# metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Poly[tetra-μ-aqua-diaquatetrakis[μ-(E)-2nitrocinnamato]tetrarubidium]

#### Graham Smith\* and Urs D. Wermuth

Faculty of Science and Technology, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia Correspondence e-mail: g.smith@qut.edu.au

Received 10 October 2011; accepted 19 October 2011

Key indicators: single-crystal X-ray study; T = 200 K; mean  $\sigma$ (C–C) = 0.005 Å; R factor = 0.039; wR factor = 0.064; data-to-parameter ratio = 14.8.

In the structure of the title compound,  $[Rb_4(C_9H_6NO_4)_4 (H_2O)_6]_n$ , the asymmetric unit comprises four rubidium cations, two of which have an RbO7 coordination polyhedron with a monocapped distorted octahedral stereochemistry and two of which have a distorted RbO<sub>6</sub> octahedral coordination. The bonding about both the seven-coordinate cations is similar, comprising one monodentate water molecule together with three bridging water molecules and three carboxylate Oatom donors, two of which are bridging. The environments around the six-coordinate cations are also similar, comprising a monodentate nitro O-atom donor, a bridging water molecule and four bridging carboxylate O-atom donors [overall Rb–O range = 2.849(2)-3.190(2)Å]. The coordination leads to a two-dimensional polymeric structure extending parallel to (001), which is stabilized by interlayer water O-H···O hydrogen-bonding associations to water, carboxyl and nitro Oatom acceptors, together with weak inter-ring  $\pi$ - $\pi$  interactions [minimum ring centroid–centroid separation = 3.5319(19) Å].

#### **Related literature**

For the structures of some Rb complexes with aromatic carboxylic acids, see: Dinnebier *et al.* (2002); Wiesbrock & Schmidbaur (2003); Smith *et al.* (2007). For the structures of the two 2-nitrocinnamic acid polymorphs, see: Schmidt (1964); Smith *et al.* (2006). For the structure of the Na salt of the acid, see: Smith & Wermuth (2009).



 $\gamma = 84.8679 \ (16)^{\circ}$ 

Mo  $K\alpha$  radiation

 $0.40 \times 0.30 \times 0.15 \text{ mm}$ 

26954 measured reflections

8812 independent reflections

6333 reflections with  $I > 2\sigma(I)$ 

 $\mu = 4.44 \text{ mm}^{-3}$ 

T = 200 K

 $R_{\rm int} = 0.036$ 

Z = 2

V = 2238.29 (8) Å<sup>3</sup>

### **Experimental**

Crystal data [Rb<sub>4</sub>(C<sub>9</sub>H<sub>6</sub>NO<sub>4</sub>)<sub>4</sub>(H<sub>2</sub>O)<sub>6</sub>]  $M_r = 1218.57$ Triclinic,  $P\overline{1}$  a = 7.02312 (14) Å b = 7.77072 (15) Å c = 41.1902 (8) Å  $\alpha = 89.5447$  (15)°  $\beta = 88.6733$  (16)°

### Data collection

Oxford Diffraction Gemini-S CCD detector diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2010)  $T_{\rm min} = 0.591, T_{\rm max} = 0.980$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.039$ | 595 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $vR(F^2) = 0.064$               | H-atom parameters constrained                              |
| S = 1.05                        | $\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 8812 reflections                | $\Delta \rho_{\rm min} = -0.53 \text{ e } \text{\AA}^{-3}$ |
|                                 |                                                            |

### Table 1

#### Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                         | D-H  | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|------------------------------------------|------|-------------------------|-------------------------|--------------------------------------|
| $O1W-H11W\cdots O13B^{i}$                | 0.87 | 1.94                    | 2.795 (3)               | 167                                  |
| $O1W - H12W \cdot \cdot \cdot O13D^{i}$  | 0.86 | 1.91                    | 2.753 (3)               | 167                                  |
| $O2W - H21W \cdot \cdot \cdot O4W^{ii}$  | 0.82 | 1.97                    | 2.788 (3)               | 170                                  |
| $O2W - H22W \cdot \cdot \cdot O14C^{ii}$ | 0.85 | 1.93                    | 2.716 (3)               | 153                                  |
| $O3W-H31WO14D^{i}$                       | 0.91 | 1.80                    | 2.695 (3)               | 169                                  |
| $O3W - H32W \cdot \cdot \cdot O6W^{iii}$ | 0.88 | 1.86                    | 2.728 (3)               | 170                                  |
| $O4W-H41W\cdots O1W$                     | 0.84 | 2.02                    | 2.852 (3)               | 178                                  |
| $O4W-H42W\cdots O14A$                    | 0.84 | 1.91                    | 2.758 (3)               | 180                                  |
| $O5W-H51W\cdots O3W^{iv}$                | 0.94 | 1.82                    | 2.734 (3)               | 163                                  |
| $O5W - H52W \cdot \cdot \cdot O14B^{v}$  | 0.83 | 2.07                    | 2.893 (3)               | 170                                  |
| $O6W-H61WO13C^{ii}$                      | 0.86 | 1.88                    | 2.742 (3)               | 179                                  |
| $O6W-H62W\cdots O13A$                    | 0.85 | 2.00                    | 2.834 (3)               | 165                                  |

Symmetry codes: (i) x + 1, y - 1, z; (ii) x, y + 1, z; (iii) x + 1, y, z; (iv) x - 1, y - 1, z; (v) x, y - 1, z.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008) within *WinGX* (Farrugia, 1999); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON*.

The authors acknowledge financial support from the Australian Research Committee, and the Faculty of Science and Technology and the University Library, Queensland University of Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2542).

#### References

- Dinnebier, R. E., Jelonek, S., Sieler, J. & Stephens, P. W. (2002). Z. Anorg. Allg. Chem. 628, 363–368.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.
- Schmidt, G. M. J. (1964). J. Chem. Soc. pp. 2014-2021.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Smith, G. & Wermuth, U. D. (2009). Acta Cryst. E65, m1048.
- Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2006). Acta Cryst. E62, o2024–o2026.
- Smith, G., Wermuth, U. D., Young, D. J. & White, J. M. (2007). Polyhedron, 26, 3645–3652.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wiesbrock, F. & Schmidbaur, H. (2003). Inorg. Chem. 42, 7283-7289.

Acta Cryst. (2011). E67, m1594-m1595 [doi:10.1107/S1600536811043406]

## Poly[tetra- $\mu$ -aqua-diaquatetrakis[ $\mu$ -(E)-2-nitrocinnamato]tetrarubidium]

### G. Smith and U. D. Wermuth

#### Comment

The structures of alkali metal complexes with aromatic carboxylic acids are of interest, particularly with the heavier metals Rb and Cs, because of their expanded and usually irregular coordination spheres, and their ability to form polymeric systems, commonly having carboxylate and water O bridges, *e.g.* rubidium salicylate with a [RbO<sub>7</sub>] coordination polyhedron (Dinnebier *et al.*, 2002), rubidium anthranilate monohydrate ([RbO<sub>8</sub>]) (Wiesbrock & Schmidbaur, 2003), or rubidium 5-sulfosalicylate 1.33 hydrate ([RbO<sub>7</sub>]) (Smith *et al.*, 2007).

We obtained crystals of the title compound  $[Rb_4(C_9H_6NO_4)_4(H_2O)_6]_n$  from the reaction of *trans*-4-nitrocinnamic acid with rubidium hydroxide and the structure is reported here. There is only one example of a structure of an alkali metal complex with this ligand, sodium *trans*-2-nitrocinnamate dihydrate, a one-dimensional coordination polymer (Smith & Wermuth, 2009). In the structure of the title compound, the asymmetric unit comprises four rubidium cations, two of which are associated with  $[RbO_7]$  cordination polyhedra [Rb1-O, 2.849 (2)-3.106 (2) Å; Rb2-O, 2.908 (2)-3.132 (2) Å] and two  $[RbO_6]$  coordination polyhedra [Rb3-O, 2.901 (2)-2.975 (2) Å; Rb4-O, 2.883 (2)-3.190 (2) Å] (Fig. 1). The stereochemistry about both 7-coordinate cations is monocapped distorted octahedral while it is distorted octahedral for the 6-coordinate cations. The coordination spheres of both Rb1 and Rb2 comprise one monodentate water (O1*W* and O6*W*, respectively) and three bridging water molecules together with three carboxyl *O*-donors, two of which are bridging. The coordination spheres about both Rb3 and Rb4 are also similar in having the same distribution of donor types: a monodentate nitro O atom [O21D (Rb3) and O21A (Rb4)], one water and four carboxylate donors, all bridging. The overall complex has apparent pseudo-twofold rotational symmetry but no reasonable higher crystallographic symmetry could be invoked for the structure.

The two-dimensional polymeric structure (Figs. 2, 3) is expanding parallel to (001) and is stabilized by intra-layer and intermolecular water O—H···O hydrogen-bonding interactions to water, carboxyl and nitro *O*-acceptors (Table 1). Present also in the structure are inter-ring  $\pi$ — $\pi$  interactions [minimum ring centroid–centroid separation, 3.5319 (19) Å]. The four 2-nitrocinnamate anions have minor conformational variations: the comparative side chain torsion angles (C2–C1–C11–C12), -146.6 (4), -157.3 (3), 147.8 (4) and -150.3 (4)° for *A*–*D* and the nitro group torsion angles (C1–C2–N2–O22), 161.9 (4), -146.7 (3), 150.4 (3) and -146.3 (3)° for *A*–*D*. This stereochemistry is similar to that found in both polymorphs of the parent acid (Schmidt, 1964; Smith *et al.*, 2006).

### **Experimental**

The title compound was synthesized by heating together under reflux for 15 minutes, 2 mmol of *trans*-cinnamic acid with 1 mmol of rubidium hydroxide in 50 ml of a 1:9 ethanol–water mixture. After concentration to *ca* 30 ml, partial room temperature evaporation of the hot-filtered solution gave colourless flat prisms of the title compound, from which a suitable specimen was cleaved for the X-ray analysis. The crystals were found to deteriorate when exposed to air.

## Refinement

The water H atoms were located in difference-Fourier syntheses but in the final cycles of refinement their positional parameters were constrained with their isotropic displacement parameters allowed to ride on the parent O atom, with  $U_{iso}(H) = 1.2U_{eq}(O)$ . Other hydrogen atoms were included in calculated positions with C—H = 0.95 Å, also with  $U_{iso}(H) = 1.2U_{eq}(C)$ .

## **Figures**



Fig. 1. The molecular configuration and atom-numbering scheme for the coordination of the four rubidium cations in the title complex, with non-H atoms drawn as 40% probability ellipsoids. [Symmetry codes: (i) x, y, z -1; (ii) -x, -y, -z.]



Fig. 2. A view of a part of the structure showing structure extensions and intra-layer hydrogen bonds (as dashed lines). Non-associative H atoms were omitted. For symmetry codes, see Fig. 1 and Table 1.



Fig. 3. The two-dimensional polymeric structure viewed down the b axis of the unit cell, with hydrogen bonds shown as dashed lines.

## Poly[tetra-µ-aqua-diaquatetrakis[µ-(E)-2-nitrocinnamato]tetrarubidium]

| Crystal data                      |                                                       |
|-----------------------------------|-------------------------------------------------------|
| $[Rb_4(C_9H_6NO_4)_4(H_2O)_6]$    | Z = 2                                                 |
| $M_r = 1218.57$                   | F(000) = 1208                                         |
| Triclinic, <i>P</i> T             | $D_{\rm x} = 1.808 {\rm Mg} {\rm m}^{-3}$             |
| Hall symbol: -P 1                 | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| a = 7.02312 (14)  Å               | Cell parameters from 10977 reflections                |
| b = 7.77072 (15)  Å               | $\theta = 3.2 - 28.7^{\circ}$                         |
| c = 41.1902 (8) Å                 | $\mu = 4.44 \text{ mm}^{-1}$                          |
| $\alpha = 89.5447 \ (15)^{\circ}$ | T = 200  K                                            |
| $\beta = 88.6733 \ (16)^{\circ}$  | Plate, colourless                                     |
| $\gamma = 84.8679 \ (16)^{\circ}$ | $0.40 \times 0.30 \times 0.15 \text{ mm}$             |
| $V = 2238.29 (8) \text{ Å}^3$     |                                                       |

Data collection

Oxford Diffraction Gemini-S CCD detector

diffractometer

| Radiation source: Enhance (Mo) X-ray source                                   | 6333 reflections with $I > 2\sigma(I)$                                    |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| graphite                                                                      | $R_{\rm int} = 0.036$                                                     |
| Detector resolution: 16.077 pixels mm <sup>-1</sup>                           | $\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$ |
| ω scans                                                                       | $h = -8 \rightarrow 8$                                                    |
| Absorption correction: multi-scan<br>(CrysAlis PRO; Oxford Diffraction, 2010) | $k = -9 \rightarrow 9$                                                    |
| $T_{\min} = 0.591, \ T_{\max} = 0.980$                                        | $l = -50 \rightarrow 50$                                                  |
| 26954 measured reflections                                                    |                                                                           |

### Refinement

| Refinement on $F^2$             | Primary atom site location: structure-invariant direct methods                           |
|---------------------------------|------------------------------------------------------------------------------------------|
| Least-squares matrix: full      | Secondary atom site location: difference Fourier map                                     |
| $R[F^2 > 2\sigma(F^2)] = 0.039$ | Hydrogen site location: inferred from neighbouring sites                                 |
| $wR(F^2) = 0.064$               | H-atom parameters constrained                                                            |
| <i>S</i> = 1.05                 | $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0237P)^{2}$<br>where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ |
| 8812 reflections                | $(\Delta/\sigma)_{\rm max} = 0.001$                                                      |
| 595 parameters                  | $\Delta \rho_{max} = 0.50 \text{ e} \text{ Å}^{-3}$                                      |
| 0 restraints                    | $\Delta \rho_{min} = -0.53 \text{ e} \text{ Å}^{-3}$                                     |

### Special details

**Geometry**. Bond distances, angles *etc.* have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

| Fractional | atomic  | coordinates | and i | isotroni | c or e | auivalent | isotro | nic dis | placement | narameters | $(Å^2$ | ) |
|------------|---------|-------------|-------|----------|--------|-----------|--------|---------|-----------|------------|--------|---|
| ruchonui   | uionnic | coordinates | unu i | isoiropi |        | guivaicni | 130110 | one uns | pracement | purumeters | (11    | 1 |

|     | x           | У           | Ζ           | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|-----|-------------|-------------|-------------|-------------------------------|
| Rb1 | 0.94219 (5) | 0.91218 (4) | 0.26938 (1) | 0.0212 (1)                    |
| Rb2 | 0.44642 (5) | 0.56962 (4) | 0.23154 (1) | 0.0234 (1)                    |
| Rb3 | 0.55354 (5) | 1.25576 (4) | 0.31407 (1) | 0.0245 (1)                    |
| Rb4 | 1.05994 (5) | 1.23024 (4) | 0.18677 (1) | 0.0283 (1)                    |
| O1W | 1.0765 (3)  | 0.6063 (3)  | 0.30690 (6) | 0.0309 (9)                    |
| O2W | 0.7203 (3)  | 1.2134 (3)  | 0.24727 (6) | 0.0257 (8)                    |
| O3W | 1.3448 (3)  | 0.9459 (3)  | 0.25016 (6) | 0.0279 (8)                    |
| O4W | 0.8527 (3)  | 0.5397 (3)  | 0.25226 (6) | 0.0253 (8)                    |
| O5W | 0.2304 (3)  | 0.2898 (3)  | 0.25649 (6) | 0.0357 (9)                    |
| O6W | 0.5407 (3)  | 0.9000 (3)  | 0.19248 (6) | 0.0327 (9)                    |

| O13A | 0.9422 (3)             | 0.8720 (3)             | 0.20024 (6)                   | 0.0278 (8)               |
|------|------------------------|------------------------|-------------------------------|--------------------------|
| O13B | 0.1694 (3)             | 1.3122 (3)             | 0.34482 (6)                   | 0.0269 (9)               |
| O13C | 0.4344 (3)             | 0.1885 (3)             | 0.15619 (6)                   | 0.0310 (9)               |
| O13D | 0.4657 (3)             | 1.6262 (3)             | 0.30273 (6)                   | 0.0276 (8)               |
| O14A | 1.0819 (3)             | 0.6021 (3)             | 0.19896 (6)                   | 0.0240 (8)               |
| O14B | -0.0257 (3)            | 1.2087 (3)             | 0.30933 (6)                   | 0.0263 (8)               |
| O14C | 0.6508 (3)             | 0.3115 (3)             | 0.18492 (6)                   | 0.0328 (9)               |
| O14D | 0.5749 (3)             | 1.8879 (3)             | 0.30129 (6)                   | 0.0262 (8)               |
| O21A | 0.9548 (5)             | 1.2102 (3)             | 0.11758 (8)                   | 0.0596 (13)              |
| O21B | 0.0040 (4)             | 1.1619 (3)             | 0.44788 (7)                   | 0.0485 (10)              |
| O21C | 0.4963 (5)             | 0.3392 (3)             | 0.05074 (7)                   | 0.0547 (13)              |
| O21D | 0.6288 (4)             | 1.2701 (3)             | 0.38398 (7)                   | 0.0417 (10)              |
| O22A | 0.9983 (6)             | 1.2938 (4)             | 0.06947 (8)                   | 0.0849 (16)              |
| O22B | 0.1989 (4)             | 1.0405 (3)             | 0.48277 (7)                   | 0.0500 (11)              |
| O22C | 0.2977 (4)             | 0.4607 (4)             | 0.01645 (7)                   | 0.0518 (11)              |
| O22D | 0.4952 (4)             | 1.1955 (3)             | 0.42886 (7)                   | 0.0549 (11)              |
| N2A  | 0.9558 (4)             | 1.1848 (4)             | 0.08879 (9)                   | 0.0326 (11)              |
| N2B  | 0.1058 (5)             | 1.0377 (4)             | 0.45818 (8)                   | 0.0307 (11)              |
| N2C  | 0.3938 (5)             | 0.4642 (4)             | 0.04070 (8)                   | 0.0330 (11)              |
| N2D  | 0.5696 (5)             | 1.3004 (4)             | 0.41170 (9)                   | 0.0325 (11)              |
| C1A  | 0.9166 (4)             | 0.8696 (4)             | 0.09601 (8)                   | 0.0186 (11)              |
| C1B  | 0.0955 (4)             | 0.8707 (4)             | 0.40683 (8)                   | 0.0181 (11)              |
| CIC  | 0.4229 (4)             | 0.6317 (4)             | 0.09139 (8)                   | 0.0173 (11)              |
| C1D  | 0.5767 (4)             | 1.6189 (4)             | 0.40592 (8)                   | 0.0197 (11)              |
| C2A  | 0.9142(5)              | 1 0156 (4)             | 0.07599 (9)                   | 0.0223 (11)              |
| C2B  | 0.1075(5)              | 0.8722 (4)             | 0 44044 (8)                   | 0.0189(11)               |
| C2C  | 0.3957 (5)             | 0.6722(1)              | 0.05795 (8)                   | 0.0200 (11)              |
| C2D  | 0.5912(5)              | 1 4718 (4)             | 0.02773(9)                    | 0.0215 (11)              |
| C3A  | 0.8869(5)              | 1 0081 (5)             | 0.04283(9)                    | 0.0309(12)               |
| C3B  | 0.0009(5)              | 0 7251 (4)             | 0.01205(9)<br>0.45964(9)      | 0.0262(12)               |
| C3C  | 0.3784(5)              | 0.7261(1)<br>0.7768(4) | 0.03888 (9)                   | 0.0285(12)               |
| C3D  | 0.6745(5)              | 1 4756 (5)             | 0.45856 (9)                   | 0.0289(12)               |
| C4A  | 0.0215(5)              | 0.8536 (5)             | 0.02851(9)                    | 0.0203(12)<br>0.0351(14) |
| C4B  | 0.0010(5)<br>0.1017(5) | 0.5550(3)              | 0.02031(9)<br>0.44488(9)      | 0.0291 (14)              |
| C4C  | 0.1017(5)<br>0.3917(5) | 0.9349(4)              | 0.05312(10)                   | 0.0297(14)               |
| C4D  | 0.6441(5)              | 1 6309 (5)             | 0.03312(10)<br>0.47308(9)     | 0.0297(11)<br>0.0342(14) |
| C5A  | 0.0771(5)              | 0.7050 (5)             | 0.4737(9)                     | 0.0342(14)               |
| C5B  | 0.0750(5)              | 0.5598 (4)             | 0.04737(9)<br>0.41148(9)      | 0.0311(12)               |
| C5C  | 0.0040(5)<br>0.4179(5) | 0.9423 (4)             | 0.41140(0)                    | 0.0230(11)<br>0.0285(14) |
| C5D  | 0.1179(5)              | 1.7808(5)              | 0.45456 (9)                   | 0.0205(11)<br>0.0314(14) |
| C6A  | 0.0200(5)              | 0.7140(4)              | 0.08026 (9)                   | 0.0314(14)               |
| C6B  | 0.0903(3)              | 0.7140(4)<br>0.7098(4) | 0.08020(9)<br>0.39309(9)      | 0.0241(12)<br>0.0222(12) |
| C6C  | 0.4306 (4)             | 0.7038(4)              | 0.39309(9)                    | 0.0222(12)<br>0.0231(11) |
| C6D  | 0.5926 (5)             | 1.7743(4)              | 0.10475(9)<br>0.42188(9)      | 0.0257(11)               |
| C11A | 0.3720(3)              | 0.8678 (4)             | 0.13174(8)                    | 0.0237(12)<br>0.0107(11) |
| C11B | 0.7205(5)              | 1 02/0 (4)             | $0.1317 + (0) \\ 0.38621 (0)$ | 0.0197(11)               |
|      | 0.1074(3)<br>0.4337(5) | 0 4762 (4)             | 0.30021(0)<br>0.11246(8)      | 0.0208(11)               |
| CIID | 0.537(3)               | 1 6215 (4)             | $0.11240(0) \\ 0.37112(0)$    | 0.0202(11)               |
| C12A | 1.0164(5)              | 0.7420(4)              | 0.37112(9)<br>0.1/000(0)      | 0.0219(11)<br>0.0220(11) |
| U12A | 1.010+(3)              | 0.7720(4)              | 0.17/07 (7)                   | 0.0229 (11)              |

| C12B | 0.0410 (5) | 1.0461 (4) | 0.35657 (8) | 0.0244 (11) |
|------|------------|------------|-------------|-------------|
| C12C | 0.5385 (5) | 0.4579 (4) | 0.13842 (9) | 0.0250 (12) |
| C12D | 0.5965 (5) | 1.7343 (4) | 0.35014 (9) | 0.0257 (12) |
| C13A | 1.0123 (5) | 0.7401 (4) | 0.18519 (9) | 0.0200 (11) |
| C13B | 0.0642 (5) | 1.2009 (4) | 0.33608 (8) | 0.0192 (11) |
| C13C | 0.5404 (5) | 0.3069 (4) | 0.16126 (9) | 0.0248 (12) |
| C13D | 0.5417 (5) | 1.7488 (4) | 0.31544 (8) | 0.0205 (11) |
| H3A  | 0.88360    | 1.11070    | 0.03010     | 0.0370*     |
| H3B  | 0.12630    | 0.73220    | 0.48250     | 0.0310*     |
| H3C  | 0.35750    | 0.76910    | 0.01630     | 0.0340*     |
| H3D  | 0.63370    | 1.37180    | 0.47100     | 0.0350*     |
| H4A  | 0.84360    | 0.84810    | 0.00590     | 0.0420*     |
| H4B  | 0.10510    | 0.46540    | 0.45760     | 0.0340*     |
| H4C  | 0.38310    | 1.03750    | 0.04040     | 0.0360*     |
| H4D  | 0.66860    | 1.63560    | 0.49560     | 0.0410*     |
| H5A  | 0.86110    | 0.59640    | 0.03750     | 0.0370*     |
| H5B  | 0.07280    | 0.45220    | 0.40130     | 0.0300*     |
| H5C  | 0.42710    | 1.05080    | 0.09640     | 0.0340*     |
| H5D  | 0.64150    | 1.88890    | 0.46450     | 0.0380*     |
| H6A  | 0.90410    | 0.61040    | 0.09270     | 0.0290*     |
| H6B  | 0.07730    | 0.70200    | 0.37020     | 0.0270*     |
| H6C  | 0.44530    | 0.80260    | 0.12750     | 0.0280*     |
| H6D  | 0.57850    | 1.87920    | 0.40980     | 0.0310*     |
| H11A | 0.86840    | 0.96450    | 0.14310     | 0.0240*     |
| H11B | 0.17260    | 1.11690    | 0.39490     | 0.0250*     |
| H11C | 0.36050    | 0.38420    | 0.10690     | 0.0240*     |
| H11D | 0.45810    | 1.53680    | 0.36320     | 0.0260*     |
| H12A | 1.08530    | 0.64860    | 0.13800     | 0.0270*     |
| H12B | -0.02690   | 0.95700    | 0.34800     | 0.0290*     |
| H12C | 0.61860    | 0.54640    | 0.14300     | 0.0300*     |
| H12D | 0.68230    | 1.81190    | 0.35770     | 0.0310*     |
| H11W | 1.0870     | 0.5170     | 0.3200      | 0.0370*     |
| H12W | 1.1940     | 0.6300     | 0.3060      | 0.0370*     |
| H21W | 0.7626     | 1.3064     | 0.2511      | 0.0310*     |
| H22W | 0.6990     | 1.2086     | 0.2270      | 0.0310*     |
| H31W | 1.4325     | 0.9193     | 0.2656      | 0.0340*     |
| H32W | 1.4051     | 0.9443     | 0.2312      | 0.0340*     |
| H41W | 0.9200     | 0.5600     | 0.2680      | 0.0300*     |
| H42W | 0.9230     | 0.5590     | 0.2360      | 0.0300*     |
| H51W | 0.2630     | 0.1750     | 0.2500      | 0.0430*     |
| H52W | 0.1550     | 0.2800     | 0.2720      | 0.0430*     |
| H61W | 0.5080     | 0.9900     | 0.1810      | 0.0390*     |
| H62W | 0.6580     | 0.9100     | 0.1960      | 0.0390*     |
|      |            |            |             |             |

# Atomic displacement parameters $(Å^2)$

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$   | $U^{23}$    |
|-----|------------|------------|------------|-------------|------------|-------------|
| Rb1 | 0.0262 (2) | 0.0171 (2) | 0.0204 (2) | -0.0019 (1) | 0.0002 (2) | -0.0002 (2) |

| Rb2  | 0.0249 (2)  | 0.0198 (2)  | 0.0253 (2)  | 0.0007 (2)   | -0.0048 (2)  | -0.0018 (2)              |
|------|-------------|-------------|-------------|--------------|--------------|--------------------------|
| Rb3  | 0.0277 (2)  | 0.0211 (2)  | 0.0246 (2)  | -0.0010 (2)  | 0.0015 (2)   | -0.0025 (2)              |
| Rb4  | 0.0295 (2)  | 0.0267 (2)  | 0.0293 (2)  | -0.0062 (2)  | -0.0006 (2)  | -0.0025 (2)              |
| O1W  | 0.0374 (16) | 0.0230 (13) | 0.0327 (16) | -0.0024 (11) | -0.0112 (13) | 0.0077 (12)              |
| O2W  | 0.0365 (15) | 0.0207 (13) | 0.0206 (14) | -0.0041 (11) | -0.0079 (11) | 0.0017 (11)              |
| O3W  | 0.0296 (15) | 0.0294 (14) | 0.0244 (15) | -0.0006 (11) | 0.0013 (12)  | -0.0019 (11)             |
| O4W  | 0.0239 (14) | 0.0321 (14) | 0.0205 (15) | -0.0067 (11) | 0.0000 (11)  | -0.0007 (11)             |
| O5W  | 0.0396 (16) | 0.0243 (14) | 0.0410 (18) | 0.0054 (11)  | 0.0109 (13)  | 0.0038 (13)              |
| O6W  | 0.0340 (16) | 0.0355 (15) | 0.0281 (16) | -0.0022 (12) | 0.0020 (12)  | 0.0073 (12)              |
| O13A | 0.0419 (16) | 0.0232 (13) | 0.0177 (15) | 0.0012 (11)  | -0.0007 (12) | -0.0018 (11)             |
| O13B | 0.0371 (16) | 0.0263 (14) | 0.0193 (15) | -0.0130 (12) | -0.0037 (12) | -0.0003 (11)             |
| O13C | 0.0326 (16) | 0.0296 (14) | 0.0321 (17) | -0.0088 (12) | -0.0080 (12) | 0.0096 (12)              |
| O13D | 0.0395 (16) | 0.0211 (13) | 0.0236 (15) | -0.0104 (11) | 0.0004 (12)  | -0.0002 (11)             |
| O14A | 0.0231 (14) | 0.0243 (13) | 0.0240 (15) | 0.0021 (10)  | -0.0040 (11) | 0.0073 (11)              |
| O14B | 0.0322 (15) | 0.0301 (14) | 0.0172 (15) | -0.0058 (11) | -0.0049 (12) | 0.0007 (11)              |
| O14C | 0.0398 (17) | 0.0380 (15) | 0.0211 (15) | -0.0043 (12) | -0.0105 (13) | 0.0050 (12)              |
| O14D | 0.0345 (15) | 0.0229 (13) | 0.0223 (15) | -0.0099 (11) | 0.0053 (11)  | 0.0050 (11)              |
| O21A | 0.111 (3)   | 0.0417 (18) | 0.030 (2)   | -0.0270 (17) | -0.0076 (18) | 0.0036 (16)              |
| O21B | 0.080 (2)   | 0.0224 (15) | 0.0413 (19) | 0.0054 (15)  | 0.0028 (16)  | -0.0052 (14)             |
| O21C | 0.102 (3)   | 0.0254 (16) | 0.0350 (19) | 0.0044 (16)  | -0.0021 (17) | -0.0048 (14)             |
| O21D | 0.063 (2)   | 0.0326 (16) | 0.0276 (18) | 0.0078 (14)  | -0.0054 (15) | -0.0039 (14)             |
| O22A | 0.171 (4)   | 0.0407 (19) | 0.048 (2)   | -0.039(2)    | 0.001 (2)    | 0.0168 (18)              |
| O22B | 0.070 (2)   | 0.0582 (19) | 0.0254 (18) | -0.0220 (16) | -0.0124 (16) | -0.0147 (15)             |
| O22C | 0.069 (2)   | 0.064 (2)   | 0.0262 (18) | -0.0232(16)  | -0.0142 (16) | -0.0139 (15)             |
| O22D | 0.080 (2)   | 0.0337 (17) | 0.054 (2)   | -0.0240 (16) | 0.0004 (17)  | 0.0134 (16)              |
| N2A  | 0.039 (2)   | 0.0297 (19) | 0.029 (2)   | -0.0024(15)  | -0.0024(17)  | 0.0106 (17)              |
| N2B  | 0.043 (2)   | 0.0255 (18) | 0.025 (2)   | -0.0122(16)  | 0.0077 (16)  | -0.0063(15)              |
| N2C  | 0.050(2)    | 0.0299 (19) | 0.022(2)    | -0.0138(16)  | -0.0002(17)  | -0.0022(16)              |
| N2D  | 0.036 (2)   | 0.0257 (18) | 0.036 (2)   | -0.0021(15)  | -0.0112(17)  | 0.0012 (17)              |
| C1A  | 0.0126 (18) | 0.0249 (19) | 0.018 (2)   | -0.0005(15)  | 0.0001 (15)  | -0.0033(16)              |
| C1B  | 0.0114 (18) | 0.0205(18)  | 0.023(2)    | -0.0037(14)  | -0.0024(15)  | 0.0007 (16)              |
| CIC  | 0.0125(18)  | 0.0206 (18) | 0.019(2)    | -0.0029(14)  | -0.0006(15)  | -0.0003(16)              |
| C1D  | 0.0125(19)  | 0.0248(19)  | 0.019(2)    | -0.0025(11)  | 0.0006 (15)  | 0.0004 (16)              |
| C2A  | 0.0169(19)  | 0.027(2)    | 0.013(2)    | -0.0024(15)  | -0.0009(16)  | 0.0001(10)<br>0.0035(17) |
| C2B  | 0.0105(19)  | 0.027(2)    | 0.023(2)    | -0.0050(14)  | 0.0026 (16)  | -0.0031(16)              |
| C2C  | 0.020(2)    | 0.0184(18)  | 0.021(2)    | -0.0045(15)  | -0.00020(16) | -0.0026(16)              |
| C2D  | 0.020(2)    | 0.0101(10)  | 0.022(2)    | -0.0039(15)  | 0.0000 (16)  | -0.0020(10)              |
| C3A  | 0.0102(1))  | 0.0220(1))  | 0.020(2)    | -0.0049(18)  | -0.0043(17)  | 0.0001(17)               |
| C3B  | 0.023(2)    | 0.079(2)    | 0.024(2)    | -0.0048(17)  | -0.0016(17)  | 0.0110(19)<br>0.0025(18) |
| C3C  | 0.027(2)    | 0.023(2)    | 0.023(2)    | -0.0043(17)  | -0.0060(17)  | 0.0023(18)               |
| C3D  | 0.027(2)    | 0.037(2)    | 0.023(2)    | -0.0041(17)  | -0.0032(17)  | 0.0082(18)               |
| C4A  | 0.027(2)    | 0.057(2)    | 0.023(2)    | -0.007(2)    | -0.0052(17)  | 0.0000(1))               |
| C4B  | 0.030(2)    | 0.039(3)    | 0.017(2)    | -0.007(2)    | -0.0011(19)  | 0.000(2)                 |
| C4D  | 0.030(2)    | 0.020(2)    | 0.037(3)    | -0.0017(10)  | -0.0012(19)  | 0.0003(18)               |
| C4D  | 0.027(2)    | 0.023(2)    | 0.037(3)    | -0.0023(10)  | -0.0012(19)  | -0.002(2)                |
| C5A  | 0.032(2)    | 0.041(3)    | 0.027(2)    | -0.0050(19)  | -0.0018(19)  | -0.002(2)                |
| C5R  | 0.020(2)    | 0.041(2)    | 0.027(2)    | -0.0039(18)  | 0.0010(10)   | -0.0001(19)              |
| C5C  | 0.024(2)    | 0.0101(17)  | 0.035(2)    | -0.0024(13)  | 0.0013(17)   | -0.0047(17)              |
| CSD  | 0.021(2)    | 0.0193(19)  | 0.043(3)    | -0.0020(10)  | -0.0013(10)  | -0.0110(10)              |
| COD  | 0.029 (2)   | 0.035 (2)   | 0.031(3)    | -0.0055 (17) | -0.0042 (19) | -0.0110 (19)             |

| C6A  | 0.022 (2)   | 0.028 (2)   | 0.022 (2) | 0.0002 (16)  | -0.0016 (16) | -0.0006 (17) |
|------|-------------|-------------|-----------|--------------|--------------|--------------|
| C6B  | 0.019 (2)   | 0.026 (2)   | 0.022 (2) | -0.0042 (15) | -0.0010 (16) | -0.0046 (16) |
| C6C  | 0.0179 (19) | 0.028 (2)   | 0.024 (2) | -0.0050 (15) | -0.0030 (16) | -0.0039 (17) |
| C6D  | 0.025 (2)   | 0.024 (2)   | 0.028 (2) | -0.0018 (16) | -0.0015 (17) | 0.0020 (17)  |
| C11A | 0.0198 (19) | 0.0247 (19) | 0.015 (2) | -0.0050 (15) | -0.0008 (15) | 0.0017 (16)  |
| C11B | 0.022 (2)   | 0.0200 (19) | 0.021 (2) | -0.0055 (15) | 0.0020 (16)  | -0.0028 (16) |
| C11C | 0.0167 (19) | 0.0192 (18) | 0.025 (2) | -0.0026 (14) | 0.0002 (16)  | -0.0025 (16) |
| C11D | 0.021 (2)   | 0.0195 (19) | 0.025 (2) | 0.0005 (15)  | -0.0016 (16) | -0.0037 (16) |
| C12A | 0.022 (2)   | 0.0242 (19) | 0.022 (2) | -0.0004 (15) | 0.0022 (16)  | -0.0004 (17) |
| C12B | 0.032 (2)   | 0.0235 (19) | 0.019 (2) | -0.0099 (16) | -0.0027 (17) | -0.0006 (16) |
| C12C | 0.022 (2)   | 0.028 (2)   | 0.026 (2) | -0.0066 (16) | -0.0055 (17) | 0.0029 (17)  |
| C12D | 0.026 (2)   | 0.030 (2)   | 0.023 (2) | -0.0122 (16) | -0.0017 (17) | -0.0004 (18) |
| C13A | 0.0158 (19) | 0.024 (2)   | 0.021 (2) | -0.0053 (15) | -0.0011 (15) | -0.0006 (17) |
| C13B | 0.021 (2)   | 0.0200 (19) | 0.016 (2) | 0.0002 (15)  | 0.0043 (16)  | -0.0019 (16) |
| C13C | 0.024 (2)   | 0.030 (2)   | 0.019 (2) | 0.0055 (17)  | 0.0007 (17)  | -0.0018 (17) |
| C13D | 0.0162 (19) | 0.024 (2)   | 0.021 (2) | -0.0009 (15) | 0.0035 (15)  | 0.0013 (17)  |
|      |             |             |           |              |              |              |

Geometric parameters (Å, °)

| Rb1—O1W                 | 2.922 (2) | C1AC6A    | 1.394 (5) |
|-------------------------|-----------|-----------|-----------|
| Rb1—O2W                 | 2.849 (2) | C1A—C2A   | 1.396 (5) |
| Rb1—O3W                 | 2.952 (2) | C1B—C6B   | 1.385 (4) |
| Rb1—O4W                 | 3.106 (2) | C1B—C2B   | 1.389 (5) |
| Rb1—O13A                | 2.867 (2) | C1B—C11B  | 1.472 (4) |
| Rb1—O14D <sup>i</sup>   | 2.889 (2) | C1C—C11C  | 1.480 (4) |
| Rb1—O14B <sup>ii</sup>  | 2.870 (2) | C1C—C2C   | 1.395 (5) |
| Rb2—O4W                 | 2.986 (2) | C1C—C6C   | 1.385 (4) |
| Rb2—O5W                 | 2.927 (2) | C1D—C2D   | 1.397 (5) |
| Rb2—O6W                 | 3.132 (2) | C1D—C6D   | 1.394 (5) |
| Rb2—O14C                | 3.031 (2) | C1D—C11D  | 1.470 (5) |
| Rb2—O3W <sup>iii</sup>  | 3.047 (2) | C2A—C3A   | 1.386 (5) |
| Rb2—O14A <sup>iii</sup> | 2.908 (2) | C2B—C3B   | 1.383 (5) |
| Rb2—O13D <sup>i</sup>   | 2.977 (2) | C2C—C3C   | 1.382 (5) |
| Rb3—O2W                 | 2.975 (2) | C2D—C3D   | 1.379 (5) |
| Rb3—O13B                | 2.952 (2) | C3A—C4A   | 1.365 (5) |
| Rb3—O13D                | 2.926 (2) | C3B—C4B   | 1.378 (5) |
| Rb3—O21D                | 2.944 (3) | C3C—C4C   | 1.377 (5) |
| Rb3—O14D <sup>i</sup>   | 2.901 (2) | C3D—C4D   | 1.370 (5) |
| Rb3—O14B <sup>ii</sup>  | 2.947 (2) | C4A—C5A   | 1.384 (5) |
| Rb4—O13A                | 3.018 (2) | C4B—C5B   | 1.386 (5) |
| Rb4—O21A                | 2.969 (3) | C4C—C5C   | 1.386 (6) |
| Rb4—O14A <sup>iv</sup>  | 2.955 (2) | C4D—C5D   | 1.385 (5) |
| Rb4—O14C <sup>iv</sup>  | 2.889 (2) | C5A—C6A   | 1.374 (5) |
| Rb4—O5W <sup>v</sup>    | 3.190 (2) | C5B—C6B   | 1.385 (5) |
| Rb4—O13C <sup>v</sup>   | 2.883 (2) | C5C—C6C   | 1.374 (5) |
| O13A—C13A               | 1.258 (4) | C5D—C6D   | 1.377 (5) |
| O13B—C13B               | 1.247 (4) | C11A—C12A | 1.322 (5) |

| O13C—C13C                  | 1.256 (4)  | C11B—C12B     | 1.326 (5) |
|----------------------------|------------|---------------|-----------|
| O13D—C13D                  | 1.256 (4)  | C11C—C12C     | 1.312 (5) |
| O14A—C13A                  | 1.273 (4)  | C11D—C12D     | 1.320 (5) |
| O14B—C13B                  | 1.281 (4)  | C12A—C13A     | 1.487 (5) |
| O14C—C13C                  | 1.262 (4)  | C12B—C13B     | 1.483 (4) |
| O14D—C13D                  | 1.261 (4)  | C12C—C13C     | 1.497 (5) |
| O21A—N2A                   | 1.204 (5)  | C12DC13D      | 1.490 (5) |
| O21B—N2B                   | 1.228 (4)  | СЗА—НЗА       | 0.9500    |
| O21C—N2C                   | 1.231 (4)  | СЗВ—НЗВ       | 0.9500    |
| O21D—N2D                   | 1.223 (5)  | СЗС—НЗС       | 0.9500    |
| O22A—N2A                   | 1.210 (5)  | C3D—H3D       | 0.9500    |
| O22B—N2B                   | 1.220 (4)  | C4A—H4A       | 0.9500    |
| O22C—N2C                   | 1.220 (4)  | C4B—H4B       | 0.9500    |
| O22D—N2D                   | 1.219 (4)  | C4C—H4C       | 0.9500    |
| O1W—H12W                   | 0.8600     | C4D—H4D       | 0.9500    |
| O1W—H11W                   | 0.8700     | С5А—Н5А       | 0.9500    |
| O2W—H21W                   | 0.8200     | С5В—Н5В       | 0.9500    |
| O2W—H22W                   | 0.8500     | С5С—Н5С       | 0.9500    |
| O3W—H32W                   | 0.8800     | C5D—H5D       | 0.9500    |
| O3W—H31W                   | 0.9100     | С6А—Н6А       | 0.9500    |
| O4W—H42W                   | 0.8400     | С6В—Н6В       | 0.9500    |
| O4W—H41W                   | 0.8400     | С6С—Н6С       | 0.9500    |
| O5W—H51W                   | 0.9400     | C6D—H6D       | 0.9500    |
| O5W—H52W                   | 0.8300     | C11A—H11A     | 0.9500    |
| O6W—H61W                   | 0.8600     | C11B—H11B     | 0.9500    |
| O6W—H62W                   | 0.8500     | C11C—H11C     | 0.9500    |
| N2A—C2A                    | 1.476 (5)  | C11D—H11D     | 0.9500    |
| N2B—C2B                    | 1.483 (4)  | C12A—H12A     | 0.9500    |
| N2C—C2C                    | 1.473 (4)  | C12B—H12B     | 0.9500    |
| N2D—C2D                    | 1.478 (5)  | C12C—H12C     | 0.9500    |
| C1A—C11A                   | 1.476 (5)  | C12D—H12D     | 0.9500    |
| O1W—Rb1—O2W                | 162.58 (7) | O21C—N2C—O22C | 123.6 (3) |
| O1W—Rb1—O3W                | 87.71 (6)  | O21D—N2D—C2D  | 119.0 (3) |
| O1W—Rb1—O4W                | 56.37 (6)  | O22D—N2D—C2D  | 117.5 (3) |
| O1W—Rb1—O13A               | 116.20 (7) | O21D—N2D—O22D | 123.6 (3) |
| O1W—Rb1—O14D <sup>i</sup>  | 86.68 (6)  | C2A—C1A—C6A   | 115.6 (3) |
| O1W—Rb1—O14B <sup>ii</sup> | 107.58 (7) | C6A—C1A—C11A  | 118.4 (3) |
| O2W—Rb1—O3W                | 107.75 (6) | C2A—C1A—C11A  | 126.0 (3) |
| O2W—Rb1—O4W                | 123.12 (6) | C2B—C1B—C6B   | 115.6 (3) |
| O2W—Rb1—O13A               | 76.13 (7)  | C6B-C1B-C11B  | 120.7 (3) |
| O2W—Rb1—O14D <sup>i</sup>  | 76.65 (7)  | C2B-C1B-C11B  | 123.5 (3) |
| O2W—Rb1—O14B <sup>ii</sup> | 66.82 (7)  | C2C—C1C—C11C  | 124.2 (3) |
| O3W—Rb1—O4W                | 107.40 (6) | C6C—C1C—C11C  | 120.3 (3) |
| O3W—Rb1—O13A               | 77.01 (6)  | C2C—C1C—C6C   | 115.5 (3) |
| O3W—Rb1—O14D <sup>i</sup>  | 168.43 (7) | C6D—C1D—C11D  | 119.4 (3) |
| O3W—Rb1—O14B <sup>ii</sup> | 85.81 (6)  | C2D-C1D-C6D   | 115.2 (3) |
| O4W—Rb1—O13A               | 70.06 (7)  | C2D—C1D—C11D  | 125.4 (3) |
|                            | × /        |               | (-)       |

| O4W—Rb1—O14D <sup>i</sup>                   | 77.69 (6)  | N2A—C2A—C3A    | 116.2 (3) |
|---------------------------------------------|------------|----------------|-----------|
| O4W—Rb1—O14B <sup>ii</sup>                  | 157.51 (7) | C1A—C2A—C3A    | 122.4 (3) |
| O13A—Rb1—O14D <sup>i</sup>                  | 114.55 (6) | N2A—C2A—C1A    | 121.3 (3) |
| O13A—Rb1—O14B <sup>ii</sup>                 | 131.78 (7) | N2B—C2B—C1B    | 120.7 (3) |
| O14B <sup>ii</sup> —Rb1—O14D <sup>i</sup>   | 86.25 (6)  | C1B—C2B—C3B    | 123.8 (3) |
| O4W—Rb2—O5W                                 | 113.24 (6) | N2B—C2B—C3B    | 115.5 (3) |
| O4W—Rb2—O6W                                 | 87.01 (6)  | N2C—C2C—C1C    | 120.5 (3) |
| O4W—Rb2—O14C                                | 75.46 (6)  | C1C—C2C—C3C    | 123.4 (3) |
| O3W <sup>iii</sup> —Rb2—O4W                 | 97.87 (6)  | N2C—C2C—C3C    | 116.1 (3) |
| O4W—Rb2—O14A <sup>iii</sup>                 | 169.11 (7) | N2D—C2D—C3D    | 116.4 (3) |
| O4W—Rb2—O13D <sup>i</sup>                   | 69.65 (6)  | N2D—C2D—C1D    | 120.0 (3) |
| O5W—Rb2—O6W                                 | 159.69 (6) | C1D—C2D—C3D    | 123.6 (3) |
| O5W—Rb2—O14C                                | 87.92 (6)  | C2A—C3A—C4A    | 120.1 (3) |
| O3W <sup>iii</sup> —Rb2—O5W                 | 122.39 (6) | C2B—C3B—C4B    | 118.5 (3) |
| O5W—Rb2—O14A <sup>iii</sup>                 | 73.41 (6)  | C2C—C3C—C4C    | 119.1 (3) |
| O5W—Rb2—O13D <sup>i</sup>                   | 79.29 (7)  | C2D-C3D-C4D    | 119.2 (3) |
| O6W—Rb2—O14C                                | 96.02 (6)  | C3A—C4A—C5A    | 119.3 (3) |
| O3W <sup>iii</sup> —Rb2—O6W                 | 52.37 (6)  | C3B—C4B—C5B    | 120.1 (3) |
| O6W—Rb2—O14A <sup>iii</sup>                 | 86.33 (6)  | C3C—C4C—C5C    | 119.1 (3) |
| O6W—Rb2—O13D <sup>i</sup>                   | 111.05 (6) | C3DC4DC5D      | 119.4 (3) |
| O3W <sup>iii</sup> —Rb2—O14C                | 148.30 (6) | C4A—C5A—C6A    | 120.2 (3) |
| O14A <sup>iii</sup> —Rb2—O14C               | 96.69 (6)  | C4B—C5B—C6B    | 119.5 (3) |
| O13D <sup>i</sup> —Rb2—O14C                 | 133.82 (6) | C4C—C5C—C6C    | 120.4 (3) |
| O3W <sup>iii</sup> —Rb2—O14A <sup>iii</sup> | 84.84 (6)  | C4DC5DC6D      | 120.5 (3) |
| O3W <sup>iii</sup> —Rb2—O13D <sup>i</sup>   | 67.50 (6)  | C1A—C6A—C5A    | 122.4 (3) |
| O13D <sup>i</sup> —Rb2—O14A <sup>iii</sup>  | 120.90 (6) | C1B—C6B—C5B    | 122.6 (3) |
| O2W—Rb3—O13B                                | 137.47 (6) | C1C—C6C—C5C    | 122.5 (3) |
| O2W—Rb3—O13D                                | 90.66 (7)  | C1D—C6D—C5D    | 122.2 (3) |
| O2W—Rb3—O21D                                | 146.59 (7) | C1A—C11A—C12A  | 125.0 (3) |
| O2W—Rb3—O14D <sup>i</sup>                   | 74.53 (7)  | C1B—C11B—C12B  | 125.4 (3) |
| O2W—Rb3—O14B <sup>ii</sup>                  | 64.25 (6)  | C1C-C11C-C12C  | 123.8 (3) |
| O13B—Rb3—O13D                               | 78.95 (6)  | C1D—C11D—C12D  | 124.1 (3) |
| O13B—Rb3—O21D                               | 75.95 (7)  | C11A—C12A—C13A | 123.0 (3) |
| O13B—Rb3—O14D <sup>i</sup>                  | 100.93 (6) | C11B—C12B—C13B | 123.8 (3) |
| O13B—Rb3—O14B <sup>ii</sup>                 | 158.27 (7) | C11C—C12C—C13C | 124.4 (3) |
| O13D—Rb3—O21D                               | 98.02 (7)  | C11D—C12D—C13D | 124.8 (3) |
| O13D—Rb3—O14D <sup>i</sup>                  | 158.10 (7) | O14A—C13A—C12A | 116.7 (3) |
| O13D—Rb3—O14B <sup>ii</sup>                 | 103.66 (6) | O13A—C13A—O14A | 124.0 (3) |
| O14D <sup>i</sup> —Rb3—O21D                 | 103.21 (7) | O13A—C13A—C12A | 119.2 (3) |
| O14B <sup>ii</sup> —Rb3—O21D                | 82.34 (7)  | O14B—C13B—C12B | 115.9 (3) |
| O14B <sup>ii</sup> —Rb3—O14D <sup>i</sup>   | 84.63 (6)  | O13B—C13B—O14B | 123.7 (3) |
| O13A—Rb4—O21A                               | 91.50 (7)  | O13B—C13B—C12B | 120.3 (3) |
| O13A—Rb4—O14A <sup>iv</sup>                 | 156.07 (7) | O14C—C13C—C12C | 115.5 (3) |

| O13A—Rb4—O14C <sup>iv</sup>                 | 82.00 (6)   | O13C—C13C—C12C  | 119.6 (3) |
|---------------------------------------------|-------------|-----------------|-----------|
| O5W <sup>v</sup> —Rb4—O13A                  | 96.67 (6)   | O13C—C13C—O14C  | 124.9 (3) |
| O13A—Rb4—O13C <sup>v</sup>                  | 106.82 (6)  | O13D—C13D—C12D  | 119.0 (3) |
| O14A <sup>iv</sup> —Rb4—O21A                | 105.01 (7)  | O14D—C13D—C12D  | 115.7 (3) |
| O14C <sup>iv</sup> —Rb4—O21A                | 73.64 (8)   | O13D—C13D—O14D  | 125.3 (3) |
| O5W <sup>v</sup> —Rb4—O21A                  | 170.09 (7)  | С2А—С3А—Н3А     | 120.00    |
| $O13C^{v}$ —Rb4—O21A                        | 79.63 (8)   | С4А—С3А—Н3А     | 120.00    |
| $O14A^{iv}$ —Rb4— $O14C^{iv}$               | 86.13 (6)   | C2B—C3B—H3B     | 121.00    |
| $05W^{v}$ —Rb4— $014A^{iv}$                 | 69.04 (6)   | C4B—C3B—H3B     | 121.00    |
| $O13C^{v}$                                  | 93.32 (6)   | С2С—С3С—Н3С     | 120.00    |
| $0.5W^{v}$ - Rb4 - $0.14C^{iv}$             | 112.98 (6)  | С4С—С3С—Н3С     | 121.00    |
| $O_{3W} = R_{04} = O_{14}C_{14}$            | 152 12 (7)  | C2D-C3D-H3D     | 120.00    |
| $O_{13}C - R_{04} - O_{14}C$                | 92.60.(6)   | C4D—C3D—H3D     | 120.00    |
| Rb1-O2W-Rb3                                 | 88 47 (7)   | C3A - C4A - H4A | 120.00    |
| $Rb1 - O3W - Rb2^{ii}$                      | 96 96 (6)   | C5A - C4A - H4A | 120.00    |
| Rb1—O4W—Rb2                                 | 105.80 (7)  | C3B—C4B—H4B     | 120.00    |
| Rb2—O5W—Rb4 <sup>vi</sup>                   | 91.75 (7)   | C5B—C4B—H4B     | 120.00    |
| Rb1—O13A—Rb4                                | 93.79 (7)   | С3С—С4С—Н4С     | 121.00    |
| Rb1—O13A—C13A                               | 124.9 (2)   | С5С—С4С—Н4С     | 120.00    |
| Rb4—O13A—C13A                               | 123.3 (2)   | C3D—C4D—H4D     | 120.00    |
| Rb3—O13B—C13B                               | 111.2 (2)   | C5D—C4D—H4D     | 120.00    |
| Rb4 <sup>vi</sup> —O13C—C13C                | 115.8 (2)   | С4А—С5А—Н5А     | 120.00    |
| Rb3—O13D—C13D                               | 127.7 (2)   | С6А—С5А—Н5А     | 120.00    |
| Rb2 <sup>iv</sup> —O13D—Rb3                 | 91.02 (7)   | C4B—C5B—H5B     | 120.00    |
| Rb2 <sup>iv</sup> —O13D—C13D                | 124.6 (2)   | C6B—C5B—H5B     | 120.00    |
| Rb4 <sup>i</sup> —O14A—C13A                 | 134.0 (2)   | C4C—C5C—H5C     | 120.00    |
| Rb2 <sup>ii</sup> —O14A—C13A                | 123.9 (2)   | С6С—С5С—Н5С     | 120.00    |
| Rb2 <sup>ii</sup> —O14A—Rb4 <sup>i</sup>    | 97.10 (7)   | C4D             | 120.00    |
| Rb1 <sup>iii</sup> —O14B—C13B               | 122.85 (19) | C6D—C5D—H5D     | 120.00    |
| Rb3 <sup>iii</sup> —O14B—C13B               | 116.9 (2)   | С1А—С6А—Н6А     | 119.00    |
| Rb1 <sup>iii</sup> —O14B—Rb3 <sup>iii</sup> | 88.60 (6)   | С5А—С6А—Н6А     | 119.00    |
| Rb2—O14C—C13C                               | 104.89 (19) | C1B—C6B—H6B     | 119.00    |
| Rb2—O14C—Rb4 <sup>i</sup>                   | 121.16 (8)  | C5B—C6B—H6B     | 119.00    |
| Rb4 <sup>i</sup> —O14C—C13C                 | 129.2 (2)   | С1С—С6С—Н6С     | 119.00    |
| Rb1 <sup>iv</sup> —O14D—C13D                | 119.1 (2)   | С5С—С6С—Н6С     | 119.00    |
| Rb3 <sup>iv</sup> —O14D—C13D                | 139.7 (2)   | C1D—C6D—H6D     | 119.00    |
| $Rb1^{iv}$ —O14D— $Rb3^{iv}$                | 89.15 (6)   | C5D—C6D—H6D     | 119.00    |
| Rb4—O21A—N2A                                | 164.5 (3)   | C1A—C11A—H11A   | 117.00    |
| Rb3—O21D—N2D                                | 149.2 (2)   | C12A—C11A—H11A  | 118.00    |
| H11W—O1W—H12W                               | 100.00      | C1B—C11B—H11B   | 117.00    |
| H21W—O2W—H22W                               | 109.00      | C12B—C11B—H11B  | 117.00    |
| H31W—O3W—H32W                               | 108.00      | C1C-C11C-H11C   | 118.00    |
| H41W—O4W—H42W                               | 103.00      | C12C—C11C—H11C  | 118.00    |

| H51W—O5W—H52W                                     | 103.00      | C1DC11DH11D                                       | 118.00       |
|---------------------------------------------------|-------------|---------------------------------------------------|--------------|
| H61W—O6W—H62W                                     | 103.00      | C12D—C11D—H11D                                    | 118.00       |
| O22A—N2A—C2A                                      | 117.8 (3)   | C11A—C12A—H12A                                    | 119.00       |
| O21A—N2A—O22A                                     | 121.4 (3)   | C13A—C12A—H12A                                    | 118.00       |
| O21A—N2A—C2A                                      | 120.8 (3)   | C11B—C12B—H12B                                    | 118.00       |
| O22B—N2B—C2B                                      | 118.3 (3)   | C13B—C12B—H12B                                    | 118.00       |
| O21B—N2B—C2B                                      | 117.7 (3)   | C11C—C12C—H12C                                    | 118.00       |
| O21B—N2B—O22B                                     | 124.0 (3)   | C13C—C12C—H12C                                    | 118.00       |
| O21C—N2C—C2C                                      | 118.0 (3)   | C11D—C12D—H12D                                    | 118.00       |
| 022C—N2C—C2C                                      | 118.3 (3)   | C13D—C12D—H12D                                    | 118.00       |
| O3W—Rb1—O2W—Rb3                                   | -128.58 (6) | O14C <sup>iv</sup> —Rb4—O13A—C13A                 | 130.7 (3)    |
| O4W—Rb1—O2W—Rb3                                   | 105.70 (7)  | O5W <sup>v</sup> —Rb4—O13A—C13A                   | -116.9 (3)   |
| O13A—Rb1—O2W—Rb3                                  | 160.21 (7)  | O14A <sup>iv</sup> —Rb4—O13A—Rb1                  | -31.47 (18)  |
| O14D <sup>i</sup> —Rb1—O2W—Rb3                    | 40.31 (6)   | O13C <sup>v</sup> —Rb4—O13A—Rb1                   | 114.66 (7)   |
| O14B <sup>ii</sup> —Rb1—O2W—Rb3                   | -51.33 (6)  | O14A <sup>iii</sup> —Rb4 <sup>vi</sup> —O5W—Rb2   | -38.40 (6)   |
| O1W <sup>iv</sup> —Rb1 <sup>iv</sup> —O14D—C13D   | -16.4 (2)   | O13A <sup>vi</sup> —Rb4 <sup>vi</sup> —O5W—Rb2    | 161.44 (6)   |
| O2W <sup>iv</sup> —Rb1 <sup>iv</sup> —O14D—C13D   | 168.7 (2)   | O5W <sup>ii</sup> —Rb4 <sup>i</sup> —O14A—C13A    | -166.8 (3)   |
| O4W <sup>iv</sup> —Rb1 <sup>iv</sup> —O14D—C13D   | 39.9 (2)    | O13C <sup>ii</sup> —Rb4 <sup>i</sup> —O14A—C13A   | 101.7 (3)    |
| O13A <sup>iv</sup> —Rb1 <sup>iv</sup> —O14D—C13D  | 101.0 (2)   | O14C <sup>iv</sup> —Rb4—O13A—Rb1                  | -92.46 (7)   |
| O14B <sup>v</sup> —Rb1 <sup>iv</sup> —O14D—C13D   | -124.3 (2)  | O5W—Rb4 <sup>vi</sup> —O13C—C13C                  | -52.3 (2)    |
| O1W—Rb1—O3W—Rb2 <sup>ii</sup>                     | 47.34 (7)   | O13A <sup>vi</sup> —Rb4 <sup>vi</sup> —O13C—C13C  | -150.1 (2)   |
| O2W—Rb1—O3W—Rb2 <sup>ii</sup>                     | -140.82 (7) | O13A <sup>i</sup> —Rb4 <sup>i</sup> —O14A—C13A    | -110.6 (3)   |
| O4W—Rb1—O3W—Rb2 <sup>ii</sup>                     | -6.26 (8)   | O14A <sup>iii</sup> —Rb4 <sup>vi</sup> —O13C—C13C | 16.8 (2)     |
| O13A—Rb1—O3W—Rb2 <sup>ii</sup>                    | -70.21 (7)  | O21A <sup>i</sup> —Rb4 <sup>i</sup> —O14A—C13A    | 21.6 (3)     |
| O14B <sup>ii</sup> —Rb1—O3W—Rb2 <sup>ii</sup>     | 155.16 (7)  | O14C—Rb4 <sup>i</sup> —O14A—Rb2 <sup>ii</sup>     | 155.45 (8)   |
| O14B <sup>ii</sup> —Rb1—O13A—Rb4                  | 9.85 (10)   | O13C <sup>ii</sup> —Rb4 <sup>i</sup> —O14C—Rb2    | -129.00 (13) |
| O1W—Rb1—O13A—C13A                                 | -7.4 (3)    | O21A—Rb4—O13A—Rb1                                 | -165.71 (8)  |
| O2W—Rb1—O13A—C13A                                 | -174.2 (3)  | O14A—Rb4 <sup>i</sup> —O14C—Rb2                   | -39.22 (9)   |
| O3W—Rb1—O13A—C13A                                 | 73.5 (2)    | O13C—Rb4 <sup>vi</sup> —O5W—Rb2                   | 54.16 (7)    |
| O4W—Rb1—O13A—C13A                                 | -40.7 (2)   | O14C—Rb4 <sup>i</sup> —O14A—C13A                  | -50.4 (3)    |
| O1W—Rb1—O4W—Rb2                                   | 140.01 (10) | Rb4                                               | 128.4 (3)    |
| O2W—Rb1—O4W—Rb2                                   | -19.11 (11) | Rb1-013A-C13A-014A                                | 4.7 (5)      |
| O3W—Rb1—O4W—Rb2                                   | -144.98 (7) | Rb1—O13A—C13A—C12A                                | -175.1 (2)   |
| O13A—Rb1—O4W—Rb2                                  | -76.35 (8)  | Rb4—O13A—C13A—C12A                                | -51.5 (4)    |
| O14D <sup>i</sup> —Rb1—O4W—Rb2                    | 45.77 (7)   | Rb3—O13B—C13B—O14B                                | -81.9 (3)    |
| O14B <sup>ii</sup> —Rb1—O4W—Rb2                   | 91.20 (17)  | Rb3—O13B—C13B—C12B                                | 96.5 (3)     |
| O1W—Rb1—O13A—Rb4                                  | -143.14 (6) | Rb4 <sup>vi</sup> —O13C—C13C—O14C                 | 88.2 (4)     |
| O2W—Rb1—O13A—Rb4                                  | 50.00 (6)   | Rb4 <sup>vi</sup> —O13C—C13C—C12C                 | -90.9 (3)    |
| O14D <sup>vi</sup> —Rb1 <sup>iii</sup> —O14B—C13B | 96.4 (2)    | Rb2 <sup>iv</sup> —O13D—C13D—C12D                 | -161.1 (2)   |
| O1W <sup>iii</sup> —Rb1 <sup>iii</sup> —O14B—C13B | 11.1 (2)    | Rb3-013D-C13D-014D                                | 143.9 (3)    |
| O2W <sup>iii</sup> —Rb1 <sup>iii</sup> —O14B—C13B | 173.5 (3)   | Rb3-013D-C13D-C12D                                | -37.1 (4)    |
| O3W <sup>iii</sup> —Rb1 <sup>iii</sup> —O14B—C13B | -75.2 (2)   | Rb2 <sup>iv</sup> —O13D—C13D—O14D                 | 19.8 (5)     |
| O4W <sup>iii</sup> —Rb1 <sup>iii</sup> —O14B—C13B | 52.2 (3)    | Rb2 <sup>ii</sup> —O14A—C13A—C12A                 | 106.7 (3)    |

| O13A <sup>iii</sup> —Rb1 <sup>iii</sup> —O14B—C13B | -143.6 (2)   | Rb2 <sup>ii</sup> —O14A—C13A—O13A  | -73.1 (4)  |
|----------------------------------------------------|--------------|------------------------------------|------------|
| O14B <sup>ii</sup> —Rb1—O13A—C13A                  | 145.6 (2)    | Rb4 <sup>i</sup> —O14A—C13A—O13A   | 138.2 (3)  |
| O14D <sup>i</sup> —Rb1—O13A—Rb4                    | 118.02 (6)   | Rb4 <sup>i</sup> —O14A—C13A—C12A   | -41.9 (4)  |
| O14D <sup>i</sup> —Rb1—O13A—C13A                   | -106.2 (2)   | Rb3 <sup>iii</sup> —O14B—C13B—C12B | 67.8 (3)   |
| O3W—Rb1—O13A—Rb4                                   | -62.29 (6)   | Rb3 <sup>iii</sup> —O14B—C13B—O13B | -113.8 (3) |
| O4W—Rb1—O13A—Rb4                                   | -176.51 (7)  | Rb1 <sup>iii</sup> —O14B—C13B—O13B | 139.1 (3)  |
| O6W—Rb2—O14C—C13C                                  | -76.6 (2)    | Rb1 <sup>iii</sup> —O14B—C13B—C12B | -39.3 (4)  |
| O3W <sup>iii</sup> —Rb2—O5W—Rb4 <sup>vi</sup>      | 110.48 (7)   | Rb4 <sup>i</sup> —O14C—C13C—O13C   | 101.8 (4)  |
| O14A <sup>iii</sup> —Rb2—O5W—Rb4 <sup>vi</sup>     | 37.95 (6)    | Rb2—O14C—C13C—O13C                 | -103.0 (3) |
| O6W—Rb2—O4W—Rb1                                    | 42.82 (7)    | Rb2—O14C—C13C—C12C                 | 76.2 (3)   |
| O3W <sup>iii</sup> —Rb2—O14C—C13C                  | -80.6 (2)    | Rb4 <sup>i</sup> —O14C—C13C—C12C   | -79.1 (3)  |
| O5W—Rb2—O4W—Rb1                                    | -138.91 (7)  | Rb1 <sup>iv</sup> —O14D—C13D—O13D  | -91.9 (4)  |
| O5W—Rb2—O14C—C13C                                  | 83.5 (2)     | Rb1 <sup>iv</sup> —O14D—C13D—C12D  | 89.0 (3)   |
| O14A—Rb2 <sup>ii</sup> —O3W—Rb1                    | 44.45 (7)    | Rb3 <sup>iv</sup> —O14D—C13D—O13D  | 139.2 (3)  |
| O4W <sup>ii</sup> —Rb2 <sup>ii</sup> —O3W—Rb1      | -146.17 (7)  | Rb3 <sup>iv</sup> —O14D—C13D—C12D  | -39.9 (5)  |
| O5W <sup>ii</sup> —Rb2 <sup>ii</sup> —O3W—Rb1      | -22.17 (10)  | Rb3—O21D—N2D—O22D                  | 85.3 (5)   |
| O6W <sup>ii</sup> —Rb2 <sup>ii</sup> —O3W—Rb1      | 133.79 (9)   | Rb3—O21D—N2D—C2D                   | -95.8 (5)  |
| O14C <sup>ii</sup> —Rb2 <sup>ii</sup> —O3W—Rb1     | 138.82 (9)   | O21A—N2A—C2A—C1A                   | -15.1 (5)  |
| O14C <sup>iv</sup> —Rb2 <sup>iv</sup> —O13D—Rb3    | -32.16 (10)  | O21A—N2A—C2A—C3A                   | 169.4 (3)  |
| O4W—Rb2—O14C—C13C                                  | -161.9 (2)   | O22A—N2A—C2A—C1A                   | 161.9 (4)  |
| O14C <sup>ii</sup> —Rb2 <sup>ii</sup> —O14A—C13A   | -114.0 (3)   | O22A—N2A—C2A—C3A                   | -13.5 (5)  |
| O3W—Rb2 <sup>ii</sup> —O14A—Rb4 <sup>i</sup>       | -167.99 (7)  | O21B—N2B—C2B—C1B                   | 36.3 (5)   |
| O6W <sup>iv</sup> —Rb2 <sup>iv</sup> —O13D—C13D    | -14.8 (3)    | O21B—N2B—C2B—C3B                   | -141.2 (3) |
| O14C <sup>iv</sup> —Rb2 <sup>iv</sup> —O13D—C13D   | 106.9 (2)    | O22B—N2B—C2B—C1B                   | -146.7 (3) |
| O14C—Rb2—O5W—Rb4 <sup>vi</sup>                     | -59.66 (6)   | O22B—N2B—C2B—C3B                   | 35.8 (5)   |
| O5W <sup>iv</sup> —Rb2 <sup>iv</sup> —O13D—Rb3     | 44.39 (6)    | O21C—N2C—C2C—C1C                   | -32.8 (5)  |
| O14C—Rb2—O4W—Rb1                                   | 139.84 (8)   | O21C—N2C—C2C—C3C                   | 144.2 (4)  |
| O3W <sup>iii</sup> —Rb2—O4W—Rb1                    | -8.54 (8)    | 022C—N2C—C2C—C1C                   | 150.4 (3)  |
| O13D <sup>i</sup> —Rb2—O4W—Rb1                     | -70.94 (7)   | 022C—N2C—C2C—C3C                   | -32.5 (5)  |
| O4W—Rb2—O5W—Rb4 <sup>vi</sup>                      | -132.86 (6)  | O21D—N2D—C2D—C1D                   | 34.7 (5)   |
| O6W—Rb2—O5W—Rb4 <sup>vi</sup>                      | 42.1 (2)     | O21D—N2D—C2D—C3D                   | -145.6 (4) |
| O13D <sup>i</sup> —Rb2—O5W—Rb4 <sup>vi</sup>       | 164.94 (7)   | O22D—N2D—C2D—C1D                   | -146.3 (3) |
| O3W <sup>iii</sup> —Rb2—O14C—Rb4 <sup>i</sup>      | 77.21 (15)   | O22D—N2D—C2D—C3D                   | 33.4 (5)   |
| O6W <sup>iv</sup> —Rb2 <sup>iv</sup> —O13D—Rb3     | -153.83 (5)  | C6A—C1A—C2A—N2A                    | -172.4 (3) |
| O3W—Rb2 <sup>ii</sup> —O14A—C13A                   | 34.2 (3)     | C6A—C1A—C2A—C3A                    | 2.8 (5)    |
| O4W <sup>iv</sup> —Rb2 <sup>iv</sup> —O13D—C13D    | 63.5 (2)     | C11A—C1A—C2A—N2A                   | 10.3 (5)   |
| O5W <sup>iv</sup> —Rb2 <sup>iv</sup> —O13D—C13D    | -176.6 (2)   | C11A—C1A—C2A—C3A                   | -174.6 (3) |
| O5W—Rb2—O14C—Rb4 <sup>i</sup>                      | -118.77 (10) | C2A—C1A—C6A—C5A                    | -2.3 (5)   |
| O6W—Rb2—O14C—Rb4 <sup>i</sup>                      | 81.21 (9)    | C11A—C1A—C6A—C5A                   | 175.3 (3)  |
| O13D <sup>i</sup> —Rb2—O14C—C13C                   | 156.45 (19)  | C2A-C1A-C11A-C12A                  | -146.6 (4) |
| O14A <sup>iii</sup> —Rb2—O14C—Rb4 <sup>i</sup>     | 168.21 (9)   | C6A—C1A—C11A—C12A                  | 36.1 (5)   |

| O14A <sup>iii</sup> —Rb2—O14C—C13C                 | 10.5 (2)    | C6B—C1B—C2B—N2B   | -175.6 (3) |
|----------------------------------------------------|-------------|-------------------|------------|
| O13D <sup>i</sup> —Rb2—O14C—Rb4 <sup>i</sup>       | -45.79 (13) | C6B—C1B—C2B—C3B   | 1.7 (5)    |
| O4W—Rb2—O14C—Rb4 <sup>i</sup>                      | -4.11 (9)   | C11B—C1B—C2B—N2B  | 9.5 (5)    |
| O6W <sup>ii</sup> —Rb2 <sup>ii</sup> —O14A—C13A    | -18.3 (3)   | C11B—C1B—C2B—C3B  | -173.3 (3) |
| O4W <sup>iv</sup> —Rb2 <sup>iv</sup> —O13D—Rb3     | -75.51 (6)  | C2B—C1B—C6B—C5B   | 0.5 (4)    |
| O5W <sup>ii</sup> —Rb2 <sup>ii</sup> —O14A—C13A    | 160.2 (3)   | C11B—C1B—C6B—C5B  | 175.5 (3)  |
| O14D <sup>i</sup> —Rb3—O13D—Rb2 <sup>iv</sup>      | -20.70 (19) | C2B—C1B—C11B—C12B | -157.3 (3) |
| O21D—Rb3—O13D—Rb2 <sup>iv</sup>                    | 173.56 (7)  | C6B—C1B—C11B—C12B | 28.0 (5)   |
| O14D <sup>i</sup> —Rb3—O2W—Rb1                     | -40.57 (6)  | C6C—C1C—C2C—N2C   | 177.2 (3)  |
| O14B <sup>ii</sup> —Rb3—O2W—Rb1                    | 50.90 (6)   | C6C—C1C—C2C—C3C   | 0.4 (5)    |
| O2W—Rb3—O13D—Rb2 <sup>iv</sup>                     | 25.92 (6)   | C11C—C1C—C2C—N2C  | -5.8 (5)   |
| O13B—Rb3—O2W—Rb1                                   | -129.95 (8) | C11C—C1C—C2C—C3C  | 177.3 (3)  |
| O13B—Rb3—O13D—Rb2 <sup>iv</sup>                    | -112.55 (7) | C2C-C1C-C6C-C5C   | -1.8 (4)   |
| O14B <sup>ii</sup> —Rb3—O13B—C13B                  | -128.4 (2)  | C11C—C1C—C6C—C5C  | -178.9 (3) |
| O14B <sup>ii</sup> —Rb3—O13D—C13D                  | -47.4 (3)   | C2C-C1C-C11C-C12C | 147.8 (4)  |
| O14D <sup>vi</sup> —Rb3 <sup>iii</sup> —O14B—C13B  | -101.5 (2)  | C6C—C1C—C11C—C12C | -35.4 (5)  |
| O14B <sup>ii</sup> —Rb3—O13D—Rb2 <sup>iv</sup>     | 89.54 (7)   | C6D—C1D—C2D—N2D   | 177.8 (3)  |
| O13B <sup>iv</sup> —Rb3 <sup>iv</sup> —O14D—C13D   | -46.4 (3)   | C6D-C1D-C2D-C3D   | -1.9 (5)   |
| O13D <sup>iv</sup> —Rb3 <sup>iv</sup> —O14D—C13D   | -134.0 (3)  | C11D—C1D—C2D—N2D  | 2.0 (5)    |
| O21D <sup>iv</sup> —Rb3 <sup>iv</sup> —O14D—C13D   | 31.5 (3)    | C11D—C1D—C2D—C3D  | -177.7 (3) |
| O14B <sup>v</sup> —Rb3 <sup>iv</sup> —O14D—C13D    | 112.3 (3)   | C2D-C1D-C6D-C5D   | 2.6 (5)    |
| O21D—Rb3—O2W—Rb1                                   | 50.06 (13)  | C11D-C1D-C6D-C5D  | 178.7 (3)  |
| O13D—Rb3—O2W—Rb1                                   | 155.77 (6)  | C2D-C1D-C11D-C12D | -150.3 (4) |
| O2W <sup>iii</sup> —Rb3 <sup>iii</sup> —O14B—C13B  | -176.9 (2)  | C6D-C1D-C11D-C12D | 34.1 (5)   |
| O2W—Rb3—O13B—C13B                                  | 53.7 (2)    | N2A—C2A—C3A—C4A   | 174.2 (3)  |
| O13D—Rb3—O13B—C13B                                 | 132.4 (2)   | C1A—C2A—C3A—C4A   | -1.2 (5)   |
| O21D—Rb3—O13B—C13B                                 | -126.3 (2)  | N2B—C2B—C3B—C4B   | 175.4 (3)  |
| O13D <sup>iii</sup> —Rb3 <sup>iii</sup> —O14B—C13B | 99.0 (2)    | C1B—C2B—C3B—C4B   | -2.1 (5)   |
| O14D <sup>i</sup> —Rb3—O13B—C13B                   | -25.3 (2)   | N2C—C2C—C3C—C4C   | -175.8 (3) |
| O2W—Rb3—O21D—N2D                                   | 170.1 (4)   | C1C—C2C—C3C—C4C   | 1.2 (5)    |
| O13B—Rb3—O21D—N2D                                  | -9.9 (4)    | N2D—C2D—C3D—C4D   | -179.4 (3) |
| O2W <sup>iv</sup> —Rb3 <sup>iv</sup> —O14D—C13D    | 177.1 (3)   | C1D—C2D—C3D—C4D   | 0.3 (5)    |
| O13B—Rb3—O13D—C13D                                 | 110.5 (3)   | C2A—C3A—C4A—C5A   | -1.1 (5)   |
| O21D—Rb3—O13D—C13D                                 | 36.6 (3)    | C2B—C3B—C4B—C5B   | 0.3 (5)    |
| O14D <sup>i</sup> —Rb3—O13D—C13D                   | -157.7 (2)  | C2C—C3C—C4C—C5C   | -1.4 (5)   |
| O14B <sup>ii</sup> —Rb3—O21D—N2D                   | 169.3 (4)   | C2D-C3D-C4D-C5D   | 0.7 (5)    |
| O14D <sup>i</sup> —Rb3—O21D—N2D                    | -108.1 (4)  | C3A—C4A—C5A—C6A   | 1.7 (5)    |
| O21D <sup>iii</sup> —Rb3 <sup>iii</sup> —O14B—C13B | 2.6 (2)     | C3B—C4B—C5B—C6B   | 1.7 (5)    |
| O13D—Rb3—O21D—N2D                                  | 66.5 (4)    | C3C—C4C—C5C—C6C   | 0.1 (5)    |
| O13B <sup>iii</sup> —Rb3 <sup>iii</sup> —O14B—C13B | 4.6 (3)     | C3D-C4D-C5D-C6D   | 0.0 (5)    |
| O2W—Rb3—O13D—C13D                                  | -111.0 (3)  | C4A—C5A—C6A—C1A   | 0.1 (5)    |
| O13A <sup>i</sup> —Rb4 <sup>i</sup> —O14C—C13C     | -88.2 (3)   | C4B—C5B—C6B—C1B   | -2.1 (5)   |
| O14A—Rb4 <sup>i</sup> —O14C—C13C                   | 112.6 (3)   | C4C—C5C—C6C—C1C   | 1.6 (5)    |

| O21A—Rb4—O13A—C13A                                                                                                                                                                                                                                                 | 57.5 (3)     | C4DC5DC6DC1D        | -1.8 (5)   |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------|------------|--|
| O14C <sup>iii</sup> —Rb4 <sup>vi</sup> —O5W—Rb2                                                                                                                                                                                                                    | -114.45 (7)  | C1A—C11A—C12A—C13A  | -175.4 (3) |  |
| O13A <sup>i</sup> —Rb4 <sup>i</sup> —O14C—Rb2                                                                                                                                                                                                                      | 119.95 (10)  | C1B—C11B—C12B—C13B  | -177.7 (3) |  |
| O21A <sup>i</sup> —Rb4 <sup>i</sup> —O14C—Rb2                                                                                                                                                                                                                      | -146.10 (10) | C1C—C11C—C12C—C13C  | 175.5 (3)  |  |
| O5W <sup>ii</sup> —Rb4 <sup>i</sup> —O14C—Rb2                                                                                                                                                                                                                      | 26.06 (11)   | C1D-C11D-C12D-C13D  | -174.4 (3) |  |
| O21A <sup>i</sup> —Rb4 <sup>i</sup> —O14C—C13C                                                                                                                                                                                                                     | 5.7 (2)      | C11A—C12A—C13A—O13A | -8.7 (5)   |  |
| O5W <sup>ii</sup> —Rb4 <sup>i</sup> —O14C—C13C                                                                                                                                                                                                                     | 177.9 (2)    | C11A—C12A—C13A—O14A | 171.5 (3)  |  |
| O5W <sup>v</sup> —Rb4—O13A—Rb1                                                                                                                                                                                                                                     | 19.90 (6)    | C11B—C12B—C13B—O13B | 7.9 (5)    |  |
| O13C <sup>v</sup> —Rb4—O13A—C13A                                                                                                                                                                                                                                   | -22.2 (3)    | C11B—C12B—C13B—O14B | -173.6 (3) |  |
| O21A <sup>vi</sup> —Rb4 <sup>vi</sup> —O13C—C13C                                                                                                                                                                                                                   | 121.5 (2)    | C11C—C12C—C13C—O13C | -1.0 (5)   |  |
| O13C <sup>ii</sup> —Rb4 <sup>i</sup> —O14C—C13C                                                                                                                                                                                                                    | 22.8 (3)     | C11C—C12C—C13C—O14C | 179.8 (3)  |  |
| O14C <sup>iii</sup> —Rb4 <sup>vi</sup> —O13C—C13C                                                                                                                                                                                                                  | 104.8 (3)    | C11D-C12D-C13D-O13D | -16.1 (5)  |  |
| O14A <sup>iv</sup> —Rb4—O13A—C13A                                                                                                                                                                                                                                  | -168.3 (2)   | C11D-C12D-C13D-O14D | 163.1 (3)  |  |
| Symmetry codes: (i) <i>x</i> , <i>y</i> -1, <i>z</i> ; (ii) <i>x</i> +1, <i>y</i> , <i>z</i> ; (iii) <i>x</i> -1, <i>y</i> , <i>z</i> ; (iv) <i>x</i> , <i>y</i> +1, <i>z</i> ; (v) <i>x</i> +1, <i>y</i> +1, <i>z</i> ; (vi) <i>x</i> -1, <i>y</i> -1, <i>z</i> . |              |                     |            |  |

Hydrogen-bond geometry (Å, °)

| D—H···A                                                                                                                                                                                                                                                                                                                         | <i>D</i> —Н | H···A | $D \cdots A$ | D—H··· $A$ |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-------|--------------|------------|--|
| O1W—H11W···O13B <sup>vii</sup>                                                                                                                                                                                                                                                                                                  | 0.87        | 1.94  | 2.795 (3)    | 167        |  |
| O1W—H12W…O13D <sup>vii</sup>                                                                                                                                                                                                                                                                                                    | 0.86        | 1.91  | 2.753 (3)    | 167        |  |
| O2W—H21W···O4W <sup>iv</sup>                                                                                                                                                                                                                                                                                                    | 0.82        | 1.97  | 2.788 (3)    | 170        |  |
| O2W—H22W…O14C <sup>iv</sup>                                                                                                                                                                                                                                                                                                     | 0.85        | 1.93  | 2.716 (3)    | 153        |  |
| O3W—H31W…O14D <sup>vii</sup>                                                                                                                                                                                                                                                                                                    | 0.91        | 1.80  | 2.695 (3)    | 169        |  |
| O3W—H32W…O6W <sup>ii</sup>                                                                                                                                                                                                                                                                                                      | 0.88        | 1.86  | 2.728 (3)    | 170        |  |
| O4W—H41W···O1W                                                                                                                                                                                                                                                                                                                  | 0.84        | 2.02  | 2.852 (3)    | 178        |  |
| O4W—H42W…O14A                                                                                                                                                                                                                                                                                                                   | 0.84        | 1.91  | 2.758 (3)    | 180        |  |
| O5W—H51W···O3W <sup>vi</sup>                                                                                                                                                                                                                                                                                                    | 0.94        | 1.82  | 2.734 (3)    | 163        |  |
| O5W—H52W…O14B <sup>i</sup>                                                                                                                                                                                                                                                                                                      | 0.83        | 2.07  | 2.893 (3)    | 170        |  |
| O6W—H61W···O13C <sup>iv</sup>                                                                                                                                                                                                                                                                                                   | 0.86        | 1.88  | 2.742 (3)    | 179        |  |
| O6W—H62W…O13A                                                                                                                                                                                                                                                                                                                   | 0.85        | 2.00  | 2.834 (3)    | 165        |  |
| C4B—H4B····O21B <sup>i</sup>                                                                                                                                                                                                                                                                                                    | 0.95        | 2.56  | 3.290 (4)    | 134        |  |
| C4C—H4C····O21C <sup>iv</sup>                                                                                                                                                                                                                                                                                                   | 0.95        | 2.58  | 3.290 (4)    | 132        |  |
| C5A—H5A···O22C <sup>viii</sup>                                                                                                                                                                                                                                                                                                  | 0.95        | 2.57  | 3.238 (5)    | 128        |  |
| C5D—H5D···O22B <sup>ix</sup>                                                                                                                                                                                                                                                                                                    | 0.95        | 2.55  | 3.252 (5)    | 131        |  |
| C6D—H6D····O22D <sup>iv</sup>                                                                                                                                                                                                                                                                                                   | 0.95        | 2.60  | 3.297 (4)    | 131        |  |
| C11A—H11A···O13A                                                                                                                                                                                                                                                                                                                | 0.95        | 2.51  | 2.826 (4)    | 100        |  |
| C11A—H11A···O21A                                                                                                                                                                                                                                                                                                                | 0.95        | 2.29  | 2.741 (4)    | 108        |  |
| C11B—H11B…O21B                                                                                                                                                                                                                                                                                                                  | 0.95        | 2.47  | 2.819 (4)    | 102        |  |
| C11D—H11D····O21D                                                                                                                                                                                                                                                                                                               | 0.95        | 2.46  | 2.801 (4)    | 101        |  |
| Symmetry codes: (vii) <i>x</i> +1, <i>y</i> -1, <i>z</i> ; (iv) <i>x</i> , <i>y</i> +1, <i>z</i> ; (ii) <i>x</i> +1, <i>y</i> , <i>z</i> ; (vi) <i>x</i> -1, <i>y</i> -1, <i>z</i> ; (i) <i>x</i> , <i>y</i> -1, <i>z</i> ; (viii) - <i>x</i> +1, - <i>y</i> +1, - <i>z</i> ; (ix) - <i>x</i> +1, - <i>y</i> +3, - <i>z</i> +1. |             |       |              |            |  |









Fig. 3

