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Abstract: Task-nuisance decomposition describes why the information bottleneck loss I(z; x) −
βI(z; y) is a suitable objective for supervised learning. The true category y is predicted for input
x using latent variables z. When n is a nuisance independent from y, I(z; n) can be decreased by
reducing I(z; x) since the latter upper bounds the former. We extend this framework by demonstrating
that conditional mutual information I(z; x|y) provides an alternative upper bound for I(z; n). This
bound is applicable even if z is not a sufficient representation of x, that is, I(z; y) 6= I(x; y). We used
mutual information neural estimation (MINE) to estimate I(z; x|y). Experiments demonstrated that
I(z; x|y) is smaller than I(z; x) for layers closer to the input, matching the claim that the former is a
tighter bound than the latter. Because of this difference, the information plane differs when I(z; x|y)
is used instead of I(z; x).

Keywords: conditional mutual information; information bottleneck; deep learning

1. Introduction

Mutual information is now widely used to investigate the process of machine learn-
ing [1–6]. One notable example is information bottleneck theory [7]; when x is the input,
y is the desired output, and z is the latent variables, the theory proposes using mutual
information I(z; x) and I(z; y) to analyze the dynamics of learning. The authors postulated
that supervised learning aims to reduce the information bottleneck loss I(z; x)− βI(z; y).

Recently, Achille and Soatto provided a fundamental analysis of information bottle-
neck theory using task-nuisance decomposition [8]. They proved that the second term
I(z; x) in the information bottleneck loss bounds mutual information I(z; n) between the
hidden layer activity and the nuisance.

In this paper, we propose to use conditional mutual information as an alternative
criterion for bounding I(z; n) and suggest its use in the analysis of neural networks by
information bottleneck theory.

Note that variables x, y, z, and n can be vectors, but we do not represent them using a
bold font since the difference between scalar and vector is irrelevant to our analysis.

2. Related Work
2.1. Information Bottleneck Theory

Information bottleneck theory provides a unified view towards understanding ma-
chine learning models that have latent variables [7,9–12]. According to the theory, su-
pervised learning aims to minimize the loss objective L = I(z; x)− βI(z; y), where β is
a parameter that determines preference over the tradeoff between two terms. Since the
latent variable z usually has a dimension lower than that of the observed variable x (as
in convolutional neural networks), reducing I(z; x) while maintaining I(z; y) implies that
information about y contained in x is compressed into z.
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An effective compression of x should keep most information about y but reduce infor-
mation about x. A learning algorithm can realize that by reducing I(z; x) while maintaining
I(z; y). A predictor having such a representation removes frivolous transformations present
in x while keeping information regarding y. Note that y is the ground-truth class and is
different from the output ŷ of a predictor. After learning, p(ŷ|x) will be similar to p(y|x).

Information bottleneck theory has been applied to analyze the behavior of deep neural
networks [13–23]. In this case, latent variables z correspond to hidden layer activities z〈`〉

for each layer `. It has been suggested in [14] that the training process of deep learning
may consists of fitting and compression phases, as represented in a schematic diagram in
Figure 1. One possible use of our proposed bound is to conduct such an analysis in a more
precise manner.

Fischer proposed a conditional entropy bottleneck defined by −H(z|x) + H(z|y) +
γH(y|z), which is derived from I(z; x|y)− γI(z; y), where γ is a hyperparameter similar
to β in an information bottleneck [24]. The use of conditional mutual information I(z; x|y)
comes from the minimum necessary information (MNI) criterion, I(x; y) = I(x; z) = I(y; z).
When this criterion is met, I(x; y|z) = I(x; z|y) = I(y; z|x) = 0 is also true. In contrast,
we derive the use of conditional mutual information by showing that I(z; x|y) forms an
upper bound on I(z; n), where n is a nuisance variable. While Fischer claims that learning
a compressed representation Z of X is equivalent to minimizing I(z; x|y), we show that
reducing I(z; x|y) is even better than reducing I(z; x). We thereby provide solid ground to
the conditional mutual information approach introduced by Fischer.

Geiger and Fischer introduced conditional mutual information I(z; x|y) by reformu-
lating the information bottleneck functional I(z; x)− βI(z; y) to I(z; x|y)˘(β˘1)I(z; y) [25].
They defined a variational bound to the reformulated functional and analyzed its tightness.
Our work sees I(z; x|y) from a different viewpoint, namely as a bound to I(z; n), where n
is a nuisance variable.

Most recently, Yu et al. proposed deterministic information bottleneck (DIB) [26] based
on matrix-based Rnyi’s α-order entropy functionals on positive definite matrices [27,28].
From these functionals, they defined Rnyi’s α-order mutual information Iα(A; B). Standard
deep learning frameworks, such as PyTorch, can conduct automatic differentiation on
Iα(A; B), enabling it to be trained using gradient descent. They also showed that the
mutual information term acts as a regularization term.

Figure 1. A schematic diagram of visualizing training dynamics using the information plane. Each
dot represents a specific time point during the process of learning. In this example, the trajectory
consists of two parts; fitting and compression phases. The fitting phase is where I(z; x) increases,
and the compression phase is where I(z; x) decreases.

2.2. Task-Nuisance Decomposition

Achille and Soatto [8] provided a new theoretical justification for information bot-
tleneck theory. They introduced a nuisance variable representing stochastic fluctuations
present in x that are unnecessary for conducting the classification task. For example, in im-
age classification, a nuisance can represent a frivolous transformation such as rotation and
translation. In terms of probability, n is a nuisance if it is independent from y and a Markov
chain (y, n)→ x → z→ ŷ holds. The first part, (y, n)→ x, is due to the generative process
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of x. The true category y and nuisance n together affects x. For example, in the CIFAR-10
image dataset, the distribution of intensity for each pixel is determined by image class y and
sample-specific transformations. The latter part of the Markov chain, x → z→ ŷ, comes
from the predictor’s structure having latent variables z. In neural networks, z corresponds
to a hidden layer. ŷ is the output of the network, which is the predicted category for x.

It can be shown that, when z is a sufficient representation of x, that is, I(z; y) = I(x; y),
then I(z; x) is an upper bound of I(z; n) [8]. Hence, reducing I(z; x) results in decreasing
I(z; n). Because the effects from frivolous transformations are removed from z, the predictor
generalizes better.

2.3. Non-Parametric Estimation of Mutual Information

One obstacle to putting information bottleneck theory into practice is the difficulty of
estimating mutual information. When random variables are discrete or when distribution
families are known, mutual information can be estimated straightforwardly. On the other
hand, if the random variables’ distribution families are unknown, mutual information must
be estimated non-parametrically. It is known to be a notoriously tricky task. Kraskov et al.
have shown that k-nearest neighbor estimation works well when random variables are
low-dimensional. However, the error increases as the dimension of the random variables
becomes higher [29]. Kandasamy et al. used the Von Mises expansion and influence
functionals to estimate entropy and mutual information [30].

Belghazi et al. recently proposed mutual information neural estimation (MINE), which
uses a neural network to approximate a lower bound of mutual information [31]. Exploiting
the fact that neural networks are a universal approximator of functions, the lower bound is
obtained by:

Î(x, z) = sup
f∈F

{
1
n

n

∑
i=1

f (x(i), z(i))− log
1
n

n

∑
i=1

exp( f (x(i), ž(i)))

}
, (1)

where F is a set of functions achievable by a neural network. Pairs {(x(i), z(i))} come from
joint distribution p(x, z), while samples {ž(i)} come from marginal distribution p(z). It has
been used for analyzing mutual information between layers of neural networks [32,33].

3. Method

We first describe the notations used in this section. We then describe the mathematical
properties of our proposed use of conditional mutual information. Finally, we provide a
way to estimate conditional mutual information.

3.1. Notations

Let a, b, c be scalars or vectors of random variables. We use a semicolon to separate
random variables that are subject to computing mutual information, as in

I(a; b) = Ep(a,b)

[
log

p(a, b)
p(a)p(b)

]
. (2)

A vector of random variables can be expressed explicitly by separating their compo-
nents by a comma.

I(a; b, c) = Ep(a,b,c)

[
log

p(a, b, c)
p(a)p(b, c)

]
(3)

I(a, b; c) = Ep(a,b,c)

[
log

p(a, b, c)
p(a, b)p(c)

]
.
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Conditioning both joint and product distributions defines conditional mutual infor-
mation I(a; b|c).

I(a; b|c) = Ep(a,b,c)

[
log

p(a, b|c)
p(a|c)p(b|c)

]
. (4)

In some articles, conditional mutual information is defined without integrating out c,
as in

Ĩ(a; b|c) = Ep(a,b|c)

[
log

p(a, b|c)
p(a|c)p(b|c)

]
. (5)

Our definition corresponds to taking the expectation of Ĩ(a; b|c) by p(c), that is,
I(a; b|c) = Ep(c)

[
Ĩ(a; b|c)

]
.

When applying our proposed framework to analyzing a neural network, z represents
the hidden layer activities, x is the input, and y is a one-hot vector representing the ground-
truth class label. In a feed-forward neural network, z can represent activities of any of the
layers. When indicating the activity of layer `, we use z〈`〉. Figure 2 illustrates an example
of a feed-forward neural network.

Figure 2. An example of a feed-forward neural network and the mutual information between layers.
y is the true category of a sample. Observed signal x is generated from a distribution parametrized
by y and contains fluctuations represented by a nuisance variable n. A neural network transforms
the input to latent representations z〈`〉. The output of the network is ŷ, which is an estimate of y.

A random variable n is a nuisance for x in performing task y if it affects x but is
independent of y. For example, in image recognition, nuisances include translation, ro-
tation, and small occlusions, which do not affect the object’s identity in the image. z is a
representation of x if there is a (possibly non-deterministic) function that defines z by x. z
is sufficient for the task y only if I(x; y) = I(z; y). It means that all information required to
predict y present in x is also present in z.

3.2. Mathematical Property

To bound I(z; n), we propose using conditional mutual information I(z; x|y) instead
of I(z; x), which is commonly used in information bottleneck theory. We prove that I(z; x|y)
provides a tighter upper bound for I(z; n) than I(z; x). To do so, we use the following
lemma, called the functional representation lemma, whose proof is given in [34]. It is also
presented as Lemma C.1 in [8].

Lemma 1. Given a joint distribution p(x, y), where y is a discrete random variable, we can always
find a random variable n independent of y such that x = f (y, n) for a deterministic function f .

We now show that I(z; x|y) bounds I(z; n).
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Theorem 1. Let n be a nuisance for the task y and let z be a representation of the input x. Suppose
that z depends on y and n only through x. In other words, let random variables follow a Markov
chain (y, n)→ x → z. Then,

I(z; n) ≤ I(z; x|y). (6)

Proof. Let H(a|b) be either entropy or differential entropy, depending on the cardinality
of the domain of a. Then,

I(z; n) = I(z; y, n)− I(z; y|n) ≤ I(z; x)− I(z; y|n) (7)

= I(z; x)− {H(y|n)− H(y|z, n)}
≤ I(z; x)− {H(y)− H(y|z)}
= H(z|y)− H(z|x) = H(z|y)− H(z|x, y)

= I(z; x|y).

The first line is from the chain rule for mutual information (Theorem 2.5.2 in [35]).
The first line is from the data processing inequality. The third line is because y is indepen-
dent from n, and also because conditioning decreases entropy, that is, H(y|z, n) ≤ H(y|z).
The fourth and the fifth lines are from the Markov chain.

The theorem shows that conditional mutual information I(z; x|y) can bound I(z; n)
even when z is not sufficient, in contrast to Achille and Soatto’s Proposition 3.1, which
requires z to be sufficient [8]. It makes our theorem appealing since the sufficiency condition
may not be fulfilled in general. Even in that case, our theorem makes task-nuisance
decomposition applicable.

One question is, what is the difference between I(z; x), used in [8], and I(z; x|y), used
by us. The following proposition answers this question.

Proposition 1. When random variables y, n, x, and z follow a Markov chain (y, n) → x → z,
then

I(z; x)− I(z; x|y) = I(z; y). (8)

Furthermore, if z is sufficient, I(z; x)− I(z; x|y) = I(x; y).

Proof.

I(z; x|y) = I(z; x, y)− I(z; y) (9)

= I(z; x) + I(z; y|x)− I(z; y)

= I(z; x)− I(z; y).

The first and second lines are from the chain rule for mutual information, and the
third line is from the Markov chain. When z is sufficient, I(z; y) = I(x; y) by definition.

The proposition shows that, instead of I(z; x|y), one can use I(z; x)− I(z; y) for bound-
ing I(z; n). If z is sufficient, I(z; n) can also be bounded by I(z; x) − I(x; y). However,
estimated mutual information often contains some errors. Estimating two values of mutual
information may double that.

Let us note that lowering the upper bound does not necessarily reduce the objective
function. However, in practice, upper bounds are commonly used as a surrogate objective.
This may be because if a learning algorithm reduces an upper bound indefinitely, it will
eventually reduce the objective function. Much of the existing work in machine learning
relies on the assumption that reducing or raising bounds also reduces or raises the objective
function, respectively.

Furthermore, many approximators in machine learning are formulated either as an
upper or lower bound. Since I(z; x)− I(x; y) in [8] is the difference of two terms, neither
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an upper bound alone nor a lower bound alone can bound it. To bound I(z; x)− I(x; y),
a combination of an upper bound and a lower bound is necessary. For example, if f (a, b)
is an upper bound to I(a; b), f (z, x)− f (x, y) does not necessarily upper bound I(z; x)−
I(x; y), due to the negation of I(x; y). By the same token, if g(a, b) is a lower bound to
I(a; b), g(z, x) − g(x, y) does not necessarily lower bound I(z; x) − I(x; y). In contrast,
I(z; x|y) does not contain a term with negation and avoids such a limitation.

There are many bounds on mutual information now and there will be more in the
future. However, each bound has different strengths and weaknesses, such as asymptotic
behavior, robustness and computational efficiency. If using two bounds, the resulting
approximation will carry weaknesses from the two. It is often better to rely on only
one approximator.

3.3. Estimation

Estimating mutual information for random variables with unknown distributions
is a challenging task. It is even more so for high-dimensional random variables. Conse-
quently, estimating conditional mutual information is also difficult. In this paper, we used
MINE ([31]) to tackle this problem.

3.3.1. Conditional MINE (CMINE)

To estimate conditional mutual information I(z; x|y), we group samples by class label
y, compute an estimate by MINE for each group and take the weighted average of the
estimates. In other words, we use

Î(z; x|y) = 1
∑c mc

∑
c

mc Î(z; x|y = c), (10)

where Î(z; x|y = c) is the estimated value obtained by MINE using only samples in
class c (i.e., y = c). mc is the number of samples in class c. We will call this estimation
method conditional MINE (CMINE). Currently, the method can only be used when y takes
discrete values.

CMINE estimates mutual information multiple times, but all in the form of I(z; x|y =
c), where each term is not affected by the dimension of y. When the output variable y is
high-dimensional, for example, in natural language processing, estimating I(x; y) likely
results in a significant amount of error. Using I(z; x) − I(x; y) to compute I(z; x|y) is
vulnerable to such errors, but CMINE can avoid such a limitation.

3.3.2. Averaged MINE (AMINE)

In Section 5, we compare I(z; x|y) and I(z; x) using these estimates. We need to
confirm that the number of samples used in estimation will not affect the comparison.
When there are m samples and h possible values of y in I(z; x|y), CMINE applies MINE
to roughly bm/hc samples for each possible value of y. Using fewer samples might lower
the estimated mutual information since they may fail to capture the stochastic dependency
between variables x and z. To avoid such unfairness, we used an estimator for I(z; x) that
enforces the same restriction regarding the number of samples. Specifically, we randomly
split the dataset into groups with the same sizes as grouping by class labels. We then run
MINE for each group and compute the weighted average of the resulting estimates. We
named this method averaged MINE (AMINE).

Specifically, let ci be the class label (i.e., the value of y) for the i-th sample. Define ρ as
a random permutation of 1, . . . , n, where n is the number of samples in the dataset. We give
a new label cρ(i) to the i-th sample. In other words, we shuffle values of y across samples in
the whole dataset. We then group samples following the new labels, compute MINE for
each group, and average them using the number of samples in each group as weights.
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4. Implementation
4.1. Dataset, Architecture, and Parameters

We used the MNIST, Fashion MNIST, and CIFAR-10 datasets for evaluation. Samples
are images labeled by one of ten classes. Accordingly, y is a 10-dimensional one-hot vector.
x is a vector obtained by flattening an image.

To observe mutual information between layers of a trained target neural network, we
implemented a system that uses CMINE and AMINE. Table 1 indicates the architecture
of the target network. One characteristic of the target network is that almost all layers
have the same number of nodes. When the numbers of nodes are different between layers,
the dimensions of z〈`〉 will differ, and it can affect the amount of error when estimating
mutual information. Such variations would make a comparison between layers difficult.

The structure of MINE used in this paper is also shown in Table 1. Conv(a, b, c; d)
is a convolution layer using a kernel of size a× b, with c channels and stride d. FC(a) is
a fully-connected network with a nodes. We used ReLU as the activation function for
each layer.

We implemented the networks using PyTorch, and trained them using an NVIDIA
Quadro RTX 8000 with 48 GB memory. Table 2 shows the hyper-parameters used for
optimizing the networks. After training, the target network achieved 96.3% test accuracy
for classifying images in MNIST, 87.1% for Fashion MNIST, and 46.1% for CIFAR-10.

Table 1. Architectures of the target network and MINE network; dim(a) is the dimension of the
observed activity.

Target network Conv(3,3,8;1) - Conv(3,3,8;1) - Conv(3,3,8;1) - Conv(3,3,8;1)
- Conv(3,3,8;4) - FC(100) - FC(16) - Softmax(10)

MINE network FC(dim(a)) - FC(100) - FC(100) - FC(100) - FC(1)

Table 2. Hyper-parameters used when training the target network.

Optim. Learn. Rate # of Samples Batch Size Epochs

Target Adam 0.001 10,000 64 100

MINE Adam 0.001 50,000 32 30

4.2. Preprocessing before Estimation by MINE

We used singular value decomposition (SVD) to reduce the dimension of the hidden
layer activity z. It decreases computation time and also can reduce estimation error resulting
from the high-dimensionality of the random variables. Since the task was classification into
10 classes, we chose 4, 8 and 12 as the reduced dimension. Without dimension reduction,
the learning curves fluctuated rapidly and, upon observation, did not converge.

4.3. Cluttering

To observe the effect of a nuisance on the mutual information between layers, we
conducted artificial occlusion experiments [8,36]. We generated cluttered images by su-
perposing randomly allocated squares on top of images in the datasets. The squares can
overlap. We used them as inputs to already-trained target neural networks. Then, we
observed the activities of layers and estimated the mutual information between them. Each
square has zero intensity on a randomly selected channel, and its size was 4× 4 pixels. We
tested by adding 64 squares to each image. They were added only when estimating mutual
information and not during training of the target network.

5. Experiments

We conducted experiments to see how CMINE estimates conditional mutual infor-
mation between layers in a neural network. In this section, Î(a; b) and Î(a; b|c) indicate
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estimates obtained by AMINE and CMINE, respectively, for mutual information I(a; b)
and I(a; b|c). We used 10,000 samples to train the target network and 50,000 samples to
estimate mutual information. When estimating mutual information, we recorded inputs x,
desired outputs y, and hidden layer activities z〈`〉 from each layer ` of the target network.

5.1. Comparison of Î(z〈`〉; x) and Î(z〈`〉; x|y) across Layers

Figure 3 shows a comparison of Î(z〈`〉; x) and Î(z〈`〉; x|y), obtained by AMINE and
CMINE, respectively. A smaller ` (Layer ID) means the layer is closer to the input. The re-
sults using different datasets and the dimensions after SVD are compared. When the
dimension increased, Î(z〈`〉; x) and Î(z〈`〉; x|y) both increased, indicating information loss
due to SVD. When squares are added, estimated mutual information decreased both for
Î(z〈`〉; x) and Î(z〈`〉; x|y).

The graphs show that, in general, both Î(z〈`〉; x) and Î(z〈`〉; x|y) decrease as they
get farther away from the input. This is consistent with the data processing inequality.
The graphs also indicate that, for layers closer to the input, Î(z〈`〉; x|y) is smaller than
Î(z〈`〉; x), especially for MNIST and Fashion MNIST. For some layers closer to the output,
the inequality did not hold. We assume this is due to SVD and MINE being unable to
find stochastic dependency between layers due to how information is represented in
these layers.

The results in which Î(z〈h〉; y) < Î(z〈`〉; y) for h < ` contradict the data processing
inequality. A possible cause is that it is easier for MINE to capture stochastic dependency
with y from z〈`〉 that is transformed with more layers to output the estimate ŷ. For such
transformed representations, the functional relationship between y and z〈`〉 is simpler,
and MINE may more easily reach the supremum pursued during optimization [31]. It
can also be from the difference in how much mutual information is preserved when
preprocessed by SVD. If the functional relationship between y and z〈`〉 is highly non-linear,
SVD fails to preserve that relationship.

5.2. Information Planes

Information planes are used in information bottleneck theory to visualize the dynamics
of mutual information during training of the target network [14]. The dynamics are
visualized as a trajectory on a plane whose axes are I(z; y) and I(z; x). Achille and Soatto
pointed out that I(z; n), rather than I(z; x), is more fundamental [8]. From our analysis,
I(z; x|y) is closer to I(z; n) than I(z; x). Therefore, we suggest using I(z; y) and I(z; x|y) as
the axes of the information plane.

To see the learning dynamics, we stopped training after every ten batches and es-
timated the mutual information. Each batch contains 64 samples. Figure 4 shows the
resulting dynamics for images without cluttering squares. Each line represents a layer.
On the other hand, in Figure 5, each line represents a batch. Note that the starting points are
indicated by larger dots. The ranges of the horizontal axes are different between Î(z〈`〉; x|y)
and Î(z〈`〉; x) since their values differ largely for some layers.
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Figure 3. Î(z〈`〉; x) and Î(z〈`〉; x|y) obtained by AMINE and CMINE, respectively. x is the input, y
is the output, and z〈`〉 is the activity of the `-th layer. Horizontal axis represents different layers,
with smaller numbers closer to the input. Vertical axis represents the value of estimated mutual
information in bits. The boxes extend from the lower to upper quartile values for ten trials, with a
line at the median. The whiskers extend from the boxes to show the ranges of the values across trials.
The dimensions after SVD and the numbers of squares added for cluttering were compared.
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Figure 4. Information planes showing learning curves representing the dynamics of mutual informa-
tion during training of the target neural network. The upper and lower rows are for Î(z〈`〉; x) and
Î(z〈`〉; x|y), respectively. Each line corresponds to a layer of the target network. A line segment is
placed every 10 batches, each batch containing 64 samples. Horizontal and vertical axes are mutual
information in bits.

Figure 5. Information planes using the same conditions as Figure 4, but each line corresponds to
a state of the whole target network (that is, for all layers) after training with a specific number of
batches. The lines are drawn every 10 batches, each batch containing 64 samples. Horizontal and
vertical axis are mutual information in bits.

Figure 4 shows that some learning curves, for example, layers 5 to 8 for CIFAR-10,
have the two-phased shape indicated in Figure 1. The shapes seem to be a little different
between ( Î(z; x), Î(z; y))-coordinates and ( Î(z; x|y), Î(z; y))-coordinates for MNIST.

6. Conclusions

As a more precise way of conducting information bottleneck analysis, we proposed
using conditional mutual information I(z; x|y) as an upper bound of I(z; n). We estimated
values of conditional mutual information for a trained neural network using CMINE.
The result showed that I(z〈`〉; x|y) could be used to observe information compression
behavior of the neural network, similar to using I(z〈`〉; x) but with a tighter bound.

Our result suggests a new approach that uses I(z; x|y) instead of I(z; x) for information
bottleneck theory. From Proposition 1, the information bottleneck loss I(z; x|y)− β̃I(z; y)
is equal to the original information bottleneck loss I(z; x)− βI(z; y) by setting β̃ = β− 1.
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However, the shapes of the trajectories in the (I(z; x|y), I(z; y))-coordinates would differ
from those in the (I(z; x), I(z; y))-coordinates, and they can possibly provide more insights
into the dynamics of compression and fitting in the process of learning.

The experiments showed some deviation from the data processing inequality. This
is possibly due to the limitation of SVD and MINE in recovering stochastic dependency
between layers. We believe more sophisticated dimension reduction and estimation meth-
ods may reduce errors. One approach would be to use a non-linear parametric dimension
reduction method, such as a convolutional neural network (CNN), but it may require
designing the network architecture appropriately. In addition to SVD, we also tried dimen-
sion reduction by CNN or global average pooling (GAP). Currently, however, the results
are not as robust as those obtained by SVD.

Future work includes extending our scheme to tasks other than classification, for exam-
ple, regression where y is a continuous variable. To do so, we must develop an estimation
method of conditional mutual information I(z; x|y) other than CMINE. One possible way
would be to combine CMINE with a nonparametric estimation method of p(y).

Since information bottleneck analysis by conditional mutual information is indepen-
dent of how the mutual information is estimated, newly proposed estimators may improve
the results. For example, the ensemble KDE-plugin estimator by Moon et al. [37] and the
dependency graphs by Noshad et al. [38] could be used. Methods that directly estimate
conditional mutual information, such as those by Singh and Póczos, are especially promis-
ing [39]. A variational bound to conditional mutual information proposed by Geiger and
Fischer is another possible approach [25]. It is preferable to use an estimator that upper
bounds mutual information since the purpose of using I(z; x|y) is to upper bound I(z; n).
In the future, we expect there will be more methods that directly estimate conditional
mutual information. Such a method will provide a further advantage to our formulation.
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