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Estrogen has long been known to possess immune-modulatory effects in diseases,
and multiple pathological conditions show great sex disparities. However, the impact
of estrogen in Neisseria meningitidis infection has not been determined. The present
study aimed to investigate the role of estrogen in N. meningitidis infection and the
molecular mechanism. We selected 35 N. meningitidis isolates representing different
clonal complexes (cc), serogroups, and isolation sources to infect the HBMEC cell line.
Results showed that the expression of estrogen receptor (ER) g in N. meningitidis-
infected cells was downregulated compared with that in normal cells. The expression of
ERB induced by invasive isolates was lower than that in carriers. Serogroup C isolates
induced the lowest expression of ERp compared with serogroup A and B isolates. We
used four cc4821 N. meningitidis isolates to infect two kinds of host cells (human brain
microvascular endothelial cells and meningeal epithelial cells). The results showed that
17 B-estradiol (E2) could inhibit the release of inflammatory factors interleukin (IL)-6, IL-
8, and tumor necrosis factor-a after N. meningitidis infection via TLR4. E2 could inhibit
the activation of the p38-MAPK signal pathway induced by N. meningitidis infection
through binding to ERB, and significantly inhibit the release of inflammatory factors
in N. meningitidis-infected host cells. This study demonstrated that estrogen plays a
protective role in N. meningitidis infection. ER is potentially associated with the release
of inflammatory cytokines in N. meningitidis infection, which sheds light on a possible
therapeutic strategy for the treatment of invasive diseases caused by N. meningitidis.

Keywords: estrogen, N. meningitidis, p38-MAPK, TLR4, ERB

INTRODUCTION

As a sex hormone that induces growth and development, estrogen is expressed in both men
and women, and participates in regulating a variety of physiological and pathological processes,
including adenocarcinoma, pathogenic microbial infectious diseases, neurodegeneration, and
inflammation. The cellular effect of estrogen is mediated by the estrogen receptor (ER). The two

Frontiers in Microbiology | www.frontiersin.org 1

March 2022 | Volume 13 | Article 834091


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2022.834091
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2022.834091
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2022.834091&domain=pdf&date_stamp=2022-03-29
https://www.frontiersin.org/articles/10.3389/fmicb.2022.834091/full
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Guo et al.

Estrogen Suppresses cc4821 Nm Infection

dominant receptors are ERa and ERP (Pazos et al, 2012;
Rouphael and Stephens, 2012; Almey et al., 2015; Santos et al,,
2017; Patel et al., 2018).

ERa and ERP have both synergistic and antagonistic effects.
They work together to maintain homeostasis (Rouphael and
Stephens, 2012; Roberts et al., 2013; Pizza and Rappuoli,
2015; Patel et al, 2018). When estrogen binds to ER, it
initiates transcriptional regulation. Activated ER regulates the
nuclear factor kappa B (NF-kB) signaling pathway, upregulates
transcription factor activating protein-1, and further activates
many downstream signal pathways, such as the AMP-activated
protein kinase (AMPK) signaling pathway and mitogen activated
protein kinase (MAPK) signaling pathway (Imamov et al,
2005). Upregulated transcription factor activating protein-1
induces the secretion of inflammatory factors and increases
the expression of vascular endothelial growth factor (Patel
et al., 2018). In addition, the ERP promoter region contains
many CpG islands, which are the binding targets of different
methylation patterns (Chisamore et al., 2012; Gianchecchi et al.,
2015; Ali et al, 2017; Chakhtoura et al., 2017; Zouheir et al,
2019).

Neisseria meningitidis (N. meningitidis) is a bacteria that
colonizes the human nasopharyngeal mucosa, with human
as the only host, and is also the main cause of invasive
meningococcal disease (IMD). Therefore, N. meningitidis is
considered to be an opportunistic pathogen. N. meningitidis
can be divided into different sequence types (STs) based
on the sequences of its seven housekeeping genes. STs with
four or more identical loci can be classified into the same
clonal complex (cc) (Shao et al., 2006). Previous molecular
epidemiological studies have found that isolates of ccs, such
as cc5, ccll, cc32, cc41/44, and cc4821, are more likely
to cause IMD; therefore, these ccs are also called hyper-
invasive ccs. Cc4821 isolates were one of the most important
hyper-invasive isolates in China. The interaction between
N. meningitidis and host cells is critical in the pathogenicity
process of N. meningitidis (Shao et al., 2006; Guo et al,
2019).

Previous studies have found that estrogen is associated
with the occurrence, development, and prognosis of
some infectious diseases, autoimmune diseases, and
malignant tumors (Imamov et al, 2005; Pazos et al., 2012;
Almey et al, 2015; Kovats, 2015; Santos et al, 2017).
Investigate of the potential role played by estrogen in
N. meningitidis infection and its underlying mechanism
will not only clarify the interaction between N. meningitidis
and host cells at the molecular level, but also shed light
on the clinical treatment of critical sequelae caused by
N. meningitidis infection.

Here, we investigated the role and the molecular
mechanism of estrogen in N. meningitidis infection. We
evaluated the expression of ERP in N. meningitidis-infected
cells and the relationship between its expression and
N. meningitidis characteristics. Our results revealed the
regulatory role of estrogen in N. meningitidis infection
and provided the clues for new therapeutic measures to
treat severe IMDs.

MATERIALS AND METHODS

Studied Isolates and Growth Conditions
Thirty-five N. meningitidis isolates were cultured on a Columbia
5% sheep blood agar plates (BAPs) (Thermo Fisher Oxoid,
Beijing, China) and incubated at 37°C with 5% CO, for
24 h. Information related to the 35 isolates used in this study
is provided in Table 1. All experiments were performed in
a safety cabinet.

Cell Culture, E2 Treatment, and shRNA
Transfection

Human brain microvascular endothelial cells (HBMECs) and
meningeal epithelial cells (MECs) were purchased from ATCC
(ATCC-CRL-2922, Manassas, VA, United States) (Shanghai,
China; catalog no. AT3190; Shanghai, China; catalog no.
AT4122). HBMECs were cultured in Dulbecco’s modified
Eagle medium (DMEM) (Gibco by Invitrogen, Carlsbad, CA,
United States) supplemented with 10% fetal bovine serum (FBS)
(catalog no. FS201-02; Transgen Biotech, Beijing, China) and 1%
penicillin-streptomycin solution (final concentrations: Penicillin,
100 units/ml; streptomycin, 100 pg/ml) (catalog no. 10378016;
Thermo Fisher Scientific, Shanghai, China). MECs were cultured
in Roswell Park Memorial Institute (RPMI) 1640 Medium
supplemented with the same concentration of FBS and penicillin-
streptomycin solution. The growth conditions for both cell lines
consisted of a humid atmosphere with 5% CO, at 37°C.

Both cells were seeded in 6-well plates and incubated for
20 h before treatment with 50 nM of estradiol-17p (E2) (E2758,
Sigma, St Louis, MO, United States) for another 24 h before being
harvested for subsequent experiments.

The short hairpin RNA (shRNA) targeting TLR4 (Toll like
receptor 4; Shanghai Genechem Co., Ltd., Shanghai, China)
was transfected into the HBMECs and MECs to block TLR4
expression, and random sequences were used as non-specific
control (Si-NC). The efficiency of downregulation of TLR4
was verified using western blot. All of the transfections
were performed using Lipofectamine 3000 (Invitrogen,
Thermo Fisher Scientific, Shanghai, China) according to
the manufacturer’s instructions.

Infection Experiments

Human brain microvascular endothelial cells and MECs
were seeded into 6-well cell culture plates at a density of
2 x 10° cells/well. The day before infection, the cell lines
were starved by culturing them in opti-MEM I Reduced-Serum
Medium (31985070, Thermo Fisher Scientific). On the next day,
a suspension of the overnight bacterial culture in opti-MEM I was
adjusted to an optical density of 0.200 at 600 nm. After 1 x 10°
dilution, 100 L of the bacteria suspension was streaked on a
BAP and incubated at 37°C with 5% CO; for 24 h to calculate
the initial number of bacteria infecting the host cells. Bacterial
suspension (2 mL) was added into each of the eleven wells and
further incubated at 37°C with 5% CO,. One well containing
non-infected cells was included in each experiment as a control
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TABLE 1 | | Neisseria meningitidis isolates used in this study.

Isolates ID ST Cc Serogroup Source

320503 4821 4821 C Invasive isolate
340542 4821 4821 C Invasive isolate
100603 4821 4821 C Invasive isolate
341215 4821 4821 B Invasive isolate
321114 3200 4821 B Invasive isolate
370601 3200 4821 C Invasive isolate
431210 4821 4821 B Invasive isolate
330505 4896 4821 C Invasive isolate
340552 4897 4821 B Carried isolate
100572 5610 4821 C Carried isolate
100514 4832 4821 C Carried isolate
130803 6928 4821 C Carried isolate
421102 3200 4821 B Carried isolate
360624 5473 4821 C Carried isolate
420703 12311 4821 B Carried isolate
320501 4820 4821 C Invasive isolate
420718 11920 4821 C Invasive isolate
440902 4821 4821 B Invasive isolate
440529 7 5 A Invasive isolate
130508 7 5 A Invasive isolate
310501 7 5 A Invasive isolate
510612 7 5 A Invasive isolate
100806 2859 5 A Invasive isolate
651801 7 5 A Invasive isolate
150720 2146 198 Cnl Carried isolate
130817 2146 198 Cnl Carried isolate
340809 2146 198 Cnl Invasive isolate
211002 2146 198 Cnl Carried isolate
341403 4821 4821 C Invasive isolate
341215 4821 4821 B Invasive isolate
LNT3 7 5 A Invasive isolate
440530 7 5 A Invasive isolate
421401 12316 4821 B Invasive isolate
421007 4821 4821 B Carried isolate
321102 4821 4821 C Invasive isolate

(CTR). After 4 h of infection, unbound bacteria were washed
away using sterile phosphate-buffered saline (PBS) three times.

Inhibitor Treatment

For ERP inhibitor treatment, HBMECs and MECs were
pretreated with ERP inhibitor PHTPP (1 pwM) (#abl45148,
Abcam, Cambridge, MA, United States) for 30 min before E2
treatment for 24 h.

For p38-MAPK signaling pathway inhibitor treatment,
HBMECs and MECs were pretreated with p38 inhibitor
SB203580 (20 M) (#ab120162, Abcam) before E2
treatment for 24 h.

Western Blotting for Signaling Pathway

Screening
Human brain microvascular endothelial cells and MECs were
collected after 48 h of infection. The total protein was extracted

from both cell types and lysed in Radioimmunoprecipitation
assay (RIPA) lysis buffer (Beyotime, Hayman, China). The cell
extract was centrifuged at 12,500 x g at 4°C for 25 min.
Thereafter, the total protein (60 pg) was fractionated on 12%
SDS-PAGE gels and transferred to polyvinylidene difluoride
membranes for western blotting. Western blotting was performed
by using a specific Phospho-MAPK Family antibody sampler
kit (#9910) from Cell Signaling Technology (Danvers, MA,
United States) to detect MAPK signaling pathway-related
proteins phospho (p)-ERK (extracellular regulated kinase),
p-JNK (JUN N-terminal kinase) and p-p38. Primary antibodies
against the TNF-o (#6945) was also purchased from Cell
Signaling Technology Inc. The primary antibodies against ERf
(#ab3576) and TLR4 (#ab13556) were purchased from Abcam
company. B-actin was detected as an internal control using a
mouse anti-B-actin monoclonal antibody (#HC201-02, TransGen
Biotech, Beijing, China). The secondary antibodies against mouse
IgG (#7076) and rabbit IgG (#7074) were purchased from Cell
Signaling Technology Inc.

Enzyme-Linked Immunosorbent Assay of
Cytokines

After E2 treatment and N. meningitidis isolate infection, both cell
types were further cultured for 48 h. Cytokines were detected
using ELISA. The interleukin-6 (IL-6) level was detected using
Human IL-6 ELISA Set (#555220, BD Bioscience, San Diego, CA,
United States). The release of interleukin-8 (IL-8) was detected
using a Human IL-8 ELISA Kit II (#550999, BD Bioscience).
The TNF-a level was detected using a Human TNF ELISA Kit II
(#550610, BD Bioscience). The cytokines mentioned above were
all detected according to the manufacturer’s instructions and run
in triplicate. The above-mentioned cytokine levels released by
non-infected HBMECs and MECs were measured as controls.

Statistical Analyses

All analyses were performed using SPSS version 20.0 software
(IBM Corp., Armonk, NY, United States) and GraphPad Prism
5 (GraphPad, La Jolla, CA, United States). Differences between
means were compared and analyzed using a two-way analysis
of variance (ANOVA) assay. A two-sided p-value of <0.05 was
considered statistically significant.

RESULTS

ERpB Downregulated in Neisseria

meningitidis Infection

In order to identify whether E2 participated in N. meningitidis
infection, we determined the protein level of ERP in
N. meningitidis isolate-infected HBMEC cells and non-infected
cells. The western blotting data showed that the ERp level was
significantly downregulated in infected cells compared with that
in normal cells from a cohort of 35 different N. meningitidis
isolates (***P < 0.001) (Figures 1A,B). Data analysis showed
that invasive isolates decreased the level of ERP to a greater
extent than the carried isolates (column 2 vs. 3, ***P < 0.001)
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FIGURE 1 | The expression of ERB in Neisseria meningitidis-infected cells. (A,B) Thirty-five N. meningitidis isolates were collected from China CDC, and host cells
were infected with the N. meningitidis isolates. The proteins of the 35 infected-cells were extracted, and the cellular proteins of uninfected N. meningitidis as the
control group (CTR) were extracted. Isolates ID with black color represented invasive isolates. Isolates ID with green color represented invasive isolates. Western
blotting assays were used to detect the levels of ERB in host cells after infection with N. meningitidis. ***P < 0.001. (C) Graph-pad Prism software further analyzed
the levels of ERB in the control group, the carrier isolates infection group, and invasive isolates infection group. Ns, not-significant, ***P < 0.001. (D) The above
software was used to analyze the changes of ERB levels in host cells after infection with serogroup A, B, and C invasive isolates. *P < 0.05.

1. MenA isolates infection
2. MenB isolates infection
3. MenC isolates infection

(Figure 1C), while the level of ERP showed no significant
difference after carried isolates infection compared with the CTR
(column 1 vs. 2, P > 0.05) (Figure 1C). Comparing the ERP
level in response to MenA, MenB, and MenC invasive isolates
infection showed that infection with MenC invasive isolates
resulted in the lowest ERB expression (*P < 0.05) (Figure 1D).

The Effect of E2 on Inflammatory
Cytokines Release After Neisseria

meningitidis Infection

To define the role of E2 in inflammatory factors release after
N. meningitidis infection, we treated the HBMECs and MECs
with E2 before N. meningitidis isolate infection and detected
the expression of inflammatory factors. The ELISA results
showed that E2 treatment did not influence the production of
inflammatory cytokines in uninfected cells (P > 0.05, lane 1 vs.
2, Figures 2A,B). Compared with N. meningitidis isolate-infected
cells (lanes 3, 5, 7, and 9), expression of IL-6, IL-8, and TNF-
o were significantly decreased in E2-pretreated-infected cells
(lanes 4, 6, 8, and 10, *P < 0.05, **P < 0.01, ***P < 0.001,

Figures 2A,B), which was further confirmed using western
blotting (Figures 2C-F).

The Effect of E2 on p38-MAPK Pathway

in Neisseria meningitidis-Infected Cells
Next, we attempted to define the signaling pathway through
which E2 could confer anti-inflammatory effects on the cells.
The results for both the hyper-invasive (ID: 341215 and 340542)
and hypo-invasive (ID: 130803 and 360624) N. meningitidis
isolates infection demonstrated that E2 effectively suppressed
the activated-MAPK pathway, as evaluated by its downstream
signaling molecules, including p-ERK, p-JNK and p-P38, in both
HBMECs and MECs (Figure 3).

The Role of p38-MAPK Pathway in the
Effect of E2 in Neisseria meningitidis

To test whether E2-mediated reverted the inflammatory behavior
of N. meningitidis-infected cells through MAPK pathway, we
pretreated HBMECs and MECs with the p38 inhibitor SB203580
before treatment with E2 and N. meningitidis. The cells without
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FIGURE 2 | Inflammatory cytokines release in Neisseria meningitidis-infected cells after E2 treatment. (A,B) HBMECs (A) and MECs (B) were treated with
N. meningitidis infection and N. meningitidis infection after E2 pretreatment. Cells without N. meningitidis infection and the cells stimulated by E2 only were used as
controls. ELISA assays were used to detect the expression of inflammatory factors IL-6, IL-8, and TNF-a in the culture supernatant. (C-F) HBMECs (C) and MECs
(D) were treated as above. Western blotting was used to detect the levels of TNF-a and IL-6, with B-actin used as a loading control. The levels of the above
molecules in both cells was analyzed by Image-J software, and the gray analysis value was analyzed statistically using Graph-pad Prism software. NS (not
significant) is P > 0.05, *P < 0.05, **P < 0.01, **P < 0.001.

inhibitor pretreatment were used as the control group. The
inhibitory effect was verified by western blotting.

Western blotting data showed that SB203580 could effectively
suppress activated-p-p38 (**P < 0.01, ***P < 0.001, Figures 4A-
D). ELISA data showed that when p38 was inhibited by SB203580,
E2 lost its protective effect in N. meningitidis infection (lane
2 vs. 3, lane 5 vs. 6, lane 8 vs. 9, lane 11 vs. 12, *P < 0.01,
*#*P < 0.001, Figures 4E,F). The ELISA result was confirmed
by western blotting, which suggested that TNF-a expression was
upregulated when HBMECs and MECs were pretreated with
SB203580 (lane 2 vs. 3, lane 4 vs. 5, lane 6 vs. 7, lane 8 vs. 9,
*P < 0.05, **P < 0.01, ***P < 0.001, Figures 4G-J).

The Effect of TLR4 in E2 Protection in

Neisseria meningitidis Infection

To test the hypothesis that TLR4 is the key TLR in E2’s protective
effect against N. meningitidis, we examined the production of IL-
6, IL-8, and TNF-a by HBMECs and MECs following treatment
with a TLR4 shRNA. TLR4 inhibition was verified by western
blotting (Figures 5A-D; *P < 0.05, **P < 0.01, ***P < 0.001).

The ELISA results showed that compared with N. meningitidis
isolate-infected cells without TLR4 shRNA transfection (lanes 2,
5,8, and 11), the levels of IL-6, IL-8, and TNF-a were significantly
increased in TLR4 shRNA transfection cells (lanes 3, 6, 9, and
12, **P < 0.01, ***P < 0.001, Figures 5E,F), which was further
confirmed using western blotting (lane 2 vs. 3, lane 4 vs. 5, lane
6 vs. 7, lane 8 vs. 9, *P < 0.05, **P < 0.01, ***P < 0.001,
Figures 5G-]J).

These experimental results showed that after the effective
inhibition of TLR4, estrogen cannot downregulate the
inflammatory factors of the host cells in the N. meningitidis-
infected host cells. These results further suggested that estrogen
plays a role in N. meningitidis infection by TLR4 participating.

The Role of ERp in Neisseria meningitidis

Infection

To further verify the role of ERf in N. meningitidis infection, we
aimed to reverse the effect of ERB on N. meningitidis infection by
inhibiting the activity of ERB. PHTPP, a specific inhibitor of ERp,
was used to block the activity of ERB. ELISA and western blotting
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tests were used to detect the release of inflammatory factors from
host cells. The results showed that the levels of IL-6, IL-8, and
TNF-a in the PHTPP-estrogen-N. meningitidis co-stimulation
group were significantly higher than those in the estrogen-
N. meningitidis co-stimulation group (**P < 0.01, ***P < 0.001,
sample 2 vs. 3, 5vs. 6,8 vs. 9, 11 vs. 12, Figures 6A,B). Compared
with the experimental group only infected with N. meningitidis,
there was no difference in the release of these factors between
the PHTPP-estrogen-N. meningitidis experimental group and its
host cells (P > 0.05, sample 1 vs. 3, 4 vs. 6, 7 vs. 9, 10 vs. 12,
Figures 6A,B). The results of western blotting were consistent
with those of the ELISA experiment (**P < 0.01, ***P < 0.001,
sample 4 vs. 5, 7 vs. 8 P > 0.05, sample 3 vs. 5, 6 vs. 8,
Figures 6C,D).

These results suggested that when PHTPP suppresses the
activity of ERp in host cells, estrogen lacks its binding receptors
in host cells infected with N. meningitidis isolates, and host
cell inflammatory factors are upregulated. This suggested that

estrogen plays a protective role in host cells infected with
N. meningitidis by binding to ERB.

Previous experimental results revealed that estrogen has a
significant protective effect on N. meningitidis infection, and
this effect is achieved by binding ERf and downregulating the
p38-MAPK signal pathway. Therefore, we aimed to further
study whether the binding of estrogen and ER is involved in
the p38-MAPK signal pathway. The results showed that when
comparing the estrogen-N. meningitidis co-stimulation group
and the PHTPP-estrogen-N. meningitidis co-stimulation group,
the phosphorylation of p38 was significantly activated in the latter
group (*P < 0.05, **P < 0.01, ***P < 0.001, sample 4 vs. 5,
7 vs. 8, Figures 6E,F). Comparing the level of phosphorylated
p38 in host cells between the N. meningitidis infection group and
PHTPP-estrogen-N. meningitidis co-stimulation group, showed
no significant difference in host cell level of phosphorylated p38
between the two groups (P > 0.05, sample 3 vs. 5, 6 vs. §,
Figures 6E,F).
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levels in HBMECs (B) and MECs (D) were analyzed using Image-J software, and the gray values were analyzed statistically using GraphPad Prism software. (E,F) A
TLR4 shRNA was transfected into E2-N. meningitidis co-stimulated HBMECs (E) and MECs (F). The E2-N. meningitidis co-stimulation experimental group without
shRNA transfection and the experimental group only infected with N. meningitidis were used as controls. The supernatants of the cells were collected for ELISA
assays, and the levels of IL-6, IL-8, and TNF-a in the supernatants were detected. (G-J) HBMECs (G) and MECs (1) were treated as shown. The expression of
TNF-a was detected using western blotting. B-actin was the internal reference. The changes in protein levels in both cells (H,J) were analyzed as above. *P < 0.05,
**P < 0.01, *™P < 0.001.

These results suggested that when PHTPP suppresses the
activity of ERP, estrogen loses its binding receptors in
N. meningitidis-infected host cells, loses its ability to inhibit
the p38-MAPK pathway, and leads to the increased release of
inflammatory factors in host cells infected by N. meningitidis.

DISCUSSION

Neisseria meningitidis is a bacteria that colonizes the mucosa of
the human nasopharynx and could cause serious disease, such
as septicemia and sepsis. The pathogenicity of N. meningitidis
to host cells is closely related to the balance of the interaction
between them, and the immune response of the body (Harrison
et al., 2009; Zekas and Prossnitz, 2015; Bonazzi et al., 2018). As a
steroid hormone, estrogen is involved in the immunomodulatory
processes of many infectious diseases. It is not clear whether
estrogen plays a role in N. meningitidis infection. In this study,

we simulated the infection of N. meningitidis to HBMEC and
MEC cell lines in vitro, and pretreated the cells with estrogen in
advance. The results suggested that estrogen exerts a protective
role on the cells during N. meningitidis infection. We found
that estrogen could bind to estrogen receptor f (ERp), regulate
the p38-MAPK signaling pathway, and inhibits the release of
inflammatory factors in host cells after N. meningitidis infection
with TLR4 participating, thus reducing the occurrence and
development of the inflammatory response of host cells after
N. meningitidis infection.

Previous studies have shown that the severity and mortality
of N. meningitidis disease are closely related to inflammatory
cytokines produced by the host, such as IL-1, IL-6, IL-8,
and TNF-a (Marriott et al, 2007; Raju et al, 2019). It has
been confirmed that estrogen has different effects on different
inflammatory responses (Holm et al, 2010; Farooq, 2015;
Zeng et al, 2019). In the present study, we found that after
N. meningitidis infected host cells, the release of inflammatory
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factors IL-6, IL-8, and TNF-a increased. Estrogen pretreatment
could significantly reduce the release of these inflammatory
factors caused by N. meningitidis infection, thus reducing the
inflammatory response of the host cells. We inferred that
estrogen plays a protective role in host cells in the process of
N. meningitidis infection.

When we studied the decreased release of inflammatory
factors from host cells after estrogen-mediated infection, we
found that estrogen pretreatment inhibited the phosphorylation
of MAPK downstream molecules induced by N. meningitidis

infection and inhibited MAPK signaling pathway activation. As
an important signaling pathway of innate immunity, the MAPK
signaling pathway is very sensitive to the changes and metabolism
of intracellular inflammatory factors. After activation, the MAPK
signaling pathway plays an important role in the inflammatory
response, cell proliferation, cell differentiation, apoptosis, cell
invasion, and other reactions (Sprong et al., 2004; Holm et al,,
20105 Farooq, 2015; Marshall et al., 2019). In N. meningitidis-
infected cells, the MAPK signaling pathway was activated and the
expression of IL-6, IL-8, and TNF-a increased. E2 inhibited the

Frontiers in Microbiology | www.frontiersin.org

9 March 2022 | Volume 13 | Article 834091


https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles

Guo et al.

Estrogen Suppresses cc4821 Nm Infection

expression of inflammatory factors in host cells by inhibiting the
activation of the MAPK signaling pathway, thereby reducing the
inflammatory response of host cells and exerting a protective role
on the host cells. Furthermore, we also found that E2 inhibits the
MAPK signaling pathway by targeting p38.

The main biological response of p38-MAPK activation
involves the production and activation of inflammatory
mediators. Activated p38-MAPK positively regulates the
expression of many inflammation-related genes, such as those
encoding TNF-a, IL-1, IL-6, and IL-8. Previous studies have
shown that SB203580, as a specific inhibitor of p38, could regulate
and reduce the production of proinflammatory cytokines after
inhibition of p38-MAPK (Frieling et al., 1997; Braun et al., 2002;
Sprong et al., 2004; Li et al., 2017; Marshall et al., 2019). To
verify the role of p38 in the E2 effect, we pretreated HBMECs
and MECs infected with N. meningitidis with the p38 inhibitor
SB203580. The results showed that inhibition of p38 activation
by SB203580 could significantly reverse the downregulation of
E2-mediated inflammatory factor release. When the p38-MAPK
signaling pathway was blocked by SB203580, the protective effect
of E2 on N. meningitidis infection disappeared. These results
suggested that the protective effect of E2 on host cells depends on
the p38-MAPK signaling pathway.

As the main virulence factor of N. meningitidis, LOS binds
to a series of host transfer molecules and receptors of the
innate immune system. LOS in the plasma and cerebrospinal
fluid of patients with IMD is the main component of the
inflammatory pathway activated by TLR4 (John et al., 2017). Our
results showed that the protective role of E2 in N. meningitidis
infection also depends on the participation of TLR4. When the
specific sShRNA for TLR4 was used to inhibit the expression of
TLR4, the downregulated inflammatory factors mediated by E2
showed a tendency of overexpression. These results suggested
that the protective role of E2 in N. meningitidis infection is also
targeted LOS-mediated TLR4 activation. These results improve
our understanding of the molecular mechanism of the interaction
between N. meningitidis and host cells.

Estrogen acts by binding to its specific receptors o (ERa) and
B (ERB). We found that the level of ERB in HBMECs and MECs
was down-regulated after N. meningitidis infection, and the
degree of down-regulation varied with the origin and serogroup
of N. meningitidis. Invasive isolates and serogroup C invasive
isolates were more likely to mediate the down-regulation of ERp.
The results are consistent with earlier finding that ER} showed
a down-regulation trend in infectious diseases; however, its
expression was affected by pathogenic factors (different isolates)
and can show a contradictory state in itself. The activation of
the downstream MAPK signaling pathway by the binding of E2
and ERP has been reported in many previous studies. In the
study of N. meningitidis infection, we also found that E2 regulates
the inflammatory response of host cells after infection through
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