong inhibitory effect on oseltamivir-resistant A/Liaoning Zhenxin/1109/2010 (H1N1)
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virus [72]. Like oseltamivir, sodium baicalin is also an inhibitor of viral NA. Jin et al. con-
firmed that sodium baicalin has an obvious inhibitory ability against the H1N1-H275Y
virus strain that is oseltamivir-resistant. However, the use of sodium baicalin in clinical
practice is hindered because of its poor water-solubility [73].

The most critical step for influenza virus to infect the host is the interaction between
the viral membrane protein HA and the host cell surface receptor mediating the entry
of the virus, and certain drugs can interact with the HA protein to alter the biological
structure and function of HA, thus preventing the virus from infecting the host [74,75].
As a derivative of oleanolic acid that possesses notable antiviral activity, OA-10 also has
a significant inhibitory effect on influenza virus, including H5N1, PR8 (H1N1), H9N2,
and H3N2 [76]. It acts by blocking the conformational changes of the HA2 subunit required
for viral–endosomal membrane fusion, which is necessary for the release of viral genome
from its protective capsid to enable the nucleic acid to be transported into the nucleus,
thereby inhibiting the replication of influenza virus [76].

When M2 channel blockers are widely used in clinical practice, they also face the same
disadvantages as NA inhibitors such as oseltamivir, producing drug-resistant strains such
as the S31N influenza strains that are prevalent in influenza viruses [77]. The replication
process of influenza virus requires the activity of the M2 ion channel; amantadine has
the ability to inhibit the replication of influenza virus by inhibiting the activity of the M2
protein [78–80]. However, due to the mutation of the 31st amino acid in the M2 protein,
amantadine loses its ability to inhibit the virus and cannot be used in the clinic [79–81].
Therefore, addressing drug resistance is an important issue in the research and development
of new drugs.

The emergence of RNA polymerase inhibitors, such as ribavirin and favipiravir, has an
exciting impact on the spread and drug resistance of influenza viruses [82]. Ribavirin,
a nucleoside compound, has a wide antiviral activity range, and has a good inhibitory
ability against A/Vietnam/1203/04 (H5N1) virus and A/Turkey/15/06 (H5N1) virus [83].
Its mechanism involves a reduction in the content of GTP in cells by competitively inhibit-
ing IMP dehydrogenase and a reduction in the replication ability of influenza virus by
inhibiting the function of influenza RNA polymerase [83]. Of note, the drug is particularly
effective against the H5N1 influenza virus and its combination with oseltamivir is more
effective than the single drug [83]. However, the anti-influenza virus effect of ribavirin
was only performed in a mouse model, and its effect in human clinical trials was less
clear [84]. As an emerging antiviral drug against influenza virus, favipiravir has good
antiviral ability against the whole RNA virus, and has been licensed as an anti-influenza
drug in Japan [85,86]. It acts by inhibiting the activity of influenza virus RNA polymerase
and reducing its conservatism, so that the virus gene mutates [85]. There have been no
reports of drug resistance to favipiravir. There are two hypotheses for this—first, it can
increase the deleterious mutation rate of the entire genome of the virus and lead to virus
extinction; second, the powerful antiviral ability of favipiravir enables the influenza virus
to be destroyed before it mutates [87]. Ormond et al. demonstrated that the combination
of favipiravir and oseltamivir could explore potential genes for resistance to oseltamivir
strains [88]. Because of its nature, favipiravir is likely to become a core drug during the
next pandemic and stockpiling of novel drugs is now an important strategy for dealing
with future influenza pandemics [85]. In addition, Baloxavir marboxil, which has been
approved for the treatment of uncomplicated influenza in otherwise healthy and high-risk
patients in numerous countries, can potently inhibit influenza virus production by selec-
tively blocking the catalytic center of polymerase acid (PA) protein in the RNA polymerase
complex. However, amino acid substitutions such as I38N/R, E23K/G, A37T, and E199G
in the PA subunit bring about new challenges for effectiveness of the drug [89–93].

There are also drugs that have multiple functions, such as leflunomide. As a well-
known anti-inflammatory drug primarily used for treating rheumatoid arthritis, lefluno-
mide also shows influenza antiviral activity [94]. Wang et al. found that leflunomide’s
metabolite A77 1726 has an inhibitory effect on JAK2 activity. JAK2 not only regulates the
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function of immune cells, but also plays a significant role in the process of influenza virus
replication, indicating that the inhibition of JAK2 activity by drugs is directly related to
their antiviral activity [94]. The details of chemical synthesis drugs with anti-influenza
activity are listed in Table 1, and their molecular structures are shown in Figure 2.

Table 1. List of chemical synthesis drugs.

Compounds Source Function IC50/EC50

Oseltamivir [64] Shikimic acid A/Brisbane/59/2007 (H1N1) IC50 = 49.8 ± 6.8 nM

Nitazoxanide [70] —

A/Puerto Rico/8/1934 (H1N1) IC50 = 3.2 ± 0.0 µM
A/WSN/1933 (H1N1) IC50 = 1.6 ± 0.2 µM

A/California/7/2009 (H1N1) IC50 = 3.2 ± 0.0 µM
A/Parma/24/2009 (H1N1) IC50 = 1.9 ± 0.0 µM
A/Parma/06/2007 (H3N2) IC50 = 1.0 ± 0.0 µM

A/Chicken/Italy/9097/1997 (H5N9) IC50 = 3.2 ± 0.5 µM
A/Goose/Italy/296,246/2003 (H1N1) IC50 = 3.2 ± 0.2 µM

A/Turkey/Italy/RA5563/1999 (H7N1) IC50 = 1.6 ± 0.2 µM

Compound 23B [72] —
A/LiaoNing-ZhenXing/1109/2010

(H1N1) EC50 = 14.31 ± 2.59 µM

A/Puerto Rico/8/1934 (H1N1) EC50 = 12.68 ± 8.96 µM

Sodium baicalin [73] baicalin
A/FM/1/47 (H1N1-H275Y) EC50 = 20.1 ± 2.3 µM

A/FM/1/47 (H1N1) EC50 = 4.0 ± 1.1 µM
A/Beijing/32/92 (H3N2) EC50 = 2.7 ± 1.2 µM

OA-10 [76] Oleanolic Acid

H5N1 EC50 = 14.0 ± 2.3 µM
PR8 (H1N1) EC50 = 6.7 ± 1.4 µM

H9N2 EC50 = 15.3 ± 2.5 µM
H3N2 EC50 = 19.6 ± 3.7 µM

Ribavirin [82] — influenza virus A/X-31 strain EC50 = 8.1 ± 1.3 µM

Favipiravir [85] — all influenza virus tested EC50 = 0.014~0.55 µg/mL

Baloxavir marboxi [93] — influenza A virus IC50 = 1.4~3.1 nM
influenza B virus IC50 = 4.5~8.9 nM

A77 1726 [94] leflunomide H1N1, H5N1, H9N2 IC50
a < 50 µM

a A77 1726 inhibits the activity of JAK2 with this IC50 value.

3.2. Development and Effects of Plant Extracts on Influenza Virus Resistance

Due to the limitations in the development of compound drugs, the combination of
natural drugs of medicinal plants with empirical knowledge provides a new platform
for the development of new antivirals [95]. Honeysuckle, Radix isatidis, T. chebula and
puerarin, as representatives of natural drugs, have had a long history in treating influenza
virus in China [96] (Table 2). Studies have shown that honeysuckle has many antiviral
active extracts, such as acids extract, flavonoids extract, honeysuckle acids-flavonoids
mixture, etc. [97]. In particular, honeysuckle acids-flavonoids mixture showed the strongest
antiviral activity against H1N1, H3N2 and the oseltamivir-resistant strain H1N1-H275Y,
the flavonoids extract exerted the strongest inhibitory effect on H7N9 influenza virus
in vitro, while honeysuckle acids extract was demonstrated to exhibit the most potent
therapeutic efficacy against H1N1 influenza virus infection in vivo [97]. The mechanism
underlying the inhibitory effects of the extracts on influenza viruses is similar to that of
oseltamivir [97].
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The polysaccharide extract of Radix isatidis has strong influenza antiviral activity and
ideal effects on the inhibition of H1N1 and H9N2 influenza viruses [98]. Isatidis polysac-
charide has a strong inhibitory effect on the expression of host TLR3 protein, which further
reduces the expression of virus-induced pro-inflammatory cytokines and the inflammatory
response [99]. As a virus pattern recognition receptor, TLR3 plays a major role in the
process of virus infection. It can not only stimulate the production of interferons and some
antiviral substances but also induce the spread of the virus, leading to deterioration of the
disease [98,99].

Table 2. List of plant extracts.

Original Plant Active Fraction Function IC50/EC50

Honeysuckle [97]

Acids extract

H1N1 IC50 = 112.3 ± 17.7 µg/mL
H3N2 IC50 = 332.6 ± 34.5 µg/mL
H7N9 IC50 = 55.9 ± 5.1 µg/mL

H1N1-H275Y IC50 = 150.4 ± 13.6 µg/mL

flavonoids extract

H1N1 IC50 = 90.9 ± 8.6 µg/mL
H3N2 IC50 = 196.0 ± 23.4 µg/mL
H7N9 IC50 = 24.7 ± 2.3 µg/mL

H1N1-H275Y IC50 = 108.4 ± 17.0 µg/mL

acids-flavonoids mixture

H1N1 IC50 = 100.1 ± 11.4 µg/mL
H3N2 IC50 = 203.8 ± 9.9 µg/mL
H7N9 IC50 = 35.2 ± 3.1 µg/mL

H1N1-H275Y IC50 = 125.7 ± 14.7 µg/mL
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Table 2. Cont.

Original Plant Active Fraction Function IC50/EC50

Radix isatidis [98] Polysaccharide

A/Chicken/Guangdong/1996
(H9N2) IC50 = 20.57 ± 0.25 mg/mL

A/PR/8/34 (H1N1) IC50 = 20.48 ± 0.31 mg/mL
A/Guangzhou/GIRD07/09

(H1N1) IC50 = 8.47 ± 0.07 mg/mL

A/Aichi/2/68 (H3N2) IC50 = 4.35 ± 0.05 mg/mL
A/Duck/Guangdong (H6N2) IC50 = 28.20 ± 0.49 mg/mL

Terminalia
chebula Retz [100]

CHLA reporter virus PR8-PB2-Gluc IC50 = 1.36 ± 0.36 µM
CHLI reporter virus PR8-PB2-Gluc IC50 = 1.86 ± 0.98 µM

Pueraria lobata [101] Puerarin A/FM/1/1947 (H1N1) EC50 = 52.06 µM

Pomegranate [102] Punicalagin PR8-PB2-Gluc (H1N1) IC50 = 1.25 ± 0.06 µM

Ginger [103] Gingerenone A
H5N1 IC50 = 10.2~24.5 µM
H9N2 IC50 = 12 µM
H1N1 IC50 = 10.2 µM

In addition, T. chebula, as a common Chinese medicine, has a strong influenza antiviral
activity. Li et al. determined that chebulagic acid and chebulinic acid in T. chebula Retz had
strong influenza antiviral activity with IC50 values of 1.36 ± 0.36 µM and 1.86 ± 0.98 µM,
respectively [100]. It acts by inhibiting the activity of virus NA protein and blocking the
release of virus progeny particles to inhibit virus replication [100]. Puerarin is a flavonoid
extracted from Pueraria lobata, which has many functions, including a significant effect
against influenza virus, especially against H1N1 influenza virus [101]. According to animal
experiments using a mouse model, Puerarin exhibited effective antiviral activity and had
shown no significant side effects after two months of treatment [101]. It acts by inhibiting
the NA activity of influenza virus and blocking the nuclear output of the nuclear pro-
tein [101]. Some plants that are not included in traditional Chinese medicine, such as
pomegranate and ginger, can also exert antiviral activity. Punicalagin, a broad-spectrum
influenza inhibitor derived from pomegranate, has an inhibitory effect on different sub-
types of influenza virus by inhibiting the NA protein activity of influenza virus and then
blocking the release of progeny virus [102]. It is worth noting that Punicalagin also had
a significant inhibitory effect on oseltamivir-resistant strains [102]. In addition, the gin-
ger extract Gingerenone A acts as a dual inhibitor of JAK2 and p70S6 kinase (S6K1) to
inhibit influenza virus replication by inhibiting JAK2 activity and interfering with viral
assembly [103].

As a mixture of various plant extracts, Chinese herbal formulae, such as Gegen Qinlian
soup, Lianhua-qingwen capsule, and Yinqiao powder, have been shown to have potent
antiviral activity in the clinic [104–106] (Table 3).

It has been reported that Gegen Qinlian decoction can downregulate the expression
of some signaling pathway factors and the activity of NF-κB, inhibiting the expression of
inflammatory factors and the cytokine storm, affecting the differentiation of CD4+ T cells
and thereby increasing the antiviral immunity of the host [107,108]. The Gegen Qinlian
decoction activates the host’s homeostatic inflammatory response, limits immunopatho-
logical damage, and improves clinical symptoms [107,108]. Similarly, Lianhua-qingwen
is a traditional Chinese medicine prescription for the treatment of respiratory diseases
that can relieve clinical symptoms such as fever, cough, sore throat, and fatigue and has
a broad-spectrum inhibitory effect on influenza virus [109]. Lianhua-qingwen acts by in-
hibiting the nuclear output of virus RNP by inhibiting the activity of NF-κB as well as by
regulating the immune response after virus infection [109]. Yinqiao powder also has a good
inhibitory effect on H1N1 influenza virus and can relieve respiratory symptoms such as
cough, headache, fever and so on. It can be used in combination with the Xijiao Dihuang
decoction to enhance its antiviral activity [110]. Yinqiao powder exerts influenza antiviral
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activity by regulating the TLR7/NF-κB signaling pathway [110]. It can also modulate the
dysregulated miRNA and mRNA involved in the ERK/JNK-AP-1, IFN-β/STAT signaling
pathways, thus improving the host’s antiviral immunity and reducing the damage induced
by the inflammatory response [111].

Table 3. List of Traditional Chinese Medicine mixtures.

Prescriptions Relieve Symptoms Mechanism Composition

GQD [107] Cough, fever,
anti-inflammatory

Down-regulating the expression of
TLR signaling pathway factors, and

affecting the differentiation of CD4+ T
cells, thus limiting immune

pathological injury caused by
virus infection

Radix puerariae,
Radix scutellariae,
Rhizoma coptidis,

Radix glycyrrhizae

LH-C [109] Fever, cough, sore throat,
fatigue

Inhibiting the activity of NF-κB and
blocking the nuclear export of the

viral RNP

Forsythia suspensa,
Ephedra sinica Stapf,

Lonicera japonica Thunb,
Isatis indigotica Fortune,
Mentha haplocalyx Briq,

Dryopteris crassirhizoma Nakai,
Rhodiola rosea L.,

Gypsum fibrosum,
Pogostemon cablin (Blanco)
Benth, Rheum palmatum L.,
Houttuynia cordata Thunb,
Glycyrrhiza uralensis Fisch,

Armeniaca

Yinqiao Powder [110] Cough, headache, fever
Playing an important anti-influenza
role by regulating the TLR7/NF-κB

signaling pathway

honeysuckle, Forsythiae fructus,
Balloon flower root, Mint,

Licorice root, Herba lophatheri,
Fermented soybean,
Schizonepeta spike,

Great Burdock Achene

3.3. Development and Role of Microbial Metabolites in Influenza Virus Resistance

Besides the plant extracts with good influenza antiviral activity, a large number of
effective active antiviral substances have been found in microbial metabolites (Table 4).

The metabolites of actinomycetes have always played an important role in the dis-
covery of new drugs, and most antibiotic drugs are derived from them [112]. Recently, it
has been found that the metabolites of actinomycetes also have good antiviral ability [112].
For example, Streptomyces sp (SMU-03) found in Yunnan can produce an antiviral sub-
stance, dichloromethane extract (DCME), with a very good inhibitory effect on H1N1 and
H3N2 influenza viruses [113]. DCME can block the binding of viral HA protein to the
cell surface receptors, thus preventing the virus from entering host cells to produce an
antiviral effect [113]. In addition, an extract of extreme thermophilic actinomycetes was
found to have a broad-spectrum effect against influenza virus in the harsh environment of
Kazakhstan [114]. Berezin et al. proved that the extracts of extremophilic actinomycetes
strains K-192-2S, K-340-2S, and K-362-2N had significant antiviral activity through the
inhibition of NA activity of all tested strains of influenza A virus, indicating that their
commercial value may be higher than that of oseltamivir [114].
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Table 4. List of microbial extracts.

Microbial Active Fraction Function IC50/EC50

SMU-03 [113] DCME

A/PR/8/34 (H1N1) IC50 = 0.37 ± 0.22 µg/mL
A/FM/1/47 (H1N1) IC50 = 0.81 ± 0.09 µg/mL

A/Aichi/2/68 (H3N2) IC50 = 14.44 ± 0.79 µg/mL
influenza B virus IC50 = 0.66 ± 0.03 µg/mL

Extreme thermophilic
Actinomycetes [114]

K-192-2S H1N1, H3N2, H5N3, H7N1 EC50 = 0.80~0.14 mg/mL
K-340-2S H1N1, H3N2, H5N3, H7N1 EC50 = 0.05~0.15 mg/mL
K-362-2N H1N1, H3N2, H5N3, H7N1 EC50 = 0.05~0.20 mg/mL

MS100137 [115]
Compound 1 H1N1 EC50 < 10 µM
Compound 2 H1N1 EC50 < 10 µM
Compound 3 H1N1 EC50 < 10 µM

Bipolaris oryzae [116] L435-3
A/WSN/1933 (H1N1) IC50 = 0.365 µM
A/PR/8/34 (H1N1) IC50 = 0.391 µM

In recent years, metabolites of marine organisms have also attracted extensive at-
tention owing to their greater diversity in structure and function compared to terrestrial
organisms [115]. Actinomycetes are widely distributed in the ocean and can produce
metabolites with diverse biological activities. For example, the sea Verrucosispora is a
rare actinomycetes that can secrete a variety of biologically active metabolites, such as
Compounds 1–3, with a good inhibitory effect on H1N1 influenza virus [115]. In addition,
Wang et al. isolated a new sesterterpene called L435-3 from the phytopathogenic fun-
gus Bipolaris oryzae and proved that L435-3 has strong antiviral activity against influenza,
including against WSN and PR8 viruses [116,117]. L435-3 acts by inhibiting the replica-
tion of influenza virus through increasing the production of type III interferon and some
interferon-stimulated genes (ISGs) in the host, thus enhancing the antiviral ability of the
host [116].

4. Conclusions

Although the development of influenza antiviral drugs has greatly reduced the mor-
tality rate, influenza virus still poses a great threat to public health worldwide due to the
emergence of synthetic drug-resistant strains. Therefore, new drugs that do not induce
resistance and with unique pharmacological activity need to be discovered and developed.
Natural antiviral drugs have many advantages over synthetic drugs, mainly manifested in
a lower resistance and mild adverse clinical reactions. Further research and development
and more appropriate management of traditional Chinese medicines are required such that
these products can be accepted by medical systems worldwide. Meanwhile, more attention
should be paid to microbial metabolites for the discovery of new antiviral drugs with high
efficiency and safety. Importantly, a better understanding of the mechanisms by which
plant extracts and microbial metabolites achieve the anti-influenza action will be beneficial
to the development and improvement of antiviral drugs. We have herein summarized the
development and effects of three kinds of anti-influenza virus drugs, hoping to provide
new ideas for future drug design and development of innovative drugs.
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