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In phosphorus-limited marine environments, picocyanobacteria (Synechococcus and 
Prochlorococcus spp.) can hydrolyze naturally occurring phosphonates as a P source. Utilization 
of 2-aminoethylphosphonate (2-AEP) is dependent on expression of the phn genes, encoding 
functions required for uptake, and C–P bond cleavage. Prior work has indicated that expression 
of picocyanobacterial phnD, encoding the phosphonate binding protein of the phosphonate 
ABC transporter, is a proxy for the assimilation of phosphonates in natural assemblages of 
Synechococcus spp. and Prochlorococcus spp (Ilikchyan et al., 2009). In this study, we expand 
this work to assess seasonal phnD expression in the Sargasso Sea. By RT-PCR, our data confirm 
that phnD expression is constitutive for the Prochlorococcus spp. detected, but in Synechococcus 
spp. phnD transcription follows patterns of phosphorus availability in the mixed layer. Specifically, 
our data suggest that phnD is repressed in the spring when P is bioavailable following deep 
winter mixing. In the fall, phnD expression follows a depth-dependent pattern reflecting depleted 
P at the surface following summertime drawdown, and elevated P at depth.
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Here, we extended our survey of seasonal environmental expres-
sion of phnD along a N–S transect through the Sargasso Sea. The sea-
sonal physical, chemical, and biological characteristics of the Sargasso 
Sea are well studied (Schroeder and Stommel, 1969). In winter, deep 
(>80 m) mixing transports cold, nutrient rich waters to the surface, 
whereas throughout summer and fall, surface waters in the Sargasso 
Sea are stratified with a shallow (∼50 m), nutrient poor mixed layer. 
The physical and chemical changes of the surface waters are reflected 
in the abundance and productivity of phytoplankton (e.g., Menzel and 
Ryther, 1960, 1961). Picocyanobacteria constitute the majority of pho-
toautotrophic organisms in the Sargasso Sea. Synechococcus spp. reach 
maximum abundance in April–May shortly after winter mixing, and 
Prochlorococcus spp. populations peak in summer and fall (DuRand 
et al., 2001; Casey et al., 2007). The Sargasso Sea is characterized as a 
phosphorus depleted region with DIP concentrations typically less 
than 10 nM (e.g., Cotner et al., 1997). Under these conditions, utiliza-
tion of phosphonates from the DOP pool can be an important survival 
strategy for picocyanobacteria. Indeed, the expression of phosphonate 
transporter genes was observed by endemic picocyanobacteria in the 
Sargasso Sea in October (Ilikchyan et al., 2009). In this study, we 
have assessed seasonal picocyanobacterial phnD expression at multiple 
depths and locations in May and October.

Materials and Methods
environMental saMples
Table 1 and Figure 1 provides details on sampling and station loca-
tions for cruises aboard the R/V Bank of Bermuda Atlantic Explorer 
during May and October 2008. The samples for RNA and DNA 
extraction were processed as described in Ilikchyan et al. (2009). 
Briefly, suspended particles from environmental samples of 3–4 L 
was collected onto 0.22 μm Sterivex cartridge filters by using a 

introduction
Phosphonates, previously thought to be refractory sources of P, are 
utilized by microbial communities in aquatic environments deprived 
of inorganic phosphates (Clark et al., 1998; Benitez-Nelson, 2004; 
Dyhrman et al., 2006; Karl et al., 2008). Phosphonates represent upto 
25% of the marine DOP pool (Clark et al., 1998; Kolowith et al., 2001), 
and sources of naturally occurring phosphonates in the oligotrophic 
open sea include the nitrogen-fixing cyanobacterium, Trichodesmium 
erythraeum (Dyhrman et al., 2009). Recent work also indicates that at 
least three distinct mechanisms are widespread in nature that function 
to cleave the phosphonate C–P bond (Dyhrman et al., 2006; Gilbert 
et al., 2009; Kulakova et al., 2009; Martinez et al., 2010; Thomas et al., 
2010). For example, Trichodesmium spp. possess a C–P lyase pathway 
that is distributed widely among bacterial taxa, and exhibits broad 
substrate specificity (Dyhrman et al., 2006). Marine and freshwater 
picocyanobacteria typically contain a phosphonatase pathway that 
exclusively hydrolyzes 2-aminoethyl phosphonate (2-AEP; Quinn 
et al., 2007; Ilikchyan et al., 2009). Last, a novel third mechanism for 
marine 2-AEP utilization was recently unmasked by a functional assay 
(Martinez et al., 2010), indicating that additional phosphonate utiliza-
tion pathways may await future discovery. Nonetheless, these path-
ways appear to share common ABC transporters for phosphonates, 
encoded by the genes phnDCE. Earlier, we have demonstrated that 
picocyanobacteria of the genera Synechococcus and Prochlorococcus 
possess and express phnD, encoding the phosphonate binding protein, 
in a variety of aquatic environments, and that phnD expression can 
be used as a proxy for phosphonate utilization. Moreover, prelimi-
nary studies suggested that expression of Synechococcus spp. phnD 
reflected the bioavailability of dissolved inorganic phosphorus (DIP) 
in the Sargasso Sea, whereas constitutive expression was observed for 
Prochlorococcus spp. phnD (Ilikchyan et al., 2009).
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phnD_pro551R: 5′-GTTGCATCATGACTNCCRCTATANCC-3′. 
rnpB is a single copy gene and encodes for RNase P RNA. The rnpB 
primers were designed to amplify a 118 bp region specific for picocy-
anobacteria, RNPB-F: CCGTGAGGAGAGTGCCACAG; RNPB-R: 
CAGCACCTCTCGATGCTGCTGG. Specificity of the primers was 
confirmed by the absence of amplification from DNA extracted 
from Synechococcus sp. PCC7942, Synechocystis sp. PCC6803 and 
Microcystis sp. M300. All available marine and freshwater picocy-
anobacterial DNA yielded an amplicon of the correct size. The PCR 
conditions for amplification with the rnpB primers were as follows: 
95°C for 5 min, 30 cycles of 95°C for 30 s, 65°C for 30 s, and 72°C 
for 30 s, followed by 72°C for 10 min.

For phnD amplification, each PCR (25 μL) contained 1× PCR 
buffer (Promega), 0.2 mM of each deoxynucleotide (Promega), 
0.5 μM of each primer, and 1.0 unit of GoTaq DNA polymerase 
(Promega), and ca. 10 ng template DNA. For Synechococcus spp. 
phnD amplification, the temperature profile was 95°C for 5 min, 40 
cycles of 95°C for 1 min, an initial annealing temperature of 65°C 
for 1 min decreasing by 0.5°C each cycle until 55°C was reached, 

peristaltic pump, and cartridges were frozen immediately in  liquid 
nitrogen. Flow rates were maintained at 125 mL min−1. The car-
tridges were transferred to storage at −80°C prior to RNA and 
DNA extraction. Chlorophyll a was measured fluorometrically 
after extraction of filtered seston with 90% acetone (Welschmeyer, 
1994).

nucleic acid extraction pcr and rt-pcr conditions
Extraction of environmental DNA and RNA from a Sterivex filter was 
performed as described previously (Ilikchyan et al., 2009). All PCR 
and RT-PCR amplifications with Synechococcus and Prochlorococcus 
spp. phnD primers were done as described earlier (Ilikchyan et al., 
2009). Specifically, the primers employed were: phnD_syn119F: 5′
-TCGGNGCMATYCCSGATCAGAACCCSG-3′; phnD_syn734R1: 
5′-TTGGGCTGSGCGASCCAGTGGTARTC-3′; phnD_syn731R2: 
5′-GGNCGNGCCACCCAGTGGTARTC-3′. Both reverse prim-
ers were used in a single reaction. For amplification of the phnD 
sequence from Prochlorococcus spp. the following primers were 
used: phnD_pro307F: 5′-GTNATWGCTCAAAGAGATATWGAT-3′; 

Table 1 | Summary of samples obtained during May and October 2008 cruises.

Station Date Lat/long Depth (m) Temp (oC) Salinity DIP (nmol L−1) Pro (cells mL−1) Syn (cells mL−1)

2 (BATS) 5/3/08 31.649 N 64.170 W 1 20.15 36.72 0.50 n.d. n.d.

2   40 20.12 36.72 0.50 n.d. n.d.

2   100 19.02 36.64 8.15 n.d. n.d.

3 5/4/08 28.565 N 64.633 W 1 22.65 36.79 0.50 n.d. 6.8 × 103

3   40 22.35 36.78 0.50 n.d. 8.3 × 103

3   100 20.15 36.68 13.45 2.0 × 104 1.67 × 104

4 5/5/08 27.167 N 64.862 W 1 22.55 36.79 0.50 n.d. 7.9 × 103

4   40 22.53 36.79 0.82 2.7 × 104 1.39 × 104

4   100 20.53 36.70 4.72 5.88 × 104 1.49 × 104

5 5/5/08 25.669 N 65.101 W 1 23.43 36.76 0.50 n.d. 6.7 × 103

5   40 22.89 36.74 0.50 n.d. 9.4 × 103

5   100 20.13 36.67 6.80 4.3 × 104 7.9 × 103

6 5/6/08 24.152 N 65.300 W 1 24.28 36.63 0.50 n.d. 6.3 × 103

6   40 23.52 36.76 4.35 n.d. 7.4 × 103

6   100 21.34 36.72 1.86 2.4 × 104 9.5 × 103

7 5/6/08 22.673 N 65.512 W 1 25.58 36.44 0.50 n.d. 6.0 × 103

7   40 25.38 36.50 1.36 n.d. 6.6 × 103

7   100 23.25 36.85 4.60 8.1 × 104 3.0 × 103

8 5/7/08 21.162 N 65.747 W 1 26.04 36.55 17.64 n.d. 5.2 × 103

8   40 25.83 36.59 4.96 n.d. 5.7 × 103

8   100 25.24 36.60 2.79 7.4 × 104 4.7 × 103

9 5/7/08 19.671 N 66.000 W 1 26.27 36.51 5.86 n.d. 5.7 × 103

9   40 25.87 36.49 2.43 n.d. 6.4 × 103

9   100 24.70 36.64 4.90 8.1 × 104 3.2 × 103

2 (BATS) 10/16/08 31.660 N 64.170 W 1 25.90 36.51 0.50 3.7 × 104 5.3 × 103

2   40 25.80 36.51 0.50 4.5 × 104 5.5 × 103

2   100 21.10 36.65 0.50 5.7 × 104 6.3 × 102

2   200 18.50 36.58 121.05 8.5 × 102 75

1 10/15/08 33.670 N 64.170 W 1 25.10 36.36 0.50 7.4 × 104 5.4 × 103

1   40 25.10 36.36 0.50 7.4 × 104 5.5 × 103

1   80 23.10 36.61 28.85 5.2 × 104 2.9 × 102

1   200 18.90 36.60 98.27 2.7 × 103 33

At all sites and depths, 4 L were filtered, except for Sta. 2 (BATS) in October, where 2.5 and 3 L were filtered at 100 and 200 m, respectively.
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in triplicate and on the same day when the water samples were 
collected. Particulate phosphorus was measured as described previ-
ously (Hood et al., 2006). Briefly, samples collected on GF/F filters 
were digested by adding 5% potassium persulfate and autoclaving 
for 30 min. Liberated soluble reactive phosphorus was analyzed 
colorimetrically with the molybdate ascorbic acid method using a 
10 cm path length cell.

phylogenetic analysis
PhnD sequences obtained in this (GenBank accession numbers 
GU724612–GU724682) and previous (EU362636–EU362729, 
FJ172179–FJ172204; Ilikchyan et al., 2009) studies were aligned 
together with PhnD sequences from available genomes of 
Synechococcus and Prochlorococcus spp. using ClustalW2 at http://
www.ebi.ac.uk/Tools/clustalw2/ (Larkin et al., 2007). The amino 
acid sequences that were further included in phylogenetic analysis 
differed among each other by at least 2%. Neighbor-joining phy-
logenetic analysis was done in ARB (Ludwig et al., 2004).

results
picocyanobacterial phnD expression in the sargasso sea, May 
and october 2008
The presence and expression of Synechococcus spp. and 
Prochlorococcus spp. phnD was assessed in samples collected dur-
ing Sargasso Sea cruises in May and October 2008. Samples were 
analyzed from three depths (surface, 40, and 100 m) in May and 
from four depths (surface, 40 m; deep chlorophyll maximum, DCM, 

72°C for 1 min, followed by extension at 72°C for 20 min. For 
Prochlorococcus spp. phnD primers, the annealing temperature was 
57°C decreasing by 0.5°C each cycle until 50°C was reached, and the 
remaining PCR profile was the same as for Synechococcus spp. phnD. 
RT-PCR was performed using a OneStep-RT-PCR kit (QIAGEN) 
according to the manufacturer’s instructions with a PCR profile as 
stated above. Amounts of RNA used per reaction were ca. 10 ng. 
Additionally, each reaction was performed without RT to ensure 
the absence of genomic DNA in the RNA samples.

2-aep aMendMent experiMent
Surface water from station BATS was drawn during the October 2008 
BVAL 42 cruise (Table 1). Water was prescreened through a 5 μm 
polycarbonate membrane, and 2 L volumes were distributed into trip-
licate acid-cleaned bottles: three control, three phosphate amended 
(500 nM K

2
HPO

4
) and three amended with 500 nM 2-AEP. Bottles 

were incubated for 48 h in a flow-through deck incubator screened 
to yield a midday irradiance of 70 μmol quanta m−2 s−1. After 48 h, 
bottles 1 and 2 for each treatment were filtered to measure extractive 
chlorophyll (2 × 500 mL each bottle) and particulate organic phospho-
rus (POP). Bottle 3 from each treatment was filtered onto a Sterivex 
cartridge for RT-PCR profiling with phnD primer sets.

alkaline phosphatase and particulate phosphorus assays
Alkaline phosphatase activity (APA) was measured fluorometri-
cally with methylumbelliferyl phosphate (Sigma) as described 
elsewhere (Hoppe, 1993; Sterner et al., 2004). The assay was done 

FIgure 1 | Map of Sargasso Sea stations sampled during May and October 2008.
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Despite the fact that PCR as performed here is not a quantita-
tive assay, the intensity of bands corresponding to phnD and rnpB 
reflects the abundance of picocyanobacteria at depth with highest 
number of Prochlorococcus spp. cells at the DCM and Synechococcus 
spp. cells at the surface (DuRand et al., 2001).

phnD expression: dip and 2-aep
The patterns of Synechococcus spp. phnD expression were exam-
ined in light of parallel determination of inorganic phosphorus 
concentration during May and October 2008. In both seasons, a 

and 200 m) in October. Additionally, an on-deck nutrient amend-
ment incubation experiment was conducted on board during the 
October cruise.

DNA extracted from samples taken at three different depths 
in the Sargasso Sea in May 2008 all yielded PCR amplicons for 
both Synechococcus spp. phnD and Prochlorococcus spp. phnD 
(Figure 2A). The mixed layer depth was 80 m. Expression of 
Prochlorococcus spp. phnD was observed in almost all 24 samples 
(Figure 2B). The samples yielding no Prochlorococcus RT-PCR 
phnD amplicon included the Bermuda Atlantic Time Series sta-
tion (BATS, also designated as Station 2) at 40 m, Station 3 at 
100 m, and Station 4 at 40 m. These samples also did not yield a 
picocyanobacterial rnpB RT-PCR amplicon (Figure 2B). Low RNA 
yield in samples from BATS at 40 m, Station 3 at 100 m, and Station 
4 at 40 m due to errors in RNA extraction might be a reason for 
the failure to detect a Prochlorococcus spp. RT-PCR phnD ampli-
con. By contrast, no samples from any station and depth from the 
Sargasso Sea May 2008 cruise revealed expression of Synechococcus 
spp. phnD (Figure 2B), despite the fact that all corresponding DNA 
samples yielded a PCR amplicon with Synechococcus spp. specific 
phnD primers (Figure 2A).

Samples from two stations, Station 1 and BATS (Station 2), were 
processed from the October 2008 cruise. All DNA samples yielded 
Prochlorococcus and Synechococcus phnD amplicons, although only 
faint bands were observed in the BATS sample at 200 m (Figure 3A). 
Flow cytometry confirmed low abundance of both taxa at this depth 
(<100 cells mL−1). Synechococcus spp. phnD expression was detected 
in the samples taken at the surface and 40 m depth, but not at 
the DCM (100 m), or 200 m, both below the mixed layer depth 
of 55 m (Figure 3B). Prochlorococcus spp. phnD was expressed in 
all samples except BATS 200 m, a sample found to be negative for 
picocyanobacterial RNA (Figure 3B).

FIgure 2 | (A) PCR of Synechococcus and Prochlorococcus spp. phnD from the 
Sargasso Sea samples taken in at several stations during May 2008. The mixed 
layer was 80 m, and the DCM was at 100 m. (B), top rows: RT-PCR of 

environmental RNA extracted from the same stations during the May cruise. 
(B), bottom: RT-PCR of picocyanobacterial rnpB transcripts as a positive control 
for picocyanobacteria. NTC, no template control.

FIgure 3 | (A) PCR of Synechococcus and Prochlorococcus spp. phnD from 
the Sargasso Sea samples taken in at Station 1 and BATS (Station 2) during 
October 2008. The mixed layer was 50 m, and the DCM was at 100 m. (B) Top 
rows: RT-PCR of environmental RNA extracted from the same stations. 
(B) Bottom: RT-PCR of picocyanobacterial rnpB transcripts as a positive control 
for picocyanobacterial RNA. NTC, no template control.
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between the phosphate or phosphonate treatments (Tukey’s honest 
significance test). Addition of nutrients stimulated the phytoplank-
ton community, as chlorophyll increased from 0.51 to 0.69 μg L−1 
in phosphate amended and 0.74 μg L−1 in the 2-AEP treatments. 
Overall, these data suggest that phnD expression in Synechococcus 
spp. was regulated by phosphorus availability, and that 2-AEP was 
assimilated by the microbial community. Additionally, the experi-
ment raises the possibility that the presence of 2-AEP stimulates 
phnD expression among the endemic Synechococcus spp. By con-
trast, Prochlorococcus spp. phnD expression was not influenced by 
either 2-AEP or phosphate availability. The activity of alkaline 
phosphatase was measured before and 48 h after amendments 
with activities ranging from 0.7 to 1.31 pmol h−1 ml−1, with no 
significant difference between the samples. Since eubacteria may 
contribute the largest component of total APA in environmental 
samples (Hoppe, 2003), this assay was likely not an accurate indica-
tion of picocyanobacterial P status.

phylogenetic analysis of picocyanobacterial phnd froM 
sargasso sea saMples
The majority of Synechococcus PhnD sequences from May and 
October 2008 clustered within clade III similar to our previous 
study (Figure 5; Ilikchyan et al., 2009). Synechococcus Clade III 
is relatively abundant throughout the open oceans between 40N 
and 40S latitudes (Zwirglmaier et al., 2008). Ahlgren and Rocap 
(2006) showed that Synechococcus clades II, IV, and a novel clade 
XV (closely related to III) dominated in the western Sargasso Sea in 
March. However, a comprehensive study on diversity and temporal 
variation (Tai and Palenik, 2009) of Synechococcus groups has not 
yet been performed for the Sargasso Sea. Synechococcus sequences 
from the Sargasso Sea May and October cruises formed an addi-
tional cluster (sequence ADE58334) closely related to the cluster 
III (Figure 5A). Synechococcus cluster IV also includes sequences 
from Monterey Bay obtained from the previous study (Ilikchyan 
et al., 2009).

Most Prochlorococcus PhnD sequences were clustered within the 
High Light II clade similar to what has been observed with prim-
ers for 16S rRNA and 16S–23S ITS region (Moore et al., 1998; 
Ahlgren et al., 2006; Zinser et al., 2006). A DNA sample taken at 
depth (200 m) at BATS in October 2008 yielded Prochlorococcus 
PhnD sequences closely related to Low Light clade IV (Figure 5B). 
Considering the observed diversity among PhnD sequences obtained 
in this and previous studies, we are confident that the specificity 
of the phnD primers is broad enough to capture representative 
members of endemic picocyanobacterial community worldwide. 
This will enable more detailed studies of phosphonate utilization 
genes in diverse oceanic regions.

discussion
P limitation in the surface waters of the Sargasso Sea surface 
waters is well documented (Cotner et al., 1997; Karl, 2000; Wu 
et al., 2000), with a significant depletion in P occurring during 
late summer and early fall when the Sargasso Sea is stably strati-
fied (DuRand et al., 2001; Ahlgren et al., 2006). In this study, we 
have assessed spatiotemporal expression of phnD in the photic 
zone of the Sargasso Sea. Prochlorococcus spp. phnD expression 
was observed in all samples from the Sargasso Sea drawn in May 

depth-dependent gradient of DIP was observed, with depleted P 
at the surface, increasing at depth yielding maximum values below 
the mixed layer. Near the surface, spring P was elevated compared 
to October measurements, with May samples yielded average DIP 
of 2.62 nmol L−1 in the mixed layer samples assayed by RT-PCR 
(n = 16 samples), ranging from 0.5 (detection limit) to 17.64 nmol 
L−1. By contrast, all October mixed layer values remained at or below 
the detection limit of 0.5 nmol L−1. Since phnD expression was only 
observed in the October samples, yet spring DIP was at or below 
detection in 9 of 16 mixed layer samples, expression patterns cannot 
be ascribed to DIP concentration alone. This raises the possibility 
that DOP (phosphonates and organic phosphates) may directly 
influence the accumulation of phn transcripts.

A nutrient amendment incubation experiment was performed 
with water collected from BATS at the surface in October 2008. The 
RT-PCR assay revealed that an addition of 500 nmol L−1 phosphate 
quenched expression of the Synechococcus spp. phnD in 48 h while 
not affecting expression of the Prochlorococcus spp. phnD (Figure 4). 
The amendments with 0.5 μM 2-AEP yielded both Synechococcus 
spp. and Prochlorococcus spp. phnD amplicons. The control sam-
ple failed to amplify Synechococcus spp. phnD and yielded weak 
bands for Prochlorococcus spp. phnD and picocyanobacterial rnpB 
(Figure 4). This suggests overall low picocyanobacterial cell abun-
dance in the control at 48 h. Analysis of POP in the control, as well 
as in the phosphate and 2-AEP-amended bottles revealed a signifi-
cant increase in both the amended samples after 48 h. (Table 2). 
Bottles amended with phosphate or with 2-AEP accumulated nearly 
threefold more POP than did unamended control bottles ( one-way 
ANOVA; p < 0.005). There was no  treatment effect discernible 

Table 2 | Particulate organic phosphorus content of BATS surface water 

samples amended with 2-AeP and inorganic phosphate.

Time (h) Amendment Phosphorus (nmol L−1)

0 None 22.18 ± 2.3

48 None 12.26 ± 0.7

48 PO4 (500 nmol L−1) 31.30 ± 3.6

48 2-AEP (500 nmol L−1) 31.50 ± 1.7

FIgure 4 | rT-PCr from the growout experiment rNA extracted in 48 h 
after the addition of nutrients. Control – no amendments, Phosphate – 
addition of 0.5 μM of phosphate, and 2-AEP – addition of 500 nM of 
2-aminoethylphosphonate. Top row, Synechococcus phnD expression; middle 
row, Prochlorococcus phnD expression; bottom row, rnpB expression.
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ments and RT-PCR with the rnpB primers. An addition of 2-AEP 
resulted in increased picocyanobacterial biomass as well, although 
Synechococcus spp. phnD expression was evident in this sample. 
The control showed no detectable expression for Synechococcus 
spp. phnD in 48 h; Prochlorococcus spp. phnD and picocyanobac-
terial rnpB expression was barely detectable as well suggesting an 
overall decrease in picocyanobacterial biomass. Synechococcus spp. 
expressed phnD at time zero because the water for the experiment 
was taken from the surface at the BATS station where in an identi-
cal sample, expression of the Synechococcus spp. phnD was detected 
in the mixed layer (Figure 4). Additionally, amendment with DIP 
repressed phnD expression. The results confirmed that expression 
of phnD is influenced by P availability in Synechococccus, but not 
in Prochlorococcus spp. The experiment also raises the possibility 
that 2-AEP can induce phnD within the endemic Synechococcus 
spp. similar to what is observed in some heterotrophic bacteria 
(Quinn, 2002). However, experiments with cultured Synechococcus 
sp. WH8102 suggest otherwise, because added 2-AEP does not 
yield enhanced phnD transcription. Additionally, BLAST searches 
(http://blast.ncbi.nlm.nih.gov) reveal that the gene for LysR type 
transcriptional regulator, which is adjacent to the genes for phos-
phonate utilization in these heterotrophic bacteria (Kulakova 
et al., 2001, 2003; Quinn, 2002), is lacking in picocyanobacterial 
genomes (data not shown). The fact that DIP repressed the level of 
phnD transcripts likely differs from what has been observed for the 
N-fixing cyanobacterium Trichodesmium IMS101, as DIP addition 

and October 2008, except BATS at 40 m, St. 3 at 100 m, and St. 
4 at 40 m in May and BATS 200 m in October. These negative 
samples likely contained prohibitively low total picocyanobacte-
rial RNA. The constitutive presence of the Prochlorococcus spp. 
phnD RNA is consistent with the data obtained earlier for the 
Sargasso Sea samples collected in October 2007 (Ilikchyan et al., 
2009). In contrast, whereas a PCR amplicon was detected for 
Synechococcus spp. phnD in all samples at all depths, expression 
of this gene was not observed in May when the concentration of 
phosphate was generally higher throughout the water column 
due to recent winter mixing (DuRand et al., 2001). In October 
2007 and 2008, Synechococcus spp. expressed phnD in the mixed 
water layer but not at the DCM (ca. 100 m) or at 200 m. This is 
consistent with lower DIP levels typically observed in the mixed 
layer, which spans only 50 m in depth in the fall. Overall, the 
lack of springtime phosphonate gene expression can be partially 
explained by increased inorganic phosphate availability below 
the mixed layer depth, but the absence of phnD expression in 
samples lacking detectable DIP suggests that organic phosphate 
or phosphonate availability may also be important in regulating 
phn encoded functions. Furthermore, higher competition for DIP 
and organic phosphates in the fall may lead to phnD expression, 
so both P flux and total P concentration need to be considered.

In a nutrient amendment experiment, addition of phosphate 
yielded no Synechococcus spp. phnD expression at 48 h, whereas 
the biomass increased as suggested by chlorophyll a measure-

FIgure 5 | Neighbor joining phylogenetic analysis of Synechococcus (A) and Prochlorococcus (B) PhnD protein regions. A region of 187 aa for Synechococcus 
and 64 aa for Prochlorococcus was analyzed. Bootstrap values >70% are shown. Number of unique (less than 98% aa similarity) sequences obtained in this and 
previous studies are shown in parentheses.
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