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ABSTRACT: Heterogeneous fluid interfaces often include two-
dimensional solid domains that mechanically respond to changes in
interfacial curvature. While this response is well-characterized for
rigid inclusions, the influence of solid-like elasticity remains
essentially unexplored. Here, we show that an initially flat, elastic
inclusion embedded in a curved, fluid interface will exhibit
qualitatively distinct behavior depending on its size and stiffness.
Small, stiff inclusions are limited by bending and experience forces
directed up gradients of Gaussian curvature, in keeping with prior
findings for rigid discoids. By contrast, larger and softer inclusions
are driven down gradients of squared Gaussian curvature in order
to minimize the elastic penalty for stretching. Our calculations of
the force on a solid inclusion are shown to collapse onto a universal curve spanning the bending- and stretching-limited regimes.
From these results, we make predictions for the curvature-directed motion of deformable solids embedded within a model interface
of variable Gaussian curvature.

■ INTRODUCTION

Two-dimensional (2D) solid domains naturally emerge at fluid
interfaces in biological systems and multiphase materials.
Examples include solid−fluid coexisting phases in lipid
monolayers1−5 and bilayers,6−10 lipid rafts,11−14 membrane-
bound protein clusters,15−18 and interfacial colloidal crys-
tals.19−21 Solid inclusions differ from 2D fluids in their
response to changes in interfacial curvature. Whereas fluid
molecules can freely rearrange within an interface to adapt to
its curvature, molecules in a 2D solid remember the positions
of their neighbors and can only change their Gaussian
curvature by stretching.22 Elastic strains due to Gaussian
curvature can cause confined thin sheets to buckle23 and alter
the growth pathway of solid crystals in vesicles16,24 and
colloidosomes.20,21

The present work addresses the behavior of solid inclusions
in interfaces with an inhomogeneous Gaussian curvature, as
observed in the tubular membranes of cellular organelles,25,26

the branching network of the lung alveoli,27 and the tortuous,
intercalating phases of particle-stabilized bijels.28,29 Prior work
in the colloidal physics literature30−35 has shown that rigid
particles trapped at an interface tend to migrate down
gradients of Gaussian curvature, due to contact-line irregu-
larities that distort the surrounding interface. We recently
showed36 that planar particlesthose with pinned, but
nonundulated contact linesmigrate up such gradients,
toward regions of high Gaussian curvature. However, it is
not at all clear which behavior is expected for deformable solid
inclusions that are bent or stretched by the embedding
interface. This can occur if the inclusions are appreciably

softe.g., self-assembled domains held together by weak
bonds37or thine.g., covalently bonded, single-layer
materials, such as graphene.38 These examples raise two
basic questions: (i) Under what conditions will solid inclusions
deform under the action of interfacial tension? (ii) How does
their deformability impact the forces exerted on them by
interfacial curvature?
To answer these questions, we analyze the force, F, exerted

on a single, circular inclusion embedded within a gradient of
Gaussian curvature, K. The inclusion is modeled as an elastic
plate, following the well-established theory of Föppl and von
Kaŕmań.22 Our analysis reveals the significant consequences of
solid-like elasticity on curvature-mediated forces. For inclu-
sions that are not easily bent, these forces are directed along
the curvature gradient, F ∝ ∇K, in agreement with our
previous findings36 for rigid, planar particles. However,
inclusions that are easy to bend but comparably difficult to
stretch exhibit a qualitatively different behavior, F ∝ −∇K2,
with the force directed against the gradient of the squared
Gaussian curvature. We show that the transition between these
two regimes can be achieved by increasing the lateral
dimension of the inclusion. Thus, we identify an important
distinction: whereas small, stiff inclusions are driven toward
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interfacial regions of high Gaussian curvature, larger and softer
inclusions are attracted to regions of zero Gaussian curvature
(Figure 1). This result is reminiscent of the energetic penalty

for wrapping a thin, elastic disk around a sphere (K ≠ 0) as
compared to a cylinder (K = 0). Our findings have potential
implications for not only biological systems but also a wide
range of elastocapillary phenomena, such as kirigami and
origami,39 bundling of wet fibers,40 and capillary wrinkling.41

■ METHODOLOGY
In the following theoretical development, we consider a curved
fluid interface under tension, σ, with a static pressure drop, p,
applied across the interface. A local patch of the interface is
described by its displacement, wf(r), above or below a point r
in the 2D plane. For small displacements, the Young−Laplace
law states that

σ∇ = −w p2
f (1)

in the f luid region outside any interface-embedded, solid
inclusions. Within any given solid region, elastic stresses must
be taken into account. According to the weakly nonlinear
theory of elastic plates,22,42 the solid displacement, ws(r), and
Airy stress function, χ(r), are governed by the Föppl−von
Kaŕmań equations:

χ∇ − =B w w p( , )4
s

4
s (2a)

χ∇ + =−S w w
1
2

( , ) 01 4 4
s s (2b)

where S is the stretching modulus, B is the bending modulus,
and 4(ϕ,ψ) ≡ (∇2ϕ)(∇2ψ) − (∇∇ϕ):(∇∇ψ). In classical
plate theory

=S Eh (3a)

ν
=

−
B

Eh
12(1 )

3

2 (3b)

where E is Young’s modulus, ν is the Poisson ratio, and h is the
plate thickness. Thus, the characteristic thickness of a solid
inclusion scales as ∼h B S/ . The boundary conditions
associated with eqs 1 and 2 enforce continuity of w, forces,

and torques across the border Γ of any given inclusion (for the
detailed equations, see the Supporting Information).
If the inclusions were absent, then the interface would adopt

its native shape, w0(r), satisfying eq 1. Under a static pressure,
the mean curvature of the interface, H, is spatially uniform,
whereas the Gaussian curvature, K(r), can vary with position:

σ= ∇ = −H w p2 /2
0 (4a)

=K w w2 ( , )4
0 0 (4b)

The sign of K dictates the “character” of the interface: regions
with K > 0 have two nonzero principal curvatures of like sign
(e.g., spheres and paraboloids); K < 0 implies oppositely
signed curvatures (e.g., catenoids and saddles); finally, K = 0
indicates the vanishing of at least one principal curvature (e.g.,
cylinders and planes). For interfaces with constant mean
curvature (as required by eq 1), the Gaussian curvature is
maximized when the two principal curvatures are equal, Kmax ≡
H2.
Embedding a solid inclusion into the interface produces a

quadrupolar disturbance, δwf(r) ∼ 1/r2, giving a total
displacement, wf = w0 + δwf, in the fluid region. The
disturbance couples to the background curvature to produce
a net force on the inclusion, given by36,43

∮σ δ= − Σ ·
Γ

F sw w( , ) d2
0 f (5)

where Γ is the boundary enclosing the inclusion (evaluated in
the fluid region), Σ2(ϕ,ψ) ≡ ∇ϕ∇ψ + ∇ψ∇ϕ − (∇ϕ·∇ψ)I,
and I is the 2D unit tensor. We have numerically solved eqs 1
and 2 for the disturbance due to a circular inclusion embedded
in a gradient of Gaussian curvature using the finite difference
method (details are given in the Supporting Information) and
used eq 5 to calculate the resulting force on the inclusion. Two
limiting cases, which are particularly illustrative, arise when
either the bending stiffness, B, or the stretching stiffness, S,
limits the deformation of the inclusion. These are discussed
separately, below.

■ RESULTS AND DISCUSSION
Bending-Limited Regime. Stiff inclusions in weakly

curved interfaces admit deflections much smaller than their
characteristic thickness (ws ≪ h). In this limit, the nonlinear
stretching term in eq 2b is relatively small and may be
neglected. Integrating eq 2b with the boundary conditions ∂χ/
∂r = 2χ/r = σr on Γ gives χ σ= r1

2
2 in the solid region.

Equation 2a then simplifies to the classical plate equation:

σ σ∇ − ∇ = = −B w w p H24
s

2
s (6)

which is linear in the displacement field.
Equations 1 and 6 may be solved analytically for a circular

inclusion of radius R via modified Bessel functions (details of
this analysis are given in the Supporting Information). The
resulting displacement disturbance, δw = w − w0, and
displacement gradient, ∇w, are sketched in Figure 2 for
inclusion radii smaller or larger than the characteristic
“bending radius”:

ν
σ

= −
R

B2(1 )
B (7)

Figure 1. Schematic of 2D solid inclusions embedded within a curved,
fluid interface. The interface is shaped into a “teardrop” by applying
an internal pressure and a local, transverse force. Curvature-mediated
forces drive small, stiff inclusions (red, bending-limited) away from
the “tip” toward the “globe”, where the Gaussian curvature is positive.
By contrast, large, soft inclusions (blue, stretching-limited) are driven
toward the inflection line where the Gaussian curvature vanishes.
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This length scale is closely related to the “bendocapillary
length” defined by Style et al.44 A thin disk of a stiff plastic
pinned to an oil−water interface (h = 1 μm, E = 1 GPa, ν =
0.5, σ = 50 mN/m) has RB ≈ 50 μm according to eqs 3b and 7.
Inclusions smaller than this radius (R ≪ RB) are effectively
rigid and resist changing their curvature. Such inclusions bend
the displacement gradient lines into an orientation normal to
their boundaries, producing the maximum deflection of the
interface (Figure 2a). By contrast, inclusions large enough to
be bent by the interface (R ≫ RB) conform to the host
interface shape and admit a much weaker, almost imperceiv-
able disturbance (Figure 2b).
Substituting the displacement disturbance, δwf = wf − w0,

into eq 5 gives the force on the inclusion, F. A closed-form,
though somewhat unwieldy, expression for F is derived in the
Supporting Information (eqs S.9 and S.13). Here, we only
analyze its two limits for small and large R. For small, stiff
inclusions, we recover our previous result for rigid, planar
particles,36 which we denote by F0:

πσ= ∇ ≡ ≪F FR K R R
1
2

,4
0 B (8a)

However, large, soft inclusions that can bend out of plane
experience much weaker forces that are attenuated by a factor
of RB

2/R2 (cf. eq 7):

π ν πσ= − ∇ = ∇ ≫F BR K R R K R R(1 )
1
2

,B
2 2 2

B (8b)

Notably, both limits 8 predict that the inclusion is driven up
the curvature gradient, F ∝∇K. The maximum possible value
of K is Kmax = H2, at which point the interface is isotropic (e.g.,
spheres and planes). In the Supporting Information (cf. eq
S.13), it is shown that the force is proportional to the negative
gradient of H2 − K, that is, the squared deviatoric curvature.
For tense interfaces under a static pressure, eq 1 stipulates that
the mean curvature is uniform and, therefore, only the
Gaussian curvature varies with position; hence, ∇H = 0 and
−∇(H2 − K) = ∇K, recovering eqs 8.
Stretching-Limited Regime. In addition to bending,

inclusions may bend significantly enough that stretching can
no longer be ignored. For sufficiently large displacements (ws
≫ h), the nonlinear stretching stresses in eqs 2 dominate over

the bending stresses. Analytical progress is possible if the
displacement and stress function within the solid inclusion are
weakly perturbed from an interface-conforming base state, ws =
w0 + δws and χ σ δχ= +r1

2
2 . Under these restrictions, the

Föppl-von Kaŕmań eqs 2 simplify to a set of linear equations
for the perturbation fields, δws and δχ:

σ δ δχ∇ = −w w( , )2
s

4
0 (9a)

δχ∇ = − = −−S w w K
1
2

( , )1 4 4
0 0 (9b)

where the last term reveals that Gaussian curvature forces the
small departure from uniform and isotropic stretching.
Equations 9 are valid under two conditions: (i) bending
stresses are negligible compared to stretching stresses, and (ii)
stretching stresses contribute a small correction to the isotropic
tension exerted by the interface. Mathematically, these can be
summarized by the joint inequalities, σ ≫ SR2|K|≫ B/R2.
We have solved eqs 1 and 9 analytically for a circular

inclusion in a macroscopic gradient (details of this solution are
given in the Supporting Information). Applying eq 5 and
setting ∇H = 0 gives the force

π π= − ∇ = − ∇F SR K K SR K
1

192
1

384
6 6 2

(10)

where the additional factor of K, relative to eqs 8, arises from
the anisotropic strain incurred by stretching. Thus, stretching-
limited inclusions are driven down gradients of the squared
Gaussian curvature, F ∝ −∇K2. Since K2 is minimized when K
= 0, this implies a driving force toward developable surfaces
(e.g., cylinders and planes). Physically, this driving force
reflects the energetic cost of changing the inclusion’s intrinsic
Gaussian curvature.
Equation 10 bears obvious resemblance to the force

computed by Aharoni et al.45 using a virtual work argument
(see eq 8 in their article and the short discussion thereafter). In
their work, the authors considered an elastic, 2D disk with
intrinsic Gaussian curvature, Kdisk, embedded in a 2D surface
with dissimilar Gaussian curvature, K, assuming the bending
elasticity of the disk to be negligible. The geometric
incompatibility between the disk and the embedding surface
gives rise to residual elastic energy and a net force down
gradients in (K − Kdisk)

2. Our result for the stretching-
dominated limit (eq 10), which was derived by direct
integration of stresses along the boundary of the inclusion
(cf. eq 5), exactly agrees with the virtual work calculation of
Aharoni et al.45 for the special case of planar disks, Kdisk = 0.
In addition, eq 10 was derived by assuming that elastic

stresses to due to stretching are small in comparison to the
interfacial tension, σ ≫ SR2|K|. Numerical solutions of eqs 1
and 2 are not subject to this restriction; calculations were
performed for values of SR2|K|/σ as large as 10. For these larger
values, the scaling F ∝ − ∇K2 still holds, albeit with a
numerical prefactor that differs from eq 10. Converged
numerical solutions were not obtained for values of SR2|K|/σ
much larger than 10. It is expected, based on literature
precedent,41,46 that an elastic inclusion would exhibit a
wrinkling instability above a critical threshold of SR2|K|/σ
(e.g., for small enough tensions). In such wrinkled states,
resistance to bending can no longer be ignored. This regime,
where SR2|K|/σ ≫ 1, is beyond the scope of the present work.

Figure 2. 3D and 2D projections of the displacement disturbance, δw
(density plots), and displacement gradient, ∇w (stream plots),
surrounding (a) a small, stiff inclusion (R ≪ RB) and (b) a large, soft
inclusion (R ≫ RB) embedded in an interface with locally anisotropic
curvature. The bending radius RB is indicated by the dashed circle.
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From the intersection of eqs 8b and 10, we identify a second
crossover radius:

ν= −
| |

i
k
jjjj

y
{
zzzzR

B
S K

192(1 )
S

1/4

(11)

which depends upon the local Gaussian curvature, K(r). For an
isotropic, continuum-elastic plate, it can be readily deduced
(from eqs 3, 4, and 11) that the crossover R = RS roughly
corresponds to displacements on the order of the plate
thickness, ws ∼ h. Inclusions of size R ≫ RS resist stretching
and admit forces given by eq 10. Since eq 10 is a perturbative
approximation of the stretching-limited force, RS is only
physically meaningful if RS ≫ RB or, equivalently, if
σ ν≫ − | |BS K(1 )2 1

48
. Practically, it is useful to think of this

as a restriction on the elastic stiffness of the solid phase for the
scale separation to hold. For example, taking σ = 50 mN/m, h
= 1 μm, and |K|−1/2 = 100 μm as fixed parameters
(corresponding to a thin disk suspended at the oil−water
interface of a microdroplet), the scale separation, RS/RB ≫ 1,
breaks down above a critical Young's modulus, E ≈ 120 MPa.
Comparison between Analytical and Numerical

Results. Figure 3 compares analytical predictions for the

force, eqs 8 and 10, to numerical calculations (using the finite
difference method) for a range of values of σR2/B, SR2|K|/σ,
and ν under zero pressure, p = 0. In the plots, the magnitude of
the force, |F| ≡ F, is scaled by F0, the force on a rigid, planar
particle (cf. eq 8a). Excellent agreement between the numerics
and analytics is achieved over a wide range of parameters.
Several regimes are identified:

• For R ≪ RB, the inclusion is effectively rigid and F/F0 ∼
1 (eq 8a).

• In the intermediate regime, where RB ≪ R ≪ RS, the
inclusion is soft enough to bend out of plane but not so
soft to incur significant stretching; this gives a weaker
force F/F0 ∼ 2(1 − ν)B/σR2 (eq 8b).

• Finally, for RB ≪ RS ≪ R, the deformation of the
inclusion is large and limited by resistance to stretching;
eq 10 predicts σ∼ −F F SR K/ /0

1
96

2 in this regime.

Significant deviations from eq 10 are observed only at the
largest reported value of SR2|K|/σ = 10, which is well outside
the range of validity of the perturbative approximation. Within
the scope of this approximation, a “master curve”

≈
+ σ

ν− −

F
F

1 R
B SR K

0

2(1 )

2

1
96

4
(12)

successfully collapses all of the numerical results (Figure 3,
inset). It can be readily verified that eq 12 degenerates to eqs 8
and 10 in the appropriate limits.
Numerical results for finite pressures (p ≠ 0) are presented

in the Supporting Information (Figure S.1). Introducing a
finite pressure jump across the interface uniformly shifts the
Gaussian curvature without altering its gradient. Consequently,
pressure affects only those forces that are limited by resistance
to stretching, through the factor of K appearing in eq 10. The
bending-limited force, eq 8, depends only upon the gradient of
K and is unaffected by a change in the pressure.

Model Interface. We now turn our attention to a model
interface formed by a static pressure p and a force q applied to
a small ring of radius a centered at the origin:

σ πσ
= − − i

k
jjj

y
{
zzzw

p
r

q r
a4 2

log0
2

(13)

where it is assumed that πa2p≪ q. The surface described by eq
13 approximates the shape of a teardrop (see Figure 1), with
the associated Gaussian curvature

σ πσ
= −i

k
jjj

y
{
zzz

i
k
jjj

y
{
zzzK

p q
r2 2

2

2

2

(14)

The first (isotropic) term on the right-hand side of eq 14 is
constant and equal to the squared mean curvature, H2 = Kmax =
(p/2σ)2. The second (deviatoric) term accounts for the spatial
gradient in K. The Gaussian curvature vanishes (K = 0) at a
distance

π=r q p/0 (15)

from the q-source and monotonically increases up to a plateau
(K = Kmax) as r → ∞.
Substituting eq 14 into 12 determines the force on an

inclusion embedded in this model interface. Infinitely rigid
inclusions (R ≪ RB) are driven up gradients in K and are
therefore repelled from the q-source. Inclusions that are
bending-limited (RB ≪ R ≪ RS) are likewise repelled, albeit
more weakly. Stretching-limited inclusions (RB ≪ RS ≪ R), on
the other hand, are driven down gradients in K2 such that they
are attracted to the circumference of zero Gaussian curvature, r
= r0. Substituting the maximum Gaussian curvature, Kmax = H2,
into eq 11 yields the minimum size, RS,min, for an inclusion to
be attracted to r = r0 (otherwise, it would be driven toward r→
∞). For a continuum, incompressible material, eqs 3 (with
ν = 1

2
) apply and RS,min is given by

=R h H2 /S ,min (16)

Figure 3. Dimensionless force on a circular inclusion, F/F0, plotted
against σR2/B for different values of SR2|K|/σ and ν with p = 0 and K
< 0. Colored curves represent numerical computations; lightened,
black curves show the asymptotic predictions of eqs 8 and 10. Inset:
Redefining the abscissae collapses all numerical data onto a “master
curve” (eq 12).
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which is proportional to the geometric mean of h, the
characteristic inclusion thickness, and H−1, the characteristic
radius of curvature.
A key feature of eqs 13 and 14 is the inflection line at r = r0,

where the Gaussian curvature changes sign. As discussed
above, this feature discriminates between static, equilibrium
configurations of elastic inclusions limited by either bending or
stretching. For eq 13 to hold, the radius, a, along which the
force, q, is applied must be much smaller than r0: a ≪ r0. Were
this condition not met, then the “point-like” force, q, would be
replaced with the more general expression, q − πa2p, to
account for the finite size of the central source. For source radii
a = O(r0) [or, equivalently, πa

2p = O(q)], the inflection line is
eliminated and the bending- and stretching-limited regimes
cannot be distinguished based solely upon the static positions
of inclusions within the interface.
The strength of the curvature gradient is controlled by the

pulling (or pushing) force, q. Such forces could be realized
experimentally by drawing a cylindrical filament of radius a out
of (or into) a small droplet; the force is then given by q = 2πσa
cot α, where α is the angle measured from the cylinder
boundary to the fluid interface through the droplet phase. With
such a strategy, the main challenge is to achieve small contact
angles, α (i.e., large forces, q), while also minimizing the
filament radius, a, to promote large curvature gradients. In
practice, the minimum contact angle would typically be limited
by the wetting properties of the filamentous material.
In the seminal experiments of Cavallaro et al.,34 a central

micropost was used to pin an initially planar water−oil
interface to a cylindrical radius a = 131 μm, achieving contact
angles α ≈ 70° and forces q ≈ 15 μN. In their system, the
interface has zero mean curvature (H = 0), giving a radius r0 →
∞ according to eq 15. Hence, the region far from the post,
where the Gaussian curvature vanishes, also coincides with the
maximum possible Gaussian curvature, Kmax = H2 = 0. This
represents yet another scenario where one expects both the
bending- and stretching-limited responses to produce the same
equilibrium positions of elastic inclusions. In such cases where
static measurements yield limited information, a potential
alternative is to track the motion of the inclusions along the
interface as a function of time. Such dynamic measurements
may be more elucidating, as one expects forces and velocities
∝∇K in the bending-limited regime and ∝ −∇K2 in the
stretching-limited regime.
Energy Landscapes. For systems at finite temperature, it

is useful to express the force, F = −∇U, in terms of a potential
energy landscape, U(r), whose strength can be compared
against the thermal energy, kT. We can evaluate this energy for
the model interface described by eq 13, assuming the static
pressure, p = −2σH, is finite. Integrating eq 12, with 14
substituted for K(r), directly gives U(r). Its limiting forms for
deformable inclusions are likewise obtained by integrating eqs
8b and 10:
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where r0 is given by eq 15 and
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are the energy scales for bending and stretching, respectively.
The resulting energy profiles are plotted in Figure 4 for

inclusion radii smaller or larger than RS,min (cf. eq 16), as
measured by the ratio R/RS,min = (US/UB)

1/4. Notably, the
stretching-limited energy exhibits an attractive well of depth US
centered at K = 0, as predicted by eq 17b. The depth of the
well decreases as the inclusion radius is decreased and vanishes
asymptotically as R/RS,min → 0, resulting in a purely repulsive
energy landscape (eq 17a).
As a model material system, we consider a thin elastomer

trapped at the oil−water interface of a solid-supported,
microscopic droplet (|H|−1 = 100 μm, h = 1 μm, E = 1 MPa,
ν = 0.5, σ = 50 mN/m). For this system, one estimates

≈ ≈ μR R 20 mS,min
40
3 B from eqs 3, 7, and 11. Inclusions of

radius R > RS,min are deformable, limited by stretching, and
attracted to regions of zero Gaussian curvature. Using eqs 18
and taking R = RS,min ≈ 20 μm (exactly at the stretching
crossover threshold) gives an energy scale, UB = US ∼ 105 kT,
that is much larger than the thermal energy. One therefore
expects inclusions of this size and stiffness to follow
deterministic trajectories along the curvature landscape,
provided that the curvature gradients are sufficiently strong.

■ CONCLUSIONS
We have analyzed the forces on deformable, solid inclusions in
curved fluid interfaces, extending prior findings for rigid
particles. Our analysis of the Föppl−von Kaŕmań equations
yielded forces F ∝∇K (eq 8) in cases where the solid
deformation is limited by resistance to bending and F ∝ −∇K2

(eq 10) when limited by stretching. These two outcomes can
be distinguished by examining either the static or dynamic
behavior of elastic inclusions on interfaces of well-defined,
anisotropic curvature. All of our predictions collapse onto a

Figure 4. Potential energy landscapes, assuming SR2H2/σ≪ 1, for the
model interface described by eq 13 (for reference, the shape of the
interface is illustrated in the background; see also Figure 1). Line
styles and colors indicate different values of R/RS,min=(US/UB)

1/4. The
two limiting forms of the energy are given by eqs 17.
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semiempirical, universal curve (eq 12) that reproduces the
bending- and stretching-limited asymptotics.
Our analysis also revealed that the characteristic size, R, of

elastic inclusions is a key determinant of their ability to bend or
stretch. We have identified two important length scales, RB (eq
7) and RS (eq 11), that, when compared to R, determine
whether (and how) an interface-embedded inclusion deforms.
Likewise, the energy scales, UB and US (eqs 18), gauge the
strength of the resulting curvature-mediated forces based on
the maximum Gaussian curvature, Kmax = H2 (the actual
strength also depends, of course, on the local gradient of
Gaussian curvature). The relative importance of stretching
compared to bending is reflected in the ratio R/RS,min or,
equivalently, US/UB. Increasing either the characteristic
thickness, h (∼ B S/ ), or the radius of curvature, H−1, will
increase RS,min and, for fixed R, decrease R/RS,min.
The theory presented herein neglects any intrinsic curvature

of the solid inclusionsthat is, they are planar in their stress-
free state. Such intrinsic curvature could be induced by the
“spontaneous curvature” of the 2D solid phase (e.g., solid
domains in asymmetric monolayers and bilayers) or by edge
interactions with the 2D fluid phase (e.g., interface-trapped
particles with contact-line undulations).30,34,35 According to
the Donnell−Mushtari−Vlasov (DMV) theory of shallow,
elastic shells47 (a natural extension of the Föppl−von Kaŕmań
theory for elastic plates), a curved shell placed in a tension field
will experience stresses that resist changes to its intrinsic
curvature. Without performing any detailed calculation, it
seems reasonable to expect that intrinsically curved inclusions
will be attracted to interfacial regions of similar Gaussian
curvature (in our analysis, an initially planar inclusion will
focus to regions of zero Gaussian curvature). Indeed, this
outcome was predicted by Aharoni et al.45 in their analysis of
geometrically frustrated, elastic disks embedded in curved
subspaces. Thus, the interaction between the curvature of the
fluid interface and the intrinsic curvature of a dispersed, solid
phase is an interesting problem that merits further inves-
tigation.
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