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Abstract: An expedient synthesis of hitherto unexplored novel hybrid heterocycles comprising
dispiropyrrolidine, N-styrylpiperidone and indeno[1,2-b]quinoxaline units has been developed via
domino multicomponent 1,3-dipolar cycloaddition strategy employing a new class of azomethine
ylide in ionic liquid, 1-butyl-3-methylimidazolium bromide. This domino protocol involves,
1,3-dipolar cycloaddition and concomitant enamine reaction affording the dispiropyrrolidine tethered
N-styrylpiperidone hybrid heterocycles in moderate to good yield in a single step. These compounds
were evaluated for their antimicrobial activity against bacterial and fungal pathogens, therein
compounds 8f, 8h, and 8l displayed significant activity against tested microbial pathogens.
The synergistic effect revealed that the combination of compound 8h with streptomycin and
vancomycin exhibited potent synergistic activity against E. coli ATCC 25922. In addition, molecular
docking simulation has also been studied for the most active compound.

Keywords: domino multicomponent reaction; dispiropyrrolidine; indeno[1,2-b]quinoxaline;
docking studies; antimicrobial activity; synergistic effect

1. Introduction

The increasing emergence of drug resistance, intractable pathogenic microorganisms, and newly
arising pathogens have become a serious and challenging problem for human health. This situation
stimulates an urgent need to develop novel antimicrobial agents with completely different chemical
structures possibly exerting different mechanisms of action than current clinical drugs [1]. In this context,
spirocyclic scaffolds are very attractive for drug discovery because their inherently three-dimensional
structure can achieve interactions with three-dimensional binding sites more easily than when using
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planar (hetero) aromatic systems as ligands. Perhaps for this reason, a large number of spirocyclic
cores can be found in natural products, which have evolved to interact with proteins [2]. Among them,
pyrrolidine-embedded spiroatom are present in numerous alkaloids and pharmacologically important
compounds including horsfiline, elacomine, gelsemine, formosanine, the spirotryprotatins A and
B (Figure 1). These compounds and many more synthetic spiropyrrolidine heterocyclic hybrids
have been reported to display anticancer [3–5], antimycobacterial [6] anti-inflammatory, analgesic [7]
antimicrobial [8], and AChE inhibition activities [9,10].
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Figure 1. Biologically important spiropyrrolidine heterocycles.

Piperidone is another important class of pharmacophore as its derivatives possess interesting
biological profiles such as potential antitumor [11] and antimicrobial agents [12]. Our research
group has largely been involved in the synthesis of structurally diverse novel heterocyclic hybrids
comprising spiropyrrolidine, piperidone units employing 1,3-dipolar cycloaddition followed by
their biological screening, which has produced various anticancer [13], antimycobacterial [14],
anti-Alzheimer [15] and antimicrobial leads [16,17]. The above precedents prompted us to explore
the synthesis of novel heterocyclic hybrids comprising dispiropyrrolidine, N-styrylpiperidinone, and
indeno[1,2-b]quinoxaline units via domino multicomponent reaction in ionic liquid in the present
investigation. Recently, several spiroheterocyclic hybrids have been synthesized in an ionic liquid
medium due to their unique properties such as high thermal stability, solvating ability, recyclability, and
ability to accelerate the rate of reaction that was supported by earlier reports [18–20]. The synthesized
compounds were assayed for their antimicrobial activity against ten bacterial and five fungal pathogens
and the synergistic effect of these compounds has also been investigated. The synthetic strategy for the
formation of our target molecules has been described in Scheme 1.

Molecules 2019, 24, x 2 of 15 

 

when using planar (hetero) aromatic systems as ligands. Perhaps for this reason, a large number of 
spirocyclic cores can be found in natural products, which have evolved to interact with proteins [2]. 
Among them, pyrrolidine-embedded spiroatom are present in numerous alkaloids and 
pharmacologically important compounds including horsfiline, elacomine, gelsemine, formosanine, 
the spirotryprotatins A and B (Figure 1). These compounds and many more synthetic 
spiropyrrolidine heterocyclic hybrids have been reported to display anticancer [3–5], 
antimycobacterial [6] anti-inflammatory, analgesic [7] antimicrobial [8], and AChE inhibition 
activities [9,10]. 

 
Figure 1. Biologically important spiropyrrolidine heterocycles. 

Piperidone is another important class of pharmacophore as its derivatives possess interesting 
biological profiles such as potential antitumor [11] and antimicrobial agents [12]. Our research group 
has largely been involved in the synthesis of structurally diverse novel heterocyclic hybrids 
comprising spiropyrrolidine, piperidone units employing 1,3-dipolar cycloaddition followed by their 
biological screening, which has produced various anticancer [13], antimycobacterial [14], anti-
Alzheimer [15] and antimicrobial leads [16,17]. The above precedents prompted us to explore the 
synthesis of novel heterocyclic hybrids comprising dispiropyrrolidine, N-styrylpiperidinone, and 
indeno[1,2-b]quinoxaline units via domino multicomponent reaction in ionic liquid in the present 
investigation. Recently, several spiroheterocyclic hybrids have been synthesized in an ionic liquid 
medium due to their unique properties such as high thermal stability, solvating ability, recyclability, 
and ability to accelerate the rate of reaction that was supported by earlier reports [18–20]. The 
synthesized compounds were assayed for their antimicrobial activity against ten bacterial and five 
fungal pathogens and the synergistic effect of these compounds has also been investigated. The 
synthetic strategy for the formation of our target molecules has been described in Scheme 1. 

 
Scheme 1. Synthetic strategy for the formation of dispiropyrrolidine heterocyclic hybrids, 8a–k. Scheme 1. Synthetic strategy for the formation of dispiropyrrolidine heterocyclic hybrids, 8a–k.



Molecules 2019, 24, 1962 3 of 15

2. Results and Discussion

2.1. Chemistry

We employed a domino multicomponent 1,3-dipolar cycloaddition strategy [21,22] for the
synthesis of a new class of dispiroheterocycles 8a–k, the azomethine ylide employed in the present
work is first of its kind and adds regioselectively to the highly functionalized dipolarophiles. Initially,
a model reaction was investigated with an equimolar ratio of 3,5-dibenzylidenepiperidin-4-one 5 [18],
indeno[1,2-b]quinoxalin-11-one 3 and l-phenylalanine 4 in refluxing methanol. Under this condition,
the reaction afforded an inseparable mixture of products. Hence, in order to optimize the reaction
conditions, we attempted the same reaction with different ratios of l-phenylalanine. A single product
was obtained when a 2 mmol equivalent of l-phenylalanine was employed. The reaction was also
performed under different solvent system including methanol, ethanol, acetonitrile, 1,4-dioxane, and
the reaction afforded the product in 49,45, 42, 40, and 46% yields, respectively (Table 1). To improve
the yield of product 8j, the same reaction was also investigated in [bmim]Br at 100 ◦C, the reaction
afforded the product in good yield (60%) after 1 h (Table 1) (Scheme 2). As a more efficient alternative,
the synthesis of the target dispiroheteocyclic hybrid 8j was also attempted through a one-pot four
component cycloaddition reaction. Thus, a mixture of 1 (1 mmol), 2 (1 mmol), 4 (2 mmol), and 5j
(1 mmol) was heated at 100 ◦C for 1 h, furnishing the desired product in good yield (64%) in a single
step without isolation of the intermediate 3 (Scheme 3). Consequently, all the subsequent reactions were
performed under these optimized conditions. It is pertinent to note that the choice of l-phenylalanine
for the reaction with indeno[1,2-b]quinoxaline, which has not been used so far for the synthesis of
azomethine ylides, was triggered by the consideration that the initially formed spiroheterocyclic
intermediate 7 can participate subsequently with phenylacetaldehyde through enamine reaction
furnishing unusual dispiropyrrolidinyl-N-styrylpiperidone-indeno[1,2-b]quinoxaline heterocyclic
hybrids (8a–k). The phenylacetaldehyde 10 was generated in situ from the excess azomethine ylide 6
as shown in the mechanism (Scheme 4), which was further supported by our earlier report [19,20].
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Table 1. Solvent optimization of cycloadduct 8j.

Entry Solvents Time (h) Yield (%)

1 methanol 3 49
2 ethanol 3 45
3 acetonitrile 3 42
4 1,4-dioxane 3 40
5 1,4-dioxane: Methanol (1:1V/V) 3 46
6 [bmim]Br 1 64
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The structure of dispiropyrrolidine tethered indeno[1,2-b]quinoxaline heterocyclic hybrids 8a–k
was elucidated with the help of 1H-, 13C- and 2D-NMR spectroscopic analysis. As a representative case,
the structural assignment of 8j is described below (Figure 2). In its 1H-NMR spectrum, the two doublet
of doublets at δ 3.00–3.05 and 3.18–3.22 ppm are due to H-6 hydrogens, which shows 1H,1H-COSY
correlation with the triplet of the doublet at δ 5.43–5.48 ppm, and, hence, it can be assigned to H-5
hydrogen. The H-5 hydrogen shows 1H-1H-COSY correlation (Figure 3) with H-4 which appears as a
doublet at δ 4.75 ppm (J = 9.5 Hz). H-4 shows HMBCs (Heteronuclear Multi Bond Correlations) with
C-2, C-5, C-6 and C-2′ at 65.6, 61.9, 40.6 and 52.0 ppm, respectively. H-2′ shows HMBCs with C-3
and C-4′ at 74.0 and 199.9 ppm and H-6 shows HMBCs with C-4 at 48.3 ppm. Further, the chemical
shift of methine, methylene, and methoxy carbons has also been assigned by DEPT-135 analysis.
H-7′ appeared as a doublet at δ 4.34 (J= 14.0 Hz) that shows 1H, 1H-COSY correlation with H-8′, which
in turn shows HMBCs with C-7′ at δ 98.2 ppm. H-8′ shows HMBCs with C-7′ and C-6′ at 98.2 and
46.0 ppm respectively, was further confirmed by the styryl unit attached in the N-piperidinone moiety
of cycloadduct. The chemical shifts of hydrogens and C,H-COSY correlations helped in the assignment
of the hydrogen-bearing carbons. The structure deduced from NMR studies was in agreement with
combustion microanalytical data and with the mass spectrum of 8j. Further, the structure of the
compound 8j was unambiguously assigned based on our previous reports [19,20,23].
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The above one-pot multicomponent reaction presumably proceeds through a domino sequence
and a probable reaction mechanism is described in Scheme 4. Ionic liquid and [bmim]Br play a twin role
as a solvent and catalyst, the electron deficient hydrogen atom of [bmim]Br could form the hydrogen
bonds with carbonyl units of ninhydrin which would increase the electrophilicity of the carbonyl
carbon, probably accelerating the reaction [24]. Presumably, the amine group of o-phenylenediamine 2
attacks the carbonyl group of ninhydrin 1 to furnish indeno[1,2-b]quinoxalin-11-one 3. Compound 5
further reacted with the reactive azomethine ylide 6 via decarboxylative condensation. The azomethine
ylide attacks regio-selectively the β-carbon of C=C bond to form 7. Simultaneously, the ylide 6′ was
attacked by water molecule to furnish 2-phenylacetaldehyde 10 via 9. Subsequently, the secondary
amine of piperidone in the spirocycloadduct 7 was reacted with 2-phenylacetaldehyde 10 through
enamine reaction to afford 8.
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2.2. Biological Evaluation

2.2.1. Antibacterial Activities

The antibacterial activity of dispiropyrrolidine integrated indeno[1,2-b] quinoxaline heterocyclic
hybrids 8a–k was determined by agar well diffusion method [25] and the results were tabulated against
three Gram-positive bacteria and seven Gram-negative bacteria (vide supplementary data, Tables S1
and S2). Among them, compounds 8a, 8b, 8h, 8k, and 8l exhibited effective activities against all the
three tested Gram-positive bacteria (vide supplementary data, Table S1). In particular, compound
8h bearing m-methyl and 8k with p-methoxy substituent showed a maximum of 26 and 25 mm zone
against Bacillus subtilis MTCC 441, respectively. The minimum zone of inhibition was observed for 8d
and 8f against Staphylococcus aureus MTCC 96 and Staphylococcus epidermidis MTCC 3615, respectively
(vide supplementary data, Figure S8). Compounds 8a–k were also tested against seven Gram-negative
bacterial pathogens (vide supplementary data, Table S2). Therein four pathogens viz., Proteus vulgaris
ATCC 8427, Proteus mirabilis ATCC 7002, Salmonella typhi ATCC 19430, and Salmonella paratyphi MTCC
735 effectively inhibited and observed maximum zone of inhibition compared with the other three
pathogens namely, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27584, and Klebsiella
pneumoniae MTCC 109. Particularly, the maximum number of dispiropyrrolidine compounds showed a
smaller inhibition zone against Pseudomonas aeruginosa ATCC 27584. Compounds 8c, 8f, 8g, 8h, 8i, and
8k exhibited maximum zone of inhibition against Salmonella paratyphi MTCC 735. However, a minimum
zone of inhibition was observed against Pseudomonas aeruginosa ATCC 27584 (vide supplementary,
Figure S8). Overall, the dispiropyrrolidine compound 8h exhibited competent antibacterial activity
against both Gram-positive and negative bacterial pathogens (Figure 4).
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bacterial pathogens. @SA—Staphylococcus aureus MTCC 96, SE—Staphylococcus epidermidis MTCC 3615.
BS—Bacillus subtilis MTCC 441, EC—Escherichia coli ATCC 25922, PS—Pseudomonas aeruginosa ATCC
27584, KP—Klebsiella pneumoniae MTCC 109. PV—Proteus vulgaris ATCC 8427, PM—Proteus mirabilis
ATCC 25922, ST—Salmonella typhi ATCC 25922, SPT—Salmonella paratyphi MTCC 735.

Minimum inhibition concentration (MIC) values of the synthesized compound 8h along with
streptomycin were presented in Table 2. Gram-positive bacteria, S. epidermidis MTCC 3615 and B. subtilis
MTCC 441 displayed the MIC value of 31.25 µg/mL and S. aureus MTCC 96 MIC value was noted as
125.00 µg/mL. However, the MIC values of Gram-negative bacterial pathogens were ranged between
7.80 and 250.00 µg/mL. The minimum (7.80 µg/mL) and maximum (250.00 µg/mL) MIC value were
observed against K. pneumoniae MTCC 109 and P. aeruginosa ATCC 27584, respectively. The MIC value
of S. typhi ATCC 25922 and P. vulgaris ATCC 8427 were 15.60 µg/mL. Compound 8h showed potent
MIC values (7.80 µg/mL) against tested bacterial pathogens, particularly K. pneumoniae MTCC 109
and S. epidermidis MTCC 3615. MIC values of the compound 8h were comparatively higher than the
commercial antibiotic streptomycin against some tested bacterial pathogens (Table 2).

Table 2. Minimum inhibitory concentration of dispiropyrrolidines compound 8h and streptomycin.

Bacterial Pathogens MIC µg/mL
Compound 8h Streptomycin

Gram-positive bacterial pathogens

Staphylococcus aureus MTCC 96 125.00 10.0
Staphylococcus epidermidis MTCC 3615 31.25 5.0

Bacillus subtilis MTCC 441 31.25 5.0

Gram-negative bacterial pathogens

Escherichia coli ATCC 25922 62.50 5.0
Pseudomonas aeruginosa ATCC 27584 250.00 10.0

Klebsiella pneumoniae MTCC 109 15.60 5.0
Proteus vulgaris ATCC 8427 62.50 10.0
Proteus mirabilis ATCC 7002 125.00 10.0
Salmonella typhi ATCC 19430 15.60 5.0

Salmonella paratyphi MTCC 735 31.25 5.0
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2.2.2. Synergistic Activity

The combination of compound 8h with streptomycin and vancomycin acted synergistically against
streptomycin, tetracycline, and vancomycin-resistant E. coli ATCC 25922. The FICI (Fractional Inhibitory
Concentration Index) of each synergistic combination calculated from the results of the chequerboard
assays is presented in Table 3. The MIC values of compound 8h and streptomycin against E. coli
ATCC 25922 were 62.50 and 10 µg/mL, respectively, whereas the MIC values of compound 8h and
streptomycin in synergistic combination against E. coli ATCC 25922 were 15.60 and 2.5 µg/mL,
respectively. In addition, there was a significant decrease in MIC values in different combinations of
compounds with vancomycin. The FICI of compound 8h with various antibiotics such as streptomycin,
tetracycline, and vancomycin were 0.5, 1.0, and 0.75, respectively (Table 3). The combinations of
compound 8h with antibiotics showed a remarkable effect in decreasing the MIC values. Furthermore,
the synergistic effect showed that the presence of meta substituted aromatic ring could disturb
the cytoplasmic membrane structure, thus causing loss of integrity and eventually the cell death.
At sub-bactericidal concentrations of the dispiropyrrolidine compound 8h might facilitate the entry of
the antibiotic to the cell cytoplasm, thus assisting the passage of streptomycin and tetracycline, which
have their site of action within the bacterial cell, and a lower antibiotic dose would be needed. In this
aspect, both 8h and the antibiotics exhibited a collective mechanism of actions; it would be attained by
disrupting the bio-membrane and subsequently metabolic process such as protein synthesis, cell wall
synthesis and DNA synthesis, based on the antibiotic used.

Hence, these results profoundly suggest that the combination of compound 8h with streptomycin
and vancomycin exhibited outstanding synergistic activity against E. coli ATCC 25922. Nevertheless,
the combination of compound 8h with tetracycline shows no synergistic activity against E. coli. In the
future, the synergistic effect of compound 8h with antibiotic against the multidrug-resistant bacteria
may be useful for the treatment of infectious diseases.

Table 3. FIC and FICI of streptomycin, tetracycline, and vancomycin combined with the compound 8h
of against Escherichia coli ATCC 25922.

Compound and Antibiotics
Combinations (µg/mL) MICa MICb FIC FICI

Compound 8h-Streptomycin
0.5Compound 8h 62.50 15.60 0.25

Streptomycin 10.0 2.5 0.25

Compound 8h-Tetracycline
1.0Compound 8h 62.50 31.25 0.25

Tetracycline 15.0 15.0 0.5

Compound 8h-Vancomycin
0.75Compound 8h 62.50 31.25 0.5

Vancomycin 30.0 7.5 0.25

MICa—MIC of sample alone; MICb—MIC of effect combinations.

2.2.3. Antifungal Activity

The antifungal activity profiles of the compounds 8a–k and commercial antifungal drugs nystatin
are shown in Supplementary Table S3. Among them, six compounds showed significant antifungal
activity against tested clinical fungal strains. However, compounds 8e bearing p-chloro, 8f o,m-dichloro,
8h p-methyl, and 8k p-methoxy substituents on the aryl ring exhibited competent activity against
C. albicans BL0142, C. neoformans BL1703, and A. flavus BL5064, whereas A. niger BL4217 and Rhizopus
sp. BL3389 exhibited moderate to low activities (Figure 5). The inhibition zone range of commercial
drug showed between 20.0 and 25.0 mm.
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Figure 5. Antifungal activity of dispiropyrrolidine compound 8h against fungal pathogens.
$CA—Candida albicans BL0142, CN—Candida neoformans BL1703, AF—Aspergillus flavus BL5064,
AN—Aspergillus niger BL4217, Rh—Rhizopus sp. BL3389.

2.3. Docking Simulation

The most active dispiropyrrolidine, namely 8h was docked into the active site of experimentally
known ligand obtained from RCSB (Research Collaboratory for Structural Bioinformatics).
These strategies expected to disclose the binding affinity of this antimicrobial agent to their
respective receptor and their relative orientation inside the receptor and in contact with active
site residues. Molecular interaction protocols set up based on Schrödinger (2018-2) program [26,27].
Docking simulation scores were analyzed and detailed in Table 4. Docking studies against (1IWN)
Outer Membrane Lipoprotein Receptor [28] revealed that compound 8h interacted with the side
chain hydrogen bond (ASP96, ARG115) on amine group and benzyl nitrogen atom with electrically
charged amino acids. The binding site residues of ASN 112, ASP 124, GLN116, ALA77, TYR60, PRO79,
GLY80, VAL82, ALA97, ASP95 were shown to be hydrophobic interactions to hold the molecular
orientation to express the bimolecular activity (Figure 6). The docking result of the compound
showed the binding affinity with GLIDE score of −4.376 with a binding energy of −39.576 (Kcal/mol).
The result revealed that compound 8h interacted strongly with biochemical bonding interaction and it
helps to have good pharmacological inhibitory activity against microbial pathogens. To summarize,
the synthetic compound had a good binding affinity with the molecular interaction energy score, and
thereby the compound can act as a superlative ligand with inhibitory activity against gram-negative
bacterial pathogens.
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Table 4. Molecular docking data of compound 8h with bacteria outer membrane (1IWN) protein receptor.

Molecular Docking

Compound Glide Score (Kcal/mol) Emodel Score Glide Energy XP Hydrogen Bond

8h −4.376 −48.79 −39.576 2 (ASP96, ARG115)

3. Material and Methods

General Procedure for Synthesis of Dispiropyrrolidine Heterocyclic hybrids, 8a–k

A mixture of 3,5-diarylidenepiperidin-4-ones (0.727 mmol), ninhydrin (0.727 mmol),
o-phenylenediamine (0.727 mmol) and l-phenylalanine (1.45 mmol) in 200 mg of [bmim]Br and
reaction mixture was heated for 1 h. After completion of the reaction as evident by TLC analysis, the
crude product was purified by column chromatography.

5-Benzyl-spiro-[2.11′]-indeno-[1,2-b]quinoxaline-spiro-[3.3′]benzylidine-N-strylpiperidone-4-phenyl-pyrrolidine
(8a). Yield 51%; Yellow solid: m.p. 145–147 ◦C; 1H-NMR (CDCl3, 400 MHz): δ (ppm) 2.02 (d,
J = 14.0 Hz, 1H), 2.33 (d, J = 14.0 Hz, 1H), 2.88–2.90 (m, 1H), 3.38 (d, J = 16.0 Hz, 1H), 3.60 (d,
J = 14.0 Hz, 1H), 3.69 (d, J = 14.0 Hz, 1H), 4.54 (d, J = 14.0 Hz, 1H), 4.67 (d, J = 10.0 Hz, 1H), 4.84
(d, J = 14.0 Hz, 1H), 5.33–5.39 (td, J = 10.0, 3.6 Hz, 1H), 6.07–6.09 (m, 2H), 6.63–8.30 (m, 27H, ArH);
13C-NMR (CDCl3, 100 MHz): δ (ppm) 39.4, 46.8, 53.2, 53.7, 61.5, 66.8, 72.9, 100.6, 121.8, 123.8, 126.3,
126.3, 127.2, 127.8, 128.3, 128.7, 128.8, 128.9, 129.1, 129.2, 129.4, 129.6, 129.8, 130.3, 130.9, 131.0, 131.6,
132.1, 134.5, 136.3, 136.7, 137.8, 138.7, 139.7, 140.8, 141.8, 146.9, 154.1, 163.7, 197.8. LC/MS(ESI): m/z =

712 (M+); Anal. Calcd for C50H40N4O: C, 84.24; H, 5.66; N, 7.86; Found C, 84.35; H, 5.78; N, 7.95%.

5-Benzyl-spiro-[2.11′]-indeno-[1,2-b]quinoxaline-spiro-[3.3′]2-bromo-benzylidine-N-strylpiperidone-4-[2
-bromophenyl]-pyrrolidine (8b). Yield 52%; Pale Yellow solid: m.p. 171–173 ◦C; δ (ppm) 1H-NMR (CDCl3,
400 MHz): δ (ppm) 2.26 (d, J = 14.0 Hz, 1H), 2.65–2.70 (d, J = 14.0, 7.2 Hz, 1H), 2.81–2.86 (dd, J = 14.0,
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8.0 Hz, 1H), 2.94–2.98 (dd, J = 14.0, 3.6 Hz, 1H), 3.29 (d, J = 16.0 Hz, 1H), 3.55 (d, J = 14.0 Hz, 1H), 4.47
(d, J = 14.0 Hz, 1H), 4.54 (d, J = 10.0 Hz, 1H), 4.76 (d, J = 14.0 Hz, 1H), 5.08–5.11 (td, J = 8.0, 3.6 Hz, 1H),
6.23 (m, 2H), 6.79–8.20 (m, 25H, ArH); 13C-NMR (CDCl3, 100MHz): δ (ppm) 39.6, 46.8, 48.5, 52.1, 62.1,
66.2, 74.2, 97.9, 120.9, 121.2, 122.3, 122.8, 123.1, 123.8, 124.0, 125.9, 126.3, 126.5, 127.2, 127.9, 128.3, 128.4,
128.5, 129.2, 129.3, 129.4, 130.4, 130.8, 130.9, 131.2, 134.8, 136.5, 137.8, 138.4, 139.8, 140.8, 141.9, 145.6,
154.0, 158.1, 158.5, 163.7, 199.9. LC/MS(ESI): m/z = 870 (M+); Anal. Calcd for C50H38Br2N4O: C, 68.97;
H, 4.40; N, 6.43; Found C, 69.08; H, 4.52; N, 6.51%.

5-Benzyl-spiro-[2.11′]-indeno-[1,2-b]quinoxaline-spiro-[3.3′]-4-bromo-benzylidine-N-strylpiperidone-4-[4
-bromophenyl]-pyrrolidine (8c). Yield 55%; Pale yellow solid: m.p. 165–167 ◦C; 1H-NMR (CDCl3,
400 MHz): δ (ppm) 2.33 (d, J = 14.0 Hz, 1H), 2.88–2.92 (dd, J = 14.0, 7.2 Hz, 1H), 3.11–3.16 (m, 2H), 3.34
(d, J = 16.0 Hz, 1H), 3.61 (d, J = 14.0 Hz, 1H), 4.53 (d, J = 14.0 Hz, 1H), 4.61 (d, J = 10.0 Hz, 1H), 4.82
(d, J = 14.0 Hz, 1H), 5.15–5.19 (td, J = 9.0, 3.6 Hz, 1H), 6.10–6.12 (m, 2H), 6.86–8.27 (m, 25H, ArH);
13C-NMR (CDCl3, 100 MHz): δ (ppm) 40.1, 46.2, 48.2, 52.1, 61.8, 65.6, 74.2, 98.2, 122.1, 123.7, 123.9,
126.4, 127.3, 127.4, 128.5, 128.6, 128.7, 128.8, 129.2, 129.3, 129.4, 129.5, 130.3, 130.9, 131.3, 132.5, 134.5,
136.4, 137.9, 138.4, 139.2, 140.5, 140.8, 141.7, 154.7, 158.5, 160.2, 165.2, 199.1. LC/MS(ESI): m/z = 870
(M+); Anal. Calcd for C50H38Br2N4O: C, 68.97; H, 4.40; N, 6.43; Found C, 69.05; H, 4.53; N, 6.52%.

5-Benzyl-spiro-[2.11′]-indeno-[1,2-b]quinoxaline-spiro-[3.3′]-2-chloro-benzylidine-N-strylpiperidone-4-[2
-chlorophenyl]-pyrrolidine (8d). Yield 50%; Yellow solid: m.p. 149–151 ◦C; 1H-NMR (CDCl3, 400 MHz):
δ (ppm) 2.50 (d, J = 14.0 Hz, 1H), 2.62–2.66 (m, 1H), 2.85 (d, J = 14.0 Hz, 1H), 3.05–3.06 (m, 2H), 3.33 (d,
J = 16.0 Hz, 1H), 4.25 (d, J = 14.0 Hz, 1H), 4.49 (d, J = 14.0 Hz, 1H), 4.87 (d, J = 9.5 Hz, 1H), 5.23–5.30
(m, 1H), 6.13–6.14 (m, 2H), 6.74–8.53 (m, 25H, ArH); 13C-NMR (CDCl3, 100MHz): δ (ppm) 40.5, 45.7,
51.6, 52.3, 64.2, 65.9, 74.4, 98.9, 122.3, 123.7, 126.2, 126.4, 126.6, 127.0, 128.1, 128.3, 128.9, 129.2, 129.4,
129.6, 129.8, 130.7, 131.3, 132.3, 133.1, 134.9, 135.8, 136.1, 136.2, 136.4, 136.5, 137.7, 138.0, 138.5, 140.5,
141.8, 144.7, 145.8, 154.7, 158.5, 158.6, 162.8, 199.1. LC/MS(ESI): m/z = 781 (M+); Anal. Calcd for
C50H38Cl2N4O: C, 76.82; H, 4.90; N, 7.17; Found C, 76.94; H, 4.99; N, 7.26%.

5-Benzyl-spiro-[2.11′]-indeno-[1,2-b]quinoxaline-spiro-[3.3′]-2,4-dichloro-benzylidine-N-strylpiperidone-4-[2,
4-dichlrophenyl]-pyrrolidine (8e). Yield 48%; Yellow solid: m.p. 180–182 ◦C; 1H-NMR (CDCl3, 400 MHz):
δ (ppm) 2.37 (m, 1H), 2.86–2.92 (dd, J = 14.0, 8.0 Hz, 1H), 3.16–3.22 (m, 2H), 3.40 (d, J = 16.0 Hz, 1H),
3.66 (d, J = 14.0 Hz, 1H), 4.54 (d, J = 14.0 Hz, 1H), 4.63 (d, J = 10.0 Hz, 1H), 4.85 (d, J = 14.0 Hz,
1H), 5.20–5.25 (td, J = 8.0, 3.6 Hz, 1H), 6.11–6.12(m, 2H), 6.65–8.51 (m, 25H, ArH); 13C-NMR (CDCl3,
100 MHz): δ (ppm) 40.3, 46.8, 50.4, 50.9, 63.7, 66.4, 74.5, 98.5, 122.1, 123.8, 126.5, 127.2, 127.4, 128.1,
128.5, 128.9, 129.3, 129.4, 129.5, 129.8, 129.9, 130.7, 131.6, 132.5, 132.6, 134.4, 135.4, 136.1, 136.5, 136.6,
136.9, 137.8, 138.2, 140.2, 141.8, 145.7, 154.7, 158.3, 158.9, 163.8, 196.5. LC/MS(ESI): m/z = 850 (M+); Anal.
Calcd for C50H36Cl4N4O: C, 70.60; H, 4.27; N, 6.59; Found C, 70.73; H, 4.38; N, 6.70%.

5-Benzyl-spiro-[2.11′]-indeno-[1,2-b]quinoxaline-spiro-[3.3′]-4-chloro-benzylidine-N-strylpiperidone-4-[4
-chlorophenyl]-pyrrolidine (8f). Yield 61%; Yellow solid: m.p. 151–153 ◦C; 1H-NMR (CDCl3, 400MHz):
δ (ppm) 2.26 (d, J = 14.0 Hz, 1H), 2.77–2.86 (m, 1H), 3.02–3.11(m, 2H), 3.28 (d, J = 16.0 Hz, 1H), 3.56
(d, J = 14.0 Hz, 1H), 4.47 (d, J = 14.0 Hz, 1H), 4.55 (d, J = 10.0 Hz, 1H), 4.76 (d, J = 14.0 Hz, 1H),
5.08–5.14 (td, J = 10.0, 3.6 Hz, 1H), 6.02–6.04 (m, 2H), 6.79–8.20 (m, 25H, ArH); 13C-NMR (CDCl3,
100MHz): δ (ppm) 39.6, 46.8, 52.6, 52.9, 62.2, 66.6, 72.6, 98.7, 123.8, 124.0, 126.4, 127.2, 127.9, 128.4,
128.8, 128.9, 129.1, 129.2, 129.3, 129.5, 130.7, 130.9, 131.1, 131.3, 132.8, 133.1, 134.7, 135.4, 135.9, 137.3,
137.5, 138.4, 138.5, 141.9, 146.5, 153.8, 158.6, 163.2, 199.7. LC/MS(ESI): m/z = 781 (M+); Anal. Calcd for
C50H38Cl2N4O: C, 76.82; H, 4.90; N, 7.17; Found C, 76.93; H, 4.97; N, 7.28%.

5-Benzyl-spiro-[2.11′]-indeno-[1,2-b]quinoxaline-spiro-[3.3′]-3-methyl-benzylidine-N-strylpiperidone-4-[2
-methylphenyl]-pyrrolidine (8g). Yield 54%; Yellow solid: m.p. 135–137 ◦C; 1H-NMR (CDCl3, 400MHz):
δ (ppm) 2.19 (s, 3H), 2.31 (s, 3H), 2.37 (d, J = 14.0 Hz, 1H), 2.78–2.82 (m, 1H), 2.96–3.01 (dd, J = 14.0,
8.0 Hz, 1H), 3.12–3.16 (dd, J = 14.0, 3.5 Hz, 1H), 3.30–3.37 (m, 2H), 4.37 (d, J = 14.0 Hz, 1H), 4.65 (d,
J = 14.0 Hz, 1H), 4.79 (d, J = 9.5 Hz, 1H), 5.35–5.41 (td, J = 9.5, 4.0 Hz, 1H), 6.12–6.14 (m, 2H), 6.67–8.53
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(m, 25H, ArH); 13C-NMR (CDCl3, 100 MHz): δ (ppm) 19.9, 21.0, 40.0, 45.8, 50.2, 53.0, 64.4, 65.8, 76.7,
99.3, 122.1, 123.6, 125.6, 126.1, 126.2, 126.8, 127.3, 127.9, 128.2, 128.3, 128.9, 129.1, 129.3, 129.4, 129.5,
130.3, 130.5, 130.9, 131.1, 133.6, 135.9, 136.3, 137.6, 138.0, 138.3, 138.6, 138.9, 140.6, 141.7, 145.5, 163.7,
199.2. LC/MS(ESI): m/z = 740 (M+); Anal. Calcd for C52H44N4O: C, 84.29; H, 5.99; N, 7.56; Found C,
84.41; H, 6.11; N, 7.68%.

5-Benzyl-spiro-[2.11′]-indeno-[1,2-b]quinoxaline-spiro-[3.3′]-3-methyl-benzylidine-N-strylpiperidone-4-[3
-methylphenyl]-pyrrolidine (8h). Yield 58%; Pale Yellow solid: m.p. 139–141 ◦C; 1H-NMR (CDCl3,
500MHz): δ (ppm) 2.24 (s, 3H), 2.31 (s, 3H), 2.35 (d, J = 14.0 Hz, 1H), 2.88–2.92 (dd, J = 14.0, 8.0 Hz,
1H), 3.15–3.22 (m, 2H), 3.40 (dd, J = 16.0 Hz, 1H), 3.68 (d, J = 14.0 Hz, 1H), 4.53 (d, J = 14.0 Hz, 1H),
4.63 (d, J = 10.0 Hz, 1H), 4.85 (d, J = 14.0 Hz, 1H), 5.21–5.25 (td, J = 8.0, 3.5 Hz, 1H), 6.08–6.09 (m, 2H),
6.79–8.30 (m, 25H, ArH); 13C-NMR (CDCl3, 125 MHz): δ (ppm) 21.5, 21.8, 39.6, 47.0, 53.1, 53.4, 62.1,
66.8, 72.9, 100.9, 122.0, 123.8, 123.9, 124.9, 126.3, 127.0, 127.1, 127.9, 128.0, 128.4, 128.6, 128.9, 129.0, 129.3,
129.4, 129.5, 129.8, 129.9, 130.1, 130.3, 131.0, 131.3, 134.4, 136.4, 137.3, 137.6, 137.9, 138.1, 138.2, 138.9,
139.4, 141.0, 141.9, 146.9, 154.2, 165.3, 198.0. LC/MS(ESI): m/z = 740 (M+); Anal. Calcd for C52H44N4O:
C, 84.29; H, 5.99; N, 7.56; Found C, 84.40; H, 6.11; N, 7.64%.

5-Benzyl-spiro-[2.11′]-indeno-[1,2-b]quinoxaline-spiro-[3.3′]-4-methyl-benzylidine-N-strylpiperidone-4-[4
-methylphenyl]-pyrrolidine (8i). Yield 60%; Pale Yellow solid: m.p. 142–144 ◦C; 1H-NMR (CDCl3,
400 MHz): δ (ppm) 2.18 (s, 3H), 2.29 (s, 3H), 2.36 (d, J = 14.0 Hz, 1H), 2.78–2.82 (m, 1H), 2.94–3.00 (dd,
J = 14.0, 8.0 Hz, 1H), 3.10–3.14 (dd, J = 14.0, 3.5 Hz, 1H), 3.29–3.36 (m, 2H), 4.35 (d, J = 14.0 Hz, 1H),
4.64 (d, J = 14.0 Hz, 1H), 4.78 (d, J = 9.6 Hz, 1H), 5.20–5.25 (td, J = 9.6, 3.6 Hz, 1H), 6.11–6.12(m, 2H),
6.65–8.51 (m, 25H, ArH); 13C-NMR (CDCl3, 400 MHz): δ (ppm) 21.1, 21.4, 39.4, 46.9, 52.9, 53.1, 61.9,
66.7, 72.7, 100.7, 121.9, 123.7, 126.2, 127.2, 127.8, 128.4, 128.8, 128.9, 129.2, 129.3, 129.4, 129.5, 129.8, 130.3,
131.1, 131.7, 132.1, 134.5, 136.3, 136.7, 137.2, 137.8, 138.8, 139.2, 139.7, 140.9, 141.8, 146.8, 154.0, 163.9,
197.9. LC/MS(ESI): m/z = 740 (M+); Anal. Calcd for C52H44N4O: C, 84.29; H, 5.99; N, 7.56; Found C,
84.40; H, 6.09; N, 7.64%.

5-Benzyl-spiro-[2.11′]-indeno-[1,2-b]quinoxaline-spiro-[3.3′]-2-methoxybenzylidine-N-strylpiperidone-4-[2
-methoxyphenyl]-pyrrolidine (8j). Yield 64%; Pale yellow solid: m.p. 191–193 ◦C; 1H-NMR (CDCl3,
500 MHz): δ (ppm) 2.56 (d, J = 14.0 Hz, 1H), 2.68 (m, 1H), 2.93 (d, J = 14.0 Hz, 1H), 3.00–3.05 (dd,
J = 14.0, 8.5 Hz, 1H), 3.18–3.22 (dd, J = 14.5, 3.5 Hz, 1H), 3.46 (d, J = 16.0 Hz, 1H), 3.76 (s, 3H), 3.81 (s,
3H), 4.34 (d, J = 14.0 Hz, 1H), 4.55 (d, J = 14.0 Hz, 1H), 4.75 (d, J = 9.5 Hz, 1H), 5.43–5.48 (td, J = 9.5, 4.0
Hz, 1H), 6.22–6.24 (m, 2H), 6.80–8.18 (m, 25H, ArH); 13C-NMR (CDCl3, 125 MHz): δ (ppm) 40.6, 46.0,
48.3, 52.0, 55.0, 55.4, 61.9, 65.6, 74.0, 98.2, 109.8, 110.7, 120.2, 120.6, 122.1, 123.3, 123.6, 123.9, 126.2, 126.8,
127.3, 127.8, 128.0, 128.4, 128.7, 128.8, 129.2, 129.5, 130.2, 130.8, 131.1, 131.2, 134.4, 136.1, 137.8, 138.5,
139.6, 140.7, 141.8, 145.5, 154.1, 158.3, 158.4, 163.6, 199.9. LC/MS(ESI): m/z = 772 (M+); Anal. Calcd for
C52H44N4O3: C, 80.80; H, 5.74; N, 7.25; Found C, 80.90; H, 5.87; N, 7.37%.

5-Benzyl-spiro-[2.11′]-indeno-[1,2-b]quinoxaline-spiro-[3.3′]-4-methoxy-benzylidine-N-strylpiperidone-4-[4
-methoxyphenyl]-pyrrolidine (8k). Yield 56%; Pale yellow solid: m.p. 186–187 ◦C; 1H-NMR (CDCl3,
500 MHz): δ (ppm) 2.38 (d, J = 14.0 Hz, 1H), 2.88–2.93 (dd, J = 14.0, 8.0 Hz, 1H), 3.16–3.19 (m, 2H),
3.41 (d, J = 16.0 Hz, 1H), 3.64 (d, J = 14.0 Hz, 1H), 3.81 (s, 3H), 3.80 (s, 3H), 4.56 (d, J = 14.0 Hz, 1H),
4.63 (d, J = 10.0 Hz, 1H), 4.86 (d, J = 14.0 Hz, 1H), 5.17–5.20 (td, J = 8.0, 3.5 Hz, 1H), 6.10–6.12 (m,
2H), 6.82–8.30 (m, 25H, ArH); 13C-NMR (CDCl3, 125 MHz): δ (ppm) 39.6, 47.1, 52.7, 53.2, 55.3, 55.4,
62.3, 66.6, 72.9, 100.7, 114.1, 121.9, 123.8, 126.3, 127.3, 128.0, 128.3, 128.5, 128.9, 129.0, 129.4, 129.5,
129.7, 131.2, 132.4, 136.4, 137.3, 138.0, 138.9, 139.0, 141.0, 141.9, 146.9, 154.2, 158.8, 160.5, 165.4, 197.9
LC/MS(ESI): m/z = 772 (M+); Anal. Calcd for C52H44N4O3: C, 80.80; H, 5.74; N, 7.25; Found C, 80.91;
H, 5.84; N, 7.35%.
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4. Conclusions

In conclusion, we have developed an environmentally benign one-pot four component domino
protocol for the synthesis of dispiropyrrolidine integrated indeno[1,2-b] quinoxaline heterocyclic
hybrids in moderate to good yields. This domino process involved 1,3-dipolar cycloaddition and
concomitant enamine reaction. The compounds thus synthesized were examined for their antimicrobial
efficacy against ten bacterial and five fungal pathogens. All the heterocyclic hybrids showed effective
activity, and, particularly, compound 8h exhibited more significant activity against the tested microbial
pathogens. The synergistic effect revealed that the combinations of compound 8h with streptomycin
and vancomycin exhibited outstanding synergistic activity against E. coli ATCC 25922. This synergistic
effect might be due to the joint action of 8h and respective antibiotics. Therefore, these combinations are
acceptable candidates for testing with an animal model to enhance their activities and also restore the
currently unused drugs due to the resistance phenomenon. The binding energy of −39.576 (Kcal/mol)
displayed that compound 8h interacted strongly with biochemical bonding interaction and helps to
have good pharmacological inhibitory activity against microbial pathogens.
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