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Abstract

In this paper, we use a statistical estimator developed in astrophysics to study the distribution and organization of features
of the human genome. Using the human reference sequence we quantify the global distribution of CpG islands (CGI) in
each chromosome and demonstrate that the organization of the CGI across a chromosome is non-random, exhibits
surprisingly long range correlations (10 Mb) and varies significantly among chromosomes. These correlations of CGI
summarize functional properties of the genome that are not captured when considering variation in any particular separate
(and local) feature. The demonstration of the proposed methods to quantify the organization of CGI in the human genome
forms the basis of future studies. The most illuminating of these will assess the potential impact on phenotypic variation of
inter-individual variation in the organization of the functional features of the genome within and among chromosomes, and
among individuals for particular chromosomes.
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Introduction

Our understanding of the structure, organization and function

of the human genome has increased exponentially over the past 60

years. Molecular studies of the central, gene to protein, dogma

have revealed an unimagined richness in structural DNA variation

[1] that highlights the difficulty in defining a gene effect [2] and

the complexity of the involvement of DNA sequence variation in

determining phenotypic variation [3–5]. We have also known for

over 70 years that a gene’s function can be changed by altering its

physical location within the genome [6]. A chromosomal

neighborhood influences function through structural relationships

between numerous components [7,8]. They include the protein

coding sequences, regulatory sequences such as non-coding RNAs,

and epigenetic markings whose interactions with chromatin

influence the higher order folding of the genome [9].

An appreciation of the functional impact of variation in the

organization of these components on variation in gene activity

[10] and human health [11–12] has emerged in the last decade.

Consequently, it has become widely appreciated that the separate

components do not influence phenotypes independently of

variations in the micro-cellular or macro-organismal environ-

ments. Nowhere is this more evident than in the relationship

between environment, epigenetic patterns, and phenotype [13],

and this complexity has likewise been recognized in the interplay

between evolution, development, and the organization of the

genome [14]. As Noble [3] and Lewontin [15] have so clearly

summarized, the DNA sequence is only part of the material basis

of heredity: the biological functions of a sequence that behaves as a

gene are determined by the interactions of its effect with the effects

of other genes and environmental agents. These agents can be

internal or external to the organism, and their coordinated effects

occur throughout the life cycle from fertilization until death. This

is elegantly displayed by the relationship between body-mass

index, variably methylated regions, and environment [16].

Interaction among these agents can alter characteristics of the

organization of the genome, such as patterns of methylation, that

are manifest as effects on traits in the hierarchy that connects the

genome to clinically relevant endpoints.

The communication of the environment with the genome takes

several forms. Histone modifications and DNA methylation are

two common epigenetic (‘‘above the genome’’) mechanisms that

influence the impact of the information coded in the DNA

sequence on the development and expression of a phenotype [17].

It is well-known that these mechanisms also act more globally in

tissue differentiation [18] or in various human diseases [19].

Particularly in the latter case, the distribution of these processes

across the genome determines which genes are influenced and

variation in this distribution among individuals may be associated

with inter-individual phenotypic variation [16,20].

DNA methylation in mammals is thought to occur predomi-

nantly, but not exclusively, at CpG dimmers [10,21]. CpG islands

(CGI), which are especially rich in CpG dimers, have drawn

attention as sites of differential methylation. They have demanded

special attention because approximately 40% of CGI are found in

promoter regions [22,23]. While they are predominantly un-

methylated, in certain instances CGI can become methylated. For

instance, genome-wide differences in the methylation state of the
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CGI in tumor tissue are known to occur in comparison to normal

tissue [24]. It has also emerged that unmethylated CGI influence

histones and thereby modify the local chromatin state [25–27].

Beyond the epigenetic considerations, CGI have also been

associated with numerous other functionally-relevant genomic

features including: recombination hotspots and the presence of

transposable elements [28–33], domain organization and nuclear

lamina interactions [34], origins of replication [35,36], and local

mutational processes [37].

Traditional statistical approaches have been regularly employed

in studies of CGI to estimate the total number, the number and

density per chromosome or genome, and the number and density

as a function of the region on a chromosome [22]. Among other

things, they have been shown to exhibit a non-uniform distribution

across different regions of the genome [38] and to vary in

frequency across many species [39]. Intriguingly, Illingworth et al

[40] recently investigated CGI frequency and position in humans

and mice in more detail and found that the abundance and

positions of CGI relative to genes are in fact conserved between

humans and mice. The frequency-based statistics inherent in these

methods are all first moments of the CpG island distribution and

their information content about organization across the genome is

limited. FISH analysis of karyotypes [38] provides a low resolution

look at clustering, while density profiles likewise offer only a

qualitative view of moments beyond the mean. Perhaps more

importantly, the treatment of biases in the measurement of the

DNA sequence is unclear. For instance, the impact of large

portions of missing sequence on any of these statistics is not

rigorously addressed. It follows that a challenge for the study of

genome organization is to develop metrics that quantify the higher

order moments of the CGI distribution while simultaneously

minimizing the effects of such biases on the statistical character-

ization of the distribution of CGI across a chromosome. The

combination of the functional relevance of CGI, the relative ease

of detection, and the abundance of full genome sequences on the

horizon make CGI an ideal test bed for an approach that aims to

quantify large scale distributions of genomic features.

In this paper we initiate studies to quantify the organization of

the human genome which will form the basis of future studies of

the impact of inter-individual variation in the organization of the

functional features of the genome on inter-individual phenotypic

variation. To this end, we adapt and apply the two-point

correlation function (TPCF) used widely in astrophysics to

characterize the organization of the Universe to the organization

of CGI within and across chromosomes of the human genome

using the publicly available reference DNA sequence. We

quantitatively establish that the distribution of CpG islands is

non-random across each chromosome and that the organization of

the CpG islands across a chromosome varies significantly among

chromosomes. In doing so, we outline a quantitative framework

that includes an account of uncertainties and thereby facilitates

statistical comparisons of variability in organizational character-

istics of genomic features among chromosomes, individuals, or

species.

Methods

Background
The analytical challenge that we face is not unique to studies of

the organization of the human genome. Many complex natural

phenomena exhibit long-range correlations, from molecular and

biological systems on one end to the distribution of galaxies in the

Universe [41] on the other end of physical scales. While gravity is

a long-range force, even systems with very short range interactions

can develop long-range correlations near the so-called critical

point, like the famous Ising model of ferromagnetic systems. For

such stationary point processes spatial autocorrelation functions

are the method of choice to quantify this behavior. The simplest of

these is the two-point correlation function (hereafter TPCF), that

corresponds to the ‘‘excess’’ probability over random of finding

single objects in two infinitesimal volumes of elements. There are

several different estimators for such statistics, namely the

cumulative Ripley K- and L-functions [42] and other differential

estimators [43]. These are all quite simple, when the stationary

random process is described by a constant intensity and has a

simple, continuous support (in our case the linear sequence of the

genome).

In practice, this is never the case, the support has many ‘‘gaps’’

and internal edges, i.e. holes in the data (missing sequences) and

ends of the chromosome. It is clear that points far from the edges

have a different probability of having neighbors than the ones

close to the edges, where neighbors can only be on one side.

Constructing unbiased estimators requires an appropriate ‘‘edge

correction,’’ which has been the practical challenge in computing

the TPCF. Ripley [44] has proposed an edge-corrected variant of

the K-function. Ohser [45], Baddeley [46] and Davis and Peebles

[47] have proposed alternative approaches. Each of the proposed

estimators provide a first-order correction for the bias associated

with the edge effect.

Motivated by galaxy clustering, Hamilton [48] and Landy and

Szalay [49] published a more systematic approach (hereafter LS),

which is applicable to the cumulative estimators as well. Using an

appropriately weighted difference of two different first-order

estimators, the LS approach selects weights that cancel the first

order errors resulting in an estimator that is accurate to second

order. The price of the improved accuracy is an increase in the

computational cost. The LS approach was later generalized by

Stoyan and Stoyan [50]. They showed that among the proposed

edge-corrected estimators the LS estimator has the practical

advantages of handling missing data and having minimum

variance. In this paper we will use the LS estimator of the TCPF

because of its computational simplicity and smaller variance.

Definition of the TPCF Estimator
We present a brief overview of the LS estimator and refer the

reader to details of its derivation in Landy and Szalay [49]. In the

case of one-dimensional geometry, as is the case of the genome,

the TPCF is formally defined as

dP~n2dl1dl2½1zj(r12)�, ð1Þ

where dl1 and dl2 are line elements at a separation r12, n is the

expected number of objects per unit length in the one-dimensional

space, L, and dP is the dimensionless probability of finding two

objects in this configuration. In the absence of true correlations j is

zero. In our computation of the TPCF used here, we will

aggregate the pairs at a given separation into a set of logarithmic

bins, labeled with the center distance r. Letting xi = 1 designate a

data point and xj = 1, and a second data point with a distance from

xi within the radial bin r, we can define the quantity DD(r) as

DD(r)~
1

N(N{1)

XN

i

XNr[R

j=i

xixj , ð2Þ

where N is the total number of data points, and Nr is the number of

data points xj within the bin r from the data point xi. DD is

normalized such, that the integral over all bins adds up to 1. In a
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similar fashion, we can also compute the quantities DR and RR as

DR(r)~
1

NM

XN

i

XMr[R

j

xiyj , ð3Þ

RR(r)~
1

M(M{1)

XM

i

XMr[R

j=i

yiyj , ð4Þ

similar to DD, except that yi designates a randomly placed point at

location I, and the number of random points is denoted by M.

Thus DR represents a cross-correlation between the data points

and randomly placed points, while RR is the auto-correlation of

the random points. The random points are drawn to have the

same gaps and edge effects as the ones present in the real data.

These quantities are a kernel estimator of the auto- and cross pair

counts, using a rectangular kernel (pairs are either in or out of a

given bin). The LS estimator can be written as

1zĵj(r)~
DD(r){2DR(r)z2RR(r)

RR(r)
: ð5Þ

More specifically, the DR term means that we go to each data

point in the region r and count the number of randomly

distributed CGI around each data point in that region. The fact

that the random points populate only the regions in which we

could have found data ensures that edges and holes are properly

taken into consideration in the estimation of j. The number of

random points is chosen to be large enough (we chose 10 times the

number of observed data points i.e. M = 10 N) so that the

contribution of the number of random points chosen to the final

standard error is negligible.

It is important to note that this estimator of j(r) treats CGI as

point-like, which is not strictly true. The distance measurement

could be between CGI centers or between 59 or 39 termini. Our

exploratory studies of these alternatives using a longer chromo-

some (4) and a shorter chromosome (19) revealed that the

reference point has a negligible effect on scale .1000 bp, so the

convention adopted in our analyses of the distribution of CGI was

to measure from the 59 end. In general, difficulties are minimized

when the separations considered are larger than the length of the

feature under consideration. A comprehensive analysis of this issue

involving a range of genomic features in all chromosomes is

currently in progress.

A second concern is that the random point distribution must

theoretically obey the distribution of the CGI. In addition to

avoiding missing sequence, random CGI must not overlap with

one another. In placing random CGI in our studies we selected

them to have lengths that are randomly drawn from the observed

data, and that they do not overlap with one another. We anticipate

the application of the strategy proposed here to also have utility in

studying the organization and distribution of the many other

features beyond CGI structure that have been defined and are

currently being investigated by molecular studies of the genome

[51].

For this first study, we chose the full chromosome to be the unit

of genetic inference. To compute the TPCF and its standard error

for each chromosome, resampling methods such as the jackknife

and bootstrap are preferable. We chose bootstrap estimates based

on 250 resamples with replacement, where each resample consists

of the same number CGI as measured on the chromosome. For

each resample we compute 1zĵj(r) as we would in the real data.

An estimate of mean and standard error,ŝsSE , of 1zj was

computed from the resulting distribution of estimates of 1zj
among the 250 resamples. There is no clear prescription for the

number of bootstrap resamples required. We determined that 250

was a sufficient number by computing the mean and standard

error of bootstrap samples of various sizes until the mean and

standard error of the mean asymptote. Moreover, it is encouraging

that the ‘‘bootstrap bias’’ (not shown), which quantifies the

difference between the bootstrap estimate of the mean and the

native estimator in equation (4), is of the order of ŝsSE . In the

results of the analyses of the human reference sequence presented

below we plot the mean of the bootstrap estimates and the error

bars are given as +ŝsSE .

Finally, the detailed statistical properties of the estimator of the

TPCF we employ here and other estimators have been explored

exhaustively in the astrophysical literature [49,52] for their

behavior on different distance scales and in different density

environments. The estimator we use is among the most stable in

applications in astrophysics. We relegate a full exploration of the

effects of scale and density on the estimators of the TPCF in

genomic data to a future work.

A Chromosomal Metric for the TPCF
To create a simple metric of the TPCF for a chromosome as the

unit of genetic inference we recognize three distinct regions of the

TPCF. First, separations of order ,1000 bp should be viewed

with caution, as they are similar in size to CGI. Algorithmic effects

are more likely to leave an imprint on the spatial distribution of

CGI at these scales. Moreover, we arbitrarily defined the location

of the CGI as the first 59 base, but we could have just as well

picked an alternative position. This choice also has a slight effect

on close (,1000 bp) pairs. Second, at scales of a few Mb or more

within a chromosome the TPCF yields values consistent with

random, indicating that CGI have little or no structure on large

scales. Third, on intermediate scales, each chromosome exhibits

an approximately linear relation on a log-log plot. It is these

intermediate scales that are essentially free of small scale CGI

algorithmic effects, and informative with respect to non-random-

ness. With these considerations in mind, we fit power laws of the

form

log(1zĵj(r))~azblog(r) ð6Þ

to the intermediate range of data using a x2-minimization

procedure [53]. This prescription minimizes the weighted sums

of squares, where the weights are given by the inverse of the

measurement errors on each point. When the errors are Gaussian

the x2-minimization procedure yields the maximum likelihood

solution [54]. As this fit is performed on a log-transformation of

the data, we are careful to transform the measurement errors used

in the weighting. Errors on the parameter estimates are given as

well, and are taken from the diagonal elements of the covariance

matrix given by the maximum likelihood solution.

We employed a Monte Carlo approach to estimate the

confidence interval for the regression line computed for each

chromosome.For each chromosome, we create a realization, i, of

the (1zĵj(r)) at each separation by randomly drawing from a

Gaussian distribution centered on (1zĵj(r)), with a second

moment given by the estimator of the variance of (1zĵj(r)),
ŝs2

j(r) given by equation (7) below. This realization is then fit using

equation (6). This procedure is then replicated 10,000 times. We

then sort the resulting 10,000 Monte Carlo values of log(1zĵj(r))
from lowest to highest and denote the upper value of the
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confidence interval at an arbitrary separation, r, as the value of

realization 9,950 and the lower value of the confidence interval as

the value of realization 50.

Landy and Szalay [49] derive estimators of sj
2 that are

complex in their implementation, and specific to the astrophysical

context in which they are used. To derive an approximate estimate

of the variance, we proceed under the assumption that the

underlying random processes that drive the distribution of CGI

are Poisson in nature. Using basic error propagation techniques

[53], the resulting expression for the variance reduces to a simple

form in the limit when M&N, i.e.

ŝs2
j(r)~

2

N(N{1)DD(r)
: ð7Þ

This expression for the variance in the Poisson situation has been

discussed elsewhere [49]. Other sources of error that are not

explicitly Poisson will influence the true variance, so this procedure

results in an approximation. The most obvious source of non-

Poisson uncertainty is the mere existence of significant clustering

in the data, which is not present in a Poisson process: the stronger

the clustering, the poorer the approximation. The detection

algorithm or the biochemical assay used can also impart more

subtle sources of non-Poisson. A full treatment of this topic will be

considered in a future work.

Results

Source of DNA sequence data
We illustrate the application of the TPCF to data available from

the latest haploid assembly build of the human genome from the

Human Genome Reference Consortium, ‘‘GRCh37.’’ Investiga-

tion of the organization of CGI starts with algorithmic

identification of the sequences that define them. We acknowledge

that the identification of CGI depends on the properties of the

algorithm employed. CGI were first defined systematically by

Gardiner-Garden and Frommer [55] through their elevated GC

content and association with 59 ends of vertebrate genes. Han et al.

[56] review a range of commonly used algorithms that have since

improved on this basic theme. More recently Irizarry et al. [57]

have presented a more generalized CGI detection algorithm built

upon a hidden Markov model. For our study we have used the

algorithm suggested by Takai and Jones [22] optimized to detect

CGI in promoter regions while minimizing contamination from

Alu repeats. We revisit the importance of the definition of CGI in

the discussion.

Descriptive Statistics
The densities of CGI in one Mb windows across each of the 22

autosomes and the X and Y sex chromosomes are given in Text S1

(see online access). For the purpose of illustrating the variability of

the intra-chromosomal local variation in the CpG densities among

chromosomes, data on chromosomes 1, 8 and the shorter more

gene dense chromosome 19 are presented in Figure 1a–c. In

general, the local variation within a chromosome is not uniformly

distributed. Typically, the largest coherent fluctuations appear on

scales of ,10 Mb, while smaller scales are lost in the resolution of

the window. Gaps in the sequence appear (for instance in the

middle of chromosomes 1 and 19, Figure 1a and 1c) as do regions

of highly enhanced density, especially near the telomeres for all

chromosomes. The higher density of CGI across chromosome 19

corresponds to the increased density of protein coding genes in this

chromosome.

In general, the frequency distribution of the density of CGI per

Mb is positively skewed (see inserts in Figures 1a–c for

chromosomes 1, 8 and 19 and for all chromosomes in Text S1).

The shorter the chromosome the more uniform the frequency

Figure 1. Density plots for chromosomes 1, 8 and 19. Densities
are defined as the number of CGI per 1 Mb window. Note the especially
high density at the 59 telomere and the missing sequence at position
,130 Mb. Inset shows the distribution of densities in the 249 1 Mb
windows that comprise the chromosome. The distribution is skewed
and demonstrates that simple estimators of the centroid and dispersion
are insufficient. Plots for all chromosomes are given in Text S1.
doi:10.1371/journal.pone.0029889.g001
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distribution of the density of CGI is per Mb (e.g. chromosome 19,

Figure 1c). Statistics that summarize the frequency distribution of

CGI densities per MB for each chromosome are presented in

Table 1. Column 2 gives the approximate number of one Mb

windows for each chromosome. Column 3 gives the number of

Mb that have no data and column 4 lists the total number of CGI

that has been detected for each chromosome. We present both the

average density of CGI per Mb of assayed data (column 5) and the

average density of CGI per MB for the total length of the

chromosome including the regions that were not assayed (column

6). The similarity of these values across chromosomes suggests that

the missing regions of the genome that do not have CpG island

information available in the reference sequence are randomly

distributed across local regions of each chromosome.

When missing regions are included in the calculations, there are

several fold differences among chromosomes in the average density

of CGI over all windows of one Mb in size (column 6), the standard

deviation (column 7) of the density among those windows and the

positive skewness (column 8) of the frequency distribution of the

densities. The average density of CGI per Mb ranges from 9.0 to

55.9 and the standard deviation among windows ranges from 8.1 to

40.6. The frequency distribution of CGI per Mb for every

chromosome is significantly skewed to the higher values

(p,0.001). As expected, larger average numbers of CGI per Mb

window are associated with greater variability among windows.

There is a statistically significant negative rank correlation between

chromosome length and average density (Rho = 20.50, p = 0.01)

and between length and standard deviation of the density

(Rho = 20.62, p = 0.001). There is no evidence for a significant

correlation between the skewness of the distribution of CGI per Mb

and chromosome length (Rho = 0.35, p = 0.09).

Two-Point Statistics
The two point correlation function described above provides a

means to quantify the spatial distribution of CGI. We first

Table 1. Summary statistics for the CGI densities for each chromosome.

Chromosome

Total
Length
(Mb)

Missing
(Mb) NCGI

Average
Density per
Mb assayed*

Average
density per
Mb of Chr

Standard deviation
of the distribution of
density per Mb of Chr

Skewness of the
distribution of density
per Mb of Chr

1 249.3 24.0 3430 15.2 15.1 16.0 4.3

2 243.2 5.0 2553 10.7 10.8 9.5 1.8

3 198.0 3.2 1814 9.3 9.3 8.1 2.0

4 191.2 3.5 1664 8.9 9.0 11.8 4.9

5 180.9 3.2 1884 10.6 10.6 13.8 4.0

6 171.1 3.7 1954 11.7 12.0 12.0 2.1

7 159.1 3.8 2256 14.5 14.7 19.2 3.3

8 146.4 3.5 1562 10.9 10.9 14.2 4.0

9 141.2 21.1 1814 15.1 14.7 15.3 3.2

10 135.5 4.2 1733 13.2 12.6 13.5 4.4

11 135.0 3.9 1776 13.5 13.9 14.8 2.8

12 133.9 3.4 1832 14.0 13.7 13.6 2.1

13 115.2 19.6 959 10.0 10.3 14.4 4.2

14 107.3 19.1 1180 13.4 13.2 13.0 2.3

15 102.5 20.8 1187 14.5 14.2 9.3 0.9

16 90.4 11.5 1894 24.0 23.5 28.5 2.3

17 81.2 3.4 2210 28.4 28.0 22.3 1.4

18 78.1 3.4 805 10.8 11.2 15.0 4.8

19 59.1 3.3 3147 56.4 55.9 40.6 1.6

20 63.0 3.5 1111 18.7 18.5 20.5 3.2

21 48.1 13.0 502 14.3 13.1 16.2 2.0

22 51.3 16.4 976 28.0 26.6 17.8 1.2

X 155.3 4.2 1541 10.2 10.5 12.6 3.7

Y 59.4 33.7 311 12.1 11.3 20.6 3.4

Column 1: Chromosome.
Column 2: Length in Mb (including missing sequence that was not assayed).
Column 3: Ambiguous or missing sequence in Mb not assayed.
Column 4: Number of CGI detected.
Column 5*: Density = NCpG/(Total Mb – missing Mb not assayed).
Column 6:* Mean number CGI per Mb for entire chromosome.
Column 7: Standard deviation of number of CGI per Mb for entire chromosome.
Column 8: Skewness of number of CGI per Mb.for entire chromosome.
*The density is simply computed as the total number of CGI/chromosome length in Mb that have been assayed. This is formally not the same as the mean number of
CGI per Mb of chromosome ignoring the missing Mb, which we compute by counting CGI in windows of 1 Mb and computing the mean, standard deviation and
skewness of the resulting distribution.
doi:10.1371/journal.pone.0029889.t001
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generated the random points for the regions where sequence is

missing (Column 3, Table 1). For each chromosome we generated

10 simulated chromosomes of the same length containing the same

number of CGI with spatial distributions that avoid the masked

(ambiguous) sequence to represent the space in which we could

have discovered CGI. The factor of 10 oversampling of random

points ensures that our results have a negligible contribution from

statistical error associated with the number of random points used.

We binned the pairs of CGI by separation in 15 logarithmically

spaced bins between 1000 bp (the median CGI size) and 249 Mb

(the length of chromosome 1). The same bins are used for all

chromosomes. The results of our analyses of the autosomes and

the X and Y chromosomes are presented in the Text S2 (see online

access). Representative examples are given in Figure 2a–c. On log-

log axes, we plot 1zĵj on the vertical axis against the separation r.

The value of ĵj reflects the excess correlation above random. For

instance, 1zĵj = 2.5 at a separation of 0.01 Mb means that one is

2.5 times more likely than random expectation to find a CpG

island. For each chromosome there is significant evidence for

‘‘clustering.’’ The estimate of 1zĵj is much greater than one out to

nearly 10 Mb. The clustering is strongest at small separations and

weakest at large separations, where it decreases to the random

expectation. The density plots in Figure 1 show typical fluctuation

at scales of a few Mb, which suggests CGI tend to cluster together,

but the detailed structure is washed out in the windowing process.

Indeed, it can be shown that these density plots are just integrals

over the two point correlation functions.

In addition to quantifying the CGI distribution for its own sake,

we ultimately seek to describe and to compare chromosomes or

sub-chromosomal regions between and among individuals. For

each TPCF, which are linear to first approximation on the log-log

plots, we fit power-laws (see Methods). For each chromosome, we

identify the first point that is consistent with random and then only

consider points from shorter separations in the fit. The legend in

each plot shows the results of this fit. Confidence intervals (see

Methods) on each regression line are indicated by dashed lines.

While hints of a non-linear relationship between 1zĵj and

separation exist for various chromosomes, the data typically do not

deviate from the model by more than a standard error. The

simplicity of the power law motivates this choice of model, but

where large deviations from the power-law are found, models with

more degrees of freedom and with a stronger biological motivation

may reveal novel insights about both CGI detection methods and

the processes driving the placement of CGI in the genome. For the

power-law fits, in all cases, the traditional x2-goodness of fit

x2~
(O{E)2

E

yields a x2 with p.0.99. The error-weighted goodness-of-fit (e.g.

Press et al. 1992) [53]

x2
n~

(O{E)2

ŝs2
SE

also suggests that the power law-model is a good fit. x2
n,1 for all

but the Y chromosome.

Finally, Figure 3 shows the two point functions of all autosomes

over-plotted, with typical error bars at the right. The variation in

clustering of CGI between chromosomes is marked. For reference,

chromosome 4 shows the most extreme clustering (a factor of 10,

uppermost line) while 19 shows the weakest clustering (lowermost

line). Interestingly, a few chromosomes exhibit significant clustering

Figure 2. The Two Point Correlation Functions of CGI in
Chromosomes 1, 8 and 19. The vertical axis shows value of the two-
point correlation function, estimated using the bootstrap mean 1zĵj(r),
(see methods), and error bars are +ŝsSE . The expectation in the absence
of clustering is 1zĵj(r)~1. CGI using the Takai and Jones (2002)
algorithm are shown in black, as are the best-fit power law models.
Dotted lines show an approximate 3s confidence intervals derived from
a Monte Carlo based on the bootstrap estimate of j and our estimate of
its variance (see Methods). Also shown in red (green) are the TPCF for
the CGI given by Irizarry et al [56] (Illingworth et al [40]) and the
associated regression coefficients also in red (green). Remaining
chromosomes can be found in Text S2.
doi:10.1371/journal.pone.0029889.g002
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on the largest scales. These scales are of the order of each

chromosomes length and reflect the excess clustering of CGI near

telomeres that is revealed by the density plots. The detailed profiles

for each chromosome can be found in Text S2 (see online).

Discussion

Relevance of the proposed analytical strategy
A search for the understanding of the role of each of the

multiple features of the human genome has dominated the

research agenda of molecular biology ever since the discovery of

DNA. However, measurements of global genome features such as

chromatin modulation, chromosome inactivation, stability, repair,

imprinting, transposition, repetitive DNA dynamics, transcription-

al activation and repression, as experimentally daunting and

productive as they have been, have suffered from the absence of a

global genome metric that summarizes the vast informational

content they represent within and among chromosomes. Our

study is the first to rigorously measure human whole genome

sequence organization of biologically relevant motifs by establish-

ing a genome wide metric based upon a two point correlation

function originally optimized for astrophysical research on the

organization of the Universe.

Earlier studies to detect correlated structures in genomic data

were carried out by the signal processing and information theory

communities in the late 1950’s [58,59]. At that time researchers

had access to only small amounts of data on chromosome

composition and effectively no sequence data. Some thirty years

later the availability of partial DNA sequence data and the

initiation of online shared databases fostered research [60–63] that

suggested that a power-law, and possibly fractal patterns, were

characteristics of the DNA sequence (see Knoch et al. 2009 [64]

for a review). Li [65] addressed the applicability of such

mathematical models as a means to study the organization of

genomes, but cautioned against making generalizations because

available DNA sequence information was sparse and very local.

Recent work by Chapeau-Blondeau [66] and Knoch et al. [64]

adds further support for a power law structure in the distribution

of DNA bases.

These efforts to measure and model the organization of

nucleotides on large scales parallel our work, but there are

important differences. First, our analytical method involves a

statistical strategy for dealing with missing sequence. It is obvious

that even in the large whole-genome scale sequencing era, a full

sequence is not guaranteed, and that statistical methods must be

employed to correct for this experimental reality. Second, and

perhaps most important, our strategy for estimating measures of

genome organization and their standard errors establishes a

quantitative basis for future studies of the impact of variability in

patterns of DNA sequence organization. Variability can then be

assessed within and among chromosomes, among individuals for

regions of chromosomes, whole chromosomes, or even the whole

genome. Third, for illustrative purposes, we use CGI, which is a

biologically well-motivated choice, both for their proximity to

other functional sequences and their central role in facilitating

epigenomic modifications. Importantly, while future studies may

show that the spatial CGI distribution does vary among

individuals, the approach we demonstrate here can be adapted

to other genomic features whose distributions may vary among

individuals.

Summary statistics of the distribution of CGI provide a snapshot

of the whole genome as it is defined by a set of markers whose

computational selection has the features of uniformity and

reproducibility. As markers of the organization of the genome,

Figure 3. Summary of TPCF for all human chromosomes. Dashed lines show high CGI density chromosomes, dash-dot lines represent (top to
bottom) the Y and X chromosomes. Inter-chromosomal variation is clear, and in general all chromosomes show random clustering by ,10 Mb. Large
separations likewise produce significant clustering, due to the high density of CGI in telomeres. Typical error bars for a given 1+j are shown to the
right. Individual profiles for each chromosome can be found in Figure 2 and the Supplemental Figures.
doi:10.1371/journal.pone.0029889.g003
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CGI have another particularly attractive feature: their presence is

not inferred by association. For instance, in studies of higher

organisms that use known candidate genes, promoter regions of

those genes, only exome sequence variations or randomly placed

marker variations, a very biased and poorly understood subset of

the genome is employed to infer its large-scale structure. The

representativeness of the subset of the genome studied using

selected regions is very difficult to quantify. Although CGI

algorithms using the complete DNA sequence differ in their detail

and are not completely free of bias, the algorithmic nature of the

detection mechanism ensures that their ascertainment is well-

understood up to errors in the underlying sequence. CGI also

enjoy a peculiar feature not typically associated with DNA: they do

not have a preferred orientation. That is, in principle, a CGI will

be detected regardless of the strand under consideration, and

regardless of whether one’s reading frame proceeds 59 to 39 or vice

versa. This fact is especially important to keep in mind when

considering clustering scales comparable to the size of the object

under scrutiny.

Biological implications of the distribution of CGI
clustering

We have explicitly demonstrated that CGI cluster together in a

manner that depends on both their physical separation and the

context of the chromosome of the reference human DNA

sequence. Given a CGI, one is more likely than random to find

additional CGI nearby. The average clustering is non-zero to

,10 Mb in all chromosomes and varies between chromosomes by

5 fold or more at distances on the order of 0.1 Mb or less. That

CGI cluster should not come as a surprise. It is well known that

genes cluster and that CGI are largely found in gene-associated

promoters. Variation of clustering of CGI among chromosomes is

consistent with the work of Knoch et al. [64] that suggests that the

variability in the organization of chromosomes among species is

tightly controlled by evolutionary forces. Most important, the

distributional properties of CGI summarize functional properties

of the genome that are not captured when considering separate

variable sites in the primary DNA sequence. While the causes of

clustering at any scale is yet unknown, clues come from the

functionally-relevant sequences that are physically associated with

CGI. Evidence that CGI co-aggregate with promoter regions,

transcriptional start sites, or recombination hotspots [67,68],

suggests a role in regulation as well as in biological processes that

act to replicate and reshuffle elements of the genome.

As a very basic example of a mechanistic interpretation of the

TPCF, the non-random CGI-CGI clustering on scales ,10 Mb is

suggestive of the notion that tissue-specific genes cluster (e.g.

Lercher et al. [69]), and perhaps more intriguingly, is consistent

with hierarchical packing found in chromatin structure. At large

scales, Bornfleth et al. [70] and Cremer et al. [71] note that

subchromatin domains in human chromosomes of ,1 Mb in size

show temporal displacement, both through self organizing

Brownian motion [51,72] and perhaps, to some degree, via

undefined directed mechanisms. This packing hierarchy includes

the 30 nm chromatin fibers (a few kb of DNA) and extends to

smaller scales, where nucleosomes consisting of sequences of

,147 bp [73,74] are wrapped around histone octamers and

regulate local access of transcription machinery to DNA, in the

traditional ‘‘beads-on-a-string’’ configuration. If CGI are typically

found in promoter regions of coding sequences, this clustering

measurement points to a possible global organizational principle of

the human genome, namely, that genes are positioned in the

genome so as to exploit the chromatin packing machinery that in

part governs transcription. Misteli [75] reviews the organization of

chromatin that spans these large and small scales. The fact that the

clustering strength CGI scales with distance could be a

manifestation of this hierarchical packing and may yield further

organizational insights. The notion that measurements like ours

couple to the 3-D chromatin architecture has also been invoked in

the interpretation of long-range correlations in sequence structure

reviewed in Knoch et al. 2009 [64].

The emergent relationship between distribution, clustering and

function suggests a framework for the interpretation of methyla-

tion data. A recent study in Arabidopsis found that nucleosomal

regions are sites of differential methylation [12]. If this extends to

humans, where there is increasing evidence for differential

methylation at CGI [75], we might expect variation in the

clustering of methylated CGI (mCGI-mCGI clustering) between

tissues or between diseased and health individuals, even though

the locations of the CGI themselves are highly conserved. The

data now exist to test for non-random long range patterns of

methylation in humans [76], and for the existence of variabililty

among tissues. Work is underway to adapt our statistical formalism

to these data. The growing list of diseases arising from chromatin

packing defects [75] further supports this global approach as

genome and methylome data become available for more than a

handful of individuals.

The applicability of the organizational information also extends

to studies of the molecular genetic mechanisms that drive the

distribution of CGI. This in part depends on the presumed

function of CGI, which in turns depends on the working definition

of CGI (e.g. Hackenberg et al. 2010 [77]). Because of the

widespread use of the algorithm of Takai and Jones [22], an

algorithm designed to detect CGI in promoter regions, we chose to

use it as part of the proof-of-concept in this paper. However it has

been pointed out that this algorithm is restrictive, and that only

,35% of the CGI are associated with promoters [23]. While it is

not the goal of this paper to reconcile differing conventions for

CGI, it is nevertheless instructive to reconsider the inclusion of the

Takai and Jones algorithm in presenting our results. With the

availability of a full genomic sequence the definition of CGI can be

improved to create more complete lists of CGI near transcriptional

start sites (TSS). Irizarry et al. [56] and Wu et al. [78] describe a

detection algorithm built upon a hidden Markov model that they

demonstrate more completely detects CGI near TSSs. This

algorithm can be adapted to different species and has the

additional attractive feature that it assigns probabilities to putative

CGI. In Figure 2, and for each chromosome in Text S2, we plot in

red the TPCF for the publicly-available CGI made available by

Irizarry et al [57]. The same general trend in deviation from

random clustering with separation is present in the power-law

indices, but at a generally higher amplitude in most chromosomes

with some evidence for deviations from linearity. The higher

abundance of CGI detected by the Irizzary algorithm is one

possible explanation for the increased amplitude. Cases where the

amplitudes differ and b agrees between the two algorithms suggest

that the additional objects are themselves distributed similar to

detected by the Takai and Jones algorithm. In this sense vastly

different b values (e.g. chromosome 13) may be indicative of the

different definitions of CGI employed by the two algorithms, and

possibly that biologically distinct populations of objects are being

mixed.

CGI detected by biochemical means show the same general

trends. A set derived from CAP-seq and made public by

Illingworth et al [40] are overplotted on Figure 2 in green. Again,

the amplitudes are generally lower then the Irizarry et al. [57], and

the slope of the power laws are in general agreement with the

computationally detected CGI.
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The features present in the TPCF for any of the definitions of

CGI may arise from one of several underlying factors associated

with the nature of the CGI distribution. The global population of

CGI may be comprised of several inherently different sub-

populations of CGI with different functional properties whose

clustering contributes to the observed TPCF at different scales.

The example application of the TPCF presented here takes the

whole chromosome to be the unit of inference. This definition

ignores the possibility of variation in the strength of clustering at

smaller scales within and among chromosome arms. Variation in

the TPCF with separation among chromosomes (Figure 3) may

thus reflect underlying organizational variability among regions of

a chromosome, or more problematically, large scale sequencing

errors that are not random with respect to position on the

chromosome. Finally, the reference sequence analyzed in this work

is known to be an aggregation of sequence from many individuals.

Should the distribution of CGI and clustering among individuals

vary significantly among chromosomes, the observed organiza-

tional variability among chromosomes of the reference sequence

would be a combination of contributions from both chromosomal

differences and differences among individuals. While the true

scope of inter-individual variation in measurements like these

remains unknown, and is likely minimal for highly-conserved

sequences like CGI, the observed range of variation among

chromosomes suggests to us that measurements like this may have

utility in measuring variation in the distribution of features of the

genome among individuals.

Studies of inter-chromosomal variation in genome organization

offers a new perspective for measuring the mechanisms of

chromosomal evolution. Zhang [79] highlights the importance of

gene duplication (e.g. Bridges 1936 [6]) as a means for generating

raw genetic material via unequal crossing over or retroposition,

among other mechanisms. As CpG island densities track gene

densities in the human genome (e.g. Lander et al. 2001 [29]), it

may be that the decreased organizational structure (i.e. the

decreased two point correlation function amplitude) in higher

density chromosomes reflects a suppression of gene duplication

mechanisms that have a higher chance of interfering with

neighboring sequence, and thus a greater likelihood creating a

deleterious phenotypic effect.

Biological relevance of proposed strategy beyond CGI
The methods presented are easily extended to include any

sequence motif. With the promise of routine full genome

sequencing just around the corner, computationally identified

markers like CGI are well-suited to exploit the wealth of data

derived from next-generation sequencing technologies. The next

generation of genotype-phenotype studies will require new metrics

of organization to evaluate the contribution of variation in

organization of the genome to variation in phenotypic effects.

The proposed TCPF strategy for measuring organization is only a

first step in developing the statistical strategies for evaluating the

impact of genome variation on phenotype variation as a

conceptual alternative to the SNP based association study

paradigm that currently pervades genetic studies. While we use

CGI as a demonstration, this strategy may also be applied to

studying inter-individual variability in the collective number and

spatial organization of other genomic features which play a

coordinated role in determining genome function, including

methylation patterns and the distributions and clustering of copy

number variants, transposons, pseudogenes, mutational hotspots,

recombinational hotspots, segmental duplications, short tandem

repeats, indels and functional non-translated RNAs.

In conclusion, we recall that the statistical methods presented

here were first developed for characterizing and extracting

information from the three dimensional relationships among

bodies in the physical Universe. In years to come, the next logical

step beyond using them for the study of organization of the

features of the genome will be to consider their application and

utility in measuring three dimensional relationships in cellular

space and investigating the role of variation in those relationships

in understanding and predicting phenotypic variation.

Supporting Information

Text S1 Density plots of CGI for All Human Chromo-
somes. As in Figure 1, density is simply defined as the number of

Takai and Jones CGI per non-overlapping 1 Mb window.

(PDF)

Text S2 The Two Point Correlation Functions of CGI in
All Human Chromosomes. As in Figure 2, the TPCF points

and standard errors are given in black for the Takai and Jones

CGI, red for the Irizarry et al [56] CGI, and green for the

Illingworth et al [40] CGI. Best-fit power laws are over-plotted,

and the best-fit power law amplitude and index are given in the

legend, all using the same color scheme. Note that the fitting

procedure converges for all but the CGIs from Illingworth et al

[40] on the Y-chromosome, where it fails to locate a stable

minimum. Thus the fit parameters are omitted in the legend in this

single instance.

(PDF)
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