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Abstract

Background: The physical interactions between proteins constitute the basis of protein quaternary structures.

They dominate many biological processes in living cells. Deciphering the structural features of interacting proteins
is essential to understand their cellular functions. Similar to the space of protein tertiary structures in which discrete
patterns are clearly observed on fold or sub-fold motif levels, it has been found that the space of protein quaternary
structures is highly degenerate due to the packing of compact secondary structure elements at interfaces. Therefore,

it is necessary to further decompose the protein quaternary structural space into a more local representation.

Results: Here we constructed an interface fragment pair library from the current structure database of protein
complexes. After structural-based clustering, we found that more than 90% of these interface fragment pairs can

be represented by a limited number of highly abundant motifs. These motifs were further used to guide complex
assembly. A large-scale benchmark test shows that the native-like binding is highly likely in the structural ensemble of
modeled protein complexes that were built through the library.

Conclusions: Our study therefore presents supportive evidences that the space of protein quaternary structures can be
represented by the combination of a small set of secondary-structure-based packing at binding interfaces. Finally, after
future improvements such as adding sequence profiles, we expect this new library will be useful to predict structures of

unknown protein-protein interactions.

Background

Interactions between proteins dominate all major bio-
logical processes in living cells [1-3]. Through these in-
teractions, proteins either form permanent complexes
such as supramolecular machines [4], or undergo transi-
ent binding such as their participation in cell signaling
pathways [5]. The thermodynamics and kinetics of
protein-protein interactions (PPI) are largely determined
by the properties of their interfaces, where proteins
make direct physical contacts. Therefore, deciphering
the structural features of interacting proteins, especially
at their interfaces, is a crucial step towards understand-
ing the molecular organizations of cells [6,7]. Structural
modeling of PPI is generally classified into two categor-
ies [8]. Traditional docking methods only rely on the
geometric and chemical-physical complementarity of

* Correspondence: yinghao.wu@einstein.yu.edu

"Equal contributors

Department of Systems and Computational Biology, Albert Einstein
College of Medicine of Yeshiva University, 1300 Morris Park Avenue,
Bronx, NY 10461, USA

( ) BiolVled Central

modeled protein surfaces [9-11]. These methods (tem-
plate-free methods) explore all possible binding modes
of two proteins without a priori knowledge of their com-
plex structures. In contrast, a number of recent studies
have used structurally characterized complexes as tem-
plates to construct models of unknown PPI [12-17].
These methods are called template-based methods. As
template-free methods are limited by the ability of sam-
pling the entire conformational space, template-based
methods are facing difficulties with limited number of
complex structures in current Protein Data Bank (PDB).
Interestingly, these template-free and template-based
methods of PPI modeling correspond to the ab initio
[18] and homology modeling [19] in protein structure
prediction. In protein structure prediction, there is also
a third class of method, called fragment assembly which
combines ab initio sampling and templates of protein
fragments in PDB [20]. Considering the remarkable suc-
cess of fragment-based methods in predicting protein
tertiary structures [21], it is reasonable to anticipate that
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the similar idea can be extend to model PPI, in add-
itional to the template-free and template-based methods.

In terms of modeling the structures of PPI, there is a
further question regarding the nature of PPI space:
whether proteins adopt a finite number of quaternary
structures [22]. Similar question was asked about protein
tertiary structures. Packing of secondary structural ele-
ments in protein tertiary structures is preferential
[23,24]. It was estimated that there are approximately
1000 types of structural folds in the space of protein do-
mains [25]. Despite the fact that protein fold space is
regarded as rather continuous and multidimensional
[26,27], it was found that a surprisingly small set of
super-secondary structural elements (Smotifs) is suffi-
cient to describe all known folds [28]. Moreover, novel
folds are resulted from a new combination of existing
Smotifs. A dictionary of tertiary structural motifs was
also constructed to describe a substantial portion of pro-
tein structure space [29]. On the level of protein quater-
nary structures, a simple alignment method was recently
applied to study the structural similarity of representa-
tive protein—protein interfaces [30]. It was found that
the structural space of protein—protein interfaces is
highly degenerate, where 80% of the interfaces form a
dense network [31]. This indicates the importance of
decomposing the space of protein—protein interfaces
into smaller fragments, giving the potential usage of
fragment-based method in modeling PPI as discussed
in the previous paragraph.

Here we constructed an interface fragment pair library
from the current structure database of protein com-
plexes. For any dimeric complex in the database, an
interface fragment pair is defined as a pair of 9-residue-
long fragments from each side of the complex. Both resi-
dues in the middle of these two fragments are located at
the dimer interface and form contacts at the atomic level
(Figure 1). All pairs of fragments from all complexes in
the database were recorded by the coordinates of their
C-a atoms. Pairs with similar packing geometry were
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Figure 1 We collected information of interface fragment pairs
from a database of interacting protein domains. For a pair of
two protein domains that form physical contacts (a), an interface
fragment pair is defined as a pair of 9-amino-acid-long fragments, in
which their centered residues form at least one atomic contact (b).
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then clustered together. Only clusters that contain a
relatively large number of fragment pairs were selected.
The library consists of representative structures of all
these most abundant clusters. We further used the li-
brary to guide complex assembly by aligning all structur-
ally similar fragments from the two monomers to the
corresponding fragment pair in the library. Through the
test on a large-scale protein docking benchmark [32], we
found that native-like quaternary structures were among
all assembled complex models with a successful rate of
more than 90%. Our study indicates that the structural
space of PPI can be decomposed by a limited number of
interacting fragments. Furthermore, after adding more
features such as sequence profiles in the future, we ex-
pect this new library will be proved useful in predicting
quaternary structures of unknown PPL

Methods

The systematic construction and test of the interface
fragment pair library presented here was performed in
three basic steps (Figure 2a). First, we collected all pairs
of interface fragments from the database of 3D Interact-
ing Domains (3did) [33]. We then clustered these data
and selected a subset of recurrent structures as the
interface fragment pair library. Finally, the library was
used to guide complex assembly.

Collecting information of interface fragment pairs from
3did database

For a given pair of protein domain I and | that form
physical contacts (Figure la), we started the data pro-
cessing by detecting all the residues at the binding inter-
face. If a residue in domain I interacts with any residue
in domain J, this residue was designated as an interface
residue. Vice versa, if a residue in domain | interacts
with any residue in domain I, it was designated as an
interface residue. For all residues at the interface, we
generated a list of interface residue pairs. Any pair in the
list has to meet two criteria: 1) one residue in the pair
comes from protein domain I and the other comes from
J; 2) after calculating distances of all side-chains atoms
between two residues in the pair, the distance of at least
one inter-residue atomic pair should be smaller than the
cutoff value that equals to 5 Angstrom (Figure 1b). The
information of local backbone conformation was further
taken into account for each residue pair in this list. A
window of 9 amino acids that is centered at the corre-
sponding interface residue was assigned for both sides of
the pair (red and green fragments in Figure 1b). The
local conformation is represented by the coordinates of
Ca atoms for these two fragments. Consequently, with
these local Ca coordinates, the interface residue pair be-
comes the interface fragment pair. It is worth mention-
ing that, given two fragments from two interacting
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Figure 2 The overall procedure of the method. The flowchart of
systematically constructing and testing the interface fragment pair
library is shown in (a). We first collected all pairs of interface
fragments from the 3did database. These data were then clustered. A
subset of recurrent structures were further selected as the library.
Finally, the library was used to guide complex assembly. During the
complex assembly, we assigned a sliding window along each protein
domain. The Ca atoms in the windows were aligned to each fragment
pair in the library (b). If RMSDs are smaller than the cutoff value, we
further superimposed the structures of entire domains to their
corresponding fragments according to the relative position of
windows in each domain. After both domains were aligned to the
interface fragment pair, a dimeric complex was constructed.

domains, one fragment is from residue 1 to 9 of domain
I, while the other fragment is from residue 101 to 109 of
domain J. If residue 5 of domain I forms interactions
with both residue 105 and 106 of domain J, these inter-
actions will be recorded twice. In this specific case, they
are identified as two fragments in domain J. The first
record is centered at residue 105 and the fragment is
from residue 101 to 109 of domain J. The second record
is centered at residue 106 and the fragment of domain ]
is from residue 102 to 110.

The list of all interface fragment pairs for a given PPI
was generated by above procedure. Following the same
procedure, we collected data from 3did database. The
3did database selects a large number of domain-domain
interactions in proteins for which high-resolution
three-dimensional structures are available. The data-
base consists of a large group of items called interact-
ing domain pairs (ID). The interacting domain pair
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could be homodimer, heterodimer, or inter-domain
interaction within a single subunit. Information about
Pfam index is given for both domains of an ID. Each
ID further includes different number of instances. The
specific instances are called 3D items in which infor-
mation about PDB index, chain id and residue range
are provided for both interacting protein domains. In
order to construct the interface fragment pair library,
we selected only one representative 3D item from each
ID in 3did database to reduce redundancy. For each
selected 3D item, all interface fragment pairs were ex-
tracted from the structure of domain-domain inter-
action by the algorithm described in the previous
paragraph. Finally, a total number of 153127 entries
were derived.

Constructing the interface fragment pair library by
clustering the collected data

All the interface fragment pairs collected from 3did
database were structurally clustered by the following
simple algorithm. An initial fragment pair was randomly
picked from all the entries and was set as the first clus-
ter. We then further selected another entry randomly
from the same pool. For this second entry, structure
alignment was carried out with the first cluster. Root
mean square difference (RMSD) was calculated after the
alignment for all the Coa atoms in both fragments
between the first and the second selected entries. If the
RMSD was smaller than a predetermined cutoff value,
the second entry was merged into the first cluster.
Otherwise a new cluster was created for the second
entry. Similar procedure was iterated for all the rest en-
tries. Assuming before the i™ picked entry enters the
clustering algorithm, the previous i-I entries form m
clusters. We will compare the /™ entry with all the
previous i-1 ones and find the nearest neighbor that
has the smallest RMSD with the i/ entry. If the RMSD
value is smaller than the cutoff, the i entry will be
assigned to the same cluster as its nearest neighbor
belongs to. Otherwise we will generate the m + 1 clus-
ter for this entry. For simplification, we selected a
member from each cluster as the representative model
of the cluster. The representative model has the most
number of neighbors with the other members in the
corresponding cluster.

The cutoff value of RMSD during clustering was em-
pirically adopted. If the cutoff is too low, there will be
too many clusters and the library will lose generality. On
the other hand, if the cutoff is too high, pairs without
structural similarity will be classified into the same
group so that the library will lose accuracy. The
current cutoff value we used in this study equals to 4.0
Angstrom. This leads to 2135 clusters from original
153127 interface fragment pairs. Clustering using other
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cutoff values will be discussed in the results. Moreover,
the purpose of constructing the library is to decompose
the space of protein quaternary structures into lower di-
mensions. Therefore, only the most representative clusters
in which the number of members is higher than a cutoff
value were selected into the library. The cutoff value was
also empirically determined. If the cutoff is too high, we
will lose the coverage for the structural space of fragment
pairs. In contrast, if the cutoff is too low, the application
of the library will be limited by the large number of clus-
ters. In this study, any clusters with larger than 20 mem-
bers was selected. Finally, the library includes 459 clusters
and each cluster is represented by a structural model of
the corresponding interface fragment pair.

The stability of our clustering process was tested
across different runs. Specifically, five independent clus-
tering runs were carried out. Each run was generated by
a random order. The clustering results are listed in
Additional file 1: Table S1 of the supplemental docu-
ment. All five runs ended up with very close number of
total clusters. The numbers of the most abundant clus-
ters which contain more than 20 members are also very
close among these five runs. Moreover, clusters in all
runs were ranked by the number of their members. The
ranking profiles are plotted as Additional file 1: Figure
S1 in the supplemental document. The high similarity of
these profiles suggests that the topology of clusters does
not change between different runs. These testing re-
sults indicate the stability of our clustering process. In
order to increase the robustness of the clustering re-
sult, future improvement of our method includes the
application of hierarchical clustering algorithms, for
instance, the single-linkage clustering algorithm.

Complex assembly guided by the interface fragment pair

library

Given structures of any two interacting protein domains
I and ] we explore all possible modes of their binding
based on the constructed interface fragment pair library.
Without a priori knowledge of binding sites for both do-
mains, we assume that any residue pair from both of
their surfaces can be located on the binding interface.
Therefore, we first enumerate all potential combinations
of fragment pairs in the complex by assigning 9-amino-
acid long windows for both domains. The 9 consecutive
residues in the window correspond to a fragment in the
tertiary structure and the window can slide from N to C
terminus. Assuming the two protein domains contain
N; and Nj residues, respectively, the total combination
numbers of fragment pairs is (N;—8) x (N, - 8). Under
each combination, if the center residues of both frag-
ments are on the protein surfaces, we further compare
the structures of these two fragments to all the 459 en-
tries in the interface fragment pair library. The surface
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residues are defined as any residue with solvent access-
ible surface area larger than 10 A2, which was calculated
with atomic details of protein structures using a probe
size of 1.4A.

If a specific entry in the library includes an interface
pair of fragments A and B, we first align the Ca coordi-
nates of residues in the current window of domain I to
the fragment A and align residues in the other window
of domain ] to fragment B. In parallel, we align residues
in the window in domain I to fragment B and align win-
dow in J to A. In either case, we calculate the RMSD for
both alignments. If both RMSD values are smaller than
24, we further superimpose the structures of entire do-
mains I and | to their corresponding fragments A or B
according to the relative position of windows in each do-
main (Figure 2b). After both domains are aligned to the
interface fragment pair, a dimeric complex is con-
structed. The above process is iterated through all en-
tries in the library for all (N; - 8) x (N; - 8) combinations
of fragment pairs. This leads to an ensemble of struc-
tural models for binding between protein domains I and
J. Structural models include inter-residue clashes are
eliminated from the ensemble. We hypothesize that this
derived ensemble forms a representative space of quater-
nary packing between two protein domains of known
structures. We will evaluate the likelihood of the native
binding mode being in this space by a large-scale bench-
mark test.

Results and discussion

The statistics of interface fragment pairs in database of
interacting domains

We collected 153127 interface fragment pairs from 3did,
a database of interacting protein domains. These inter-
face fragment pairs belong to 4960 interacting domains.
Each interacting domain is under one specific ID of
3did. The interactions are either formed as homo-dimer
or hetero-dimer by different proteins, or formed by dif-
ferent domains in a same protein. The 153127 pairs were
classified based on their structural similarity. The criteria
of structural similarity are based on calculating the
RMSD of Ca atoms between the two comparing frag-
ment pairs. In this study, the cutoff value of RMSD was
given empirically. Consequently, the results of classifica-
tion depended on the determination of this RMSD
cutoff. In order to systematically test the RMSD depend-
ence of clustering results, we changed the cutoff values
from 1A to 50A. For each cutoff value, clustering was
carried out over all the 153127 pairs in the database.
Figure 3a gives the derived number of clusters under dif-
ferent value of RMSD cutoff. The plot shows that the
total number of clusters decreases fast when the cutoff
value becomes larger. When the cutoff equals to 14,
there are 153127 clusters, indicating that no more than
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Figure 3 We clustered all the 153127 interface fragment pairs
in the 3did database using different values of RMSD cutoff. The
derived numbers of clusters under different RMSD values are plotted
in (a). Based on these statistical results, a cutoff value of 4 Angstrom
was chosen in the following studies. This results in a totle number
of 2135 clusters. We counted the number of fragment pairs in these
2135 clusters and ranked them in decreasing order (b). We show
that fragment pairs are not uniformly distributed in all clusters. A
small number of clusters are highly abundant. As a result, only
clusters with more than 20 members were considered, leading
to the library of 459 highly representative entries. These 459
clusters cover more than 90% interface fragment pairs from the
whole database.

one interface fragment pairs can be clustered into the
same group. This gives the minimal resolution for the
structural difference between interface fragment pairs.
When the cutoff equals to 4A, the cluster number re-
duces to 2135. Finally, when the cutoff increases to 504,
there is only one cluster. This indicates that all pairs
were clustered into the same group, suggesting that clus-
tering will lose sensitivity under large cutoff value. Based
on these statistical results, a cutoff value of 4A was
chosen in the following studies.

After classification, we further analyzed the distribu-
tion of interface fragment pairs in different clusters. We
counted the number of fragment pairs in each of the
2135 clusters that were generated with a RMSD cutoff of
4A. All clusters were further ranked in decreasing order
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of pair numbers. Figure 3b gives the statistics of our cal-
culated results. The x axis of the figure is the cluster
index after ranking, while the y axis is the logarithm
scaled number of interface fragment pairs in each corre-
sponding cluster. The figure indicates that fragment
pairs are not uniformly distributed in all clusters. A
small number of clusters are highly abundant. For an ex-
ample, the most abundant cluster consists of 15884
members, which hold about 10% of all fragment pairs. In
contrast, a large number of fragment pairs are not fre-
quently observed in database. For instance, there are 754
clusters only including one member. In order to con-
struct a library containing the most representative struc-
tures of interface fragment pairs, we removed clusters
that are not well abundant. As a result, only clusters
with more than 20 members were considered, leading to
the library of 459 highly representative entries. These
459 clusters cover more than 90% interface fragment
pairs from the whole database.

The structural features of interface fragment pair library

We further investigated the distribution of protein sec-
ondary structures in the 459 representative models of
interface fragment pairs. Each fragment in a pair was
first divided into three categories: helix (H), strand (S)
and loop (L). The criteria that each fragment belongs to
one of these three categories depend on the secondary
structure type of the residue at the center of the corre-
sponding fragment. The secondary structure type of a
residue is determined by the standard DSSP algorithm
[34]. After we assigned categories for both fragments in
a pair, the interface fragment pair can therefore be clas-
sified into the following six motifs: HH (a pair between
two H fragments); SS (a pair between two S fragments);
LL (a pair between two L fragments); HL (a pair between
H and L fragments); HS (a pair between H and S frag-
ments); SL (a pair between S and L fragments); The per-
centage of these six motifs is plotted in Figure 4a, after
we got the secondary structure information for all the
459 fragment pairs in the library. The figure shows that
these six motifs are not equally distributed in the library.
For instance, the HH motif is more abundant than other
motifs. In order to study the secondary structure prefer-
ence of interface fragment pairs, the observed frequency
of each motif need to be normalized by the probability
of each secondary structural type at binding interfaces.
Therefore, we calculated the distribution of H, S and L
fragments in the chosen domain interfaces of the 3did
database. The probability of H fragments appears at do-
main interfaces is 0.432. The probability of S fragments
is 0.286, and the probability of L fragments is 0.282. We
further defined a preference score for each motif. For in-
stance, the preference score for HS motif is calculated as
In(P(HS)/(P(H)P(S))), in which P(HS) is the probability
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Figure 4 Each fragment was divided into three categories,
depending on the secondary structure type of the residue at
the center of the fragment. Consequently, the interface fragment
pair was classified into six motifs. The percentage of these six motifs
for all the 459 fragment pairs in the library is plotted in (a). We
further defined a preference score for each motif. A higher score for
a specific motif indicates that it is more favored to form.
Consequently, the preference scores for all six motifs are plotted in
(b). The figure suggests that fragment pair motifs are not equally
distributed, but have strong preference.

of finding HS motif at binding interfaces, and P(H) is
the probability of finding H fragments at binding inter-
faces. A higher score for a specific motif indicates that it
is more favored to form. Consequently, the preference
scores for all six motifs are plotted in Figure 4B.
Figure 4B shows that although HH motif is the most
abundant motif in the library, its preference score is
not the best, due to the highest probability of H frag-
ment in the database. In contrast, loops are more
preferred to appear at binding interfaces. Moreover,
L fragments prefer forming heterogeneous contacts
with S or H fragments. Finally, the interaction between
H and S fragments is the least favored pattern.

Figure 5 shows the typical structures of some interface
fragment pairs that are the most abundant in the library.
The fragment from one protein domain is in red, while
the fragment from the other domain in the complex is
in blue. These structures are selected from different
motifs. The two fragment pairs of HH motif are plotted
in Figure 5a and b. These are the two most abundant

Figure 5 We plotted the structures of some typical interface
fragment pairs that are the most abundant in the library. The
two most abundant clusters are shown in (a) and (b), both of which
are HH motif. The direction of each a-helix is indicated by the arrow
in the figures. Moreover, the interface fragment pairs from the SS
motif are shown in (c), (d) and (e). Two fragments are either from

a same piece of 3-sheet that are connected by hydrogen bonds,

or from two {3-sheets facing each other. Finally, fragment pairs

involving loops are shown in (f), (g) and (h).

structures in the library. The direction of each a-helix is
indicated by the arrow in the figures. The packing of
two interacting o-helices in these two fragment pairs
form supplementary angle. If the binding interface from
a pair of interacting proteins is located at their helical
regions, Figure 5a and b suggest two favorite model of
the complex’s quaternary structure. Moreover, the inter-
face fragment pairs from the SS motif are shown from
Figure 5¢ to e. Two modes are obtained if B-strands are
co-localized at the binding interface. They are either
from a same piece of B-sheet that are connected by
hydrogen bonds, as shown in Figure 5c¢ (parallel) and 5d
(antiparallel), or from two B-sheets facing each other, as
shown in Figure 5e. Finally, fragment pairs involving
loops are shown from Figure 5f to h. They are structur-
ally more diversified, but include less contact between
two fragments than HH or SS motifs.

Figure 6 illustrates that similar fragment pairs exist in
different domain interactions. The backbones of inter-
acting protein domains in the figure are in red and
green, while the fragment pair motifs at their interfaces
are in yellow and blue with cartoon representation. As
shown in Figure 6a and b, fragment pairs of two helices
are located at the interfaces of both dimers, while the
structures of these two dimers are not identical. Further-
more, two fragments form inter-molecular P-sheet in
both Figure 6¢ and d. One of these two structures, how-
ever, is a homo-dimer (Figure 6¢) and the other one is a
heterodimer (Figure 6d). Finally, similar LL motifs are
also found in very different binding interfaces, as shown
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Figure 6 Similar fragment pairs exist in different domain
interactions. Fragment pairs of two helices are located at the
interfaces of two different domain interactions in (a) and (b). Two
fragments form inter-molecular 3-sheet in (c) and (d). One of these
two structures is a homo-dimer and the other one is a heterodimer.
Finally, similar LL motifs are found in very different binding interfaces,
as shown in (e) and (f). The backbones of interacting protein domains
are in red and green, while the fragment pair motifs at their interfaces
are in yellow and blue with cartoon representation.

in Figure 6e and f. These popular fragment pairs indicate
biological insights to protein-protein interactions. They
reflect specific binding patterns which are significant to
the cellular functions of proteins. For instance, death do-
main is the most important structural module involved
in the regulation of apoptosis and inflammation. Packing
between helices (Figure 5a and b) is the most common
way in death domain induced complex assembly.
Moreover, the SS motifs (Figure 5c and d) lead to the
formation of intermolecular B-sheet. It is the major
driven force of fibrous protein aggregations. Abnormal
accumulation of these aggregates, known as amyloid
fibrils, in organs may lead to amyloidosis, and may
play a role in various neurodegenerative disorders. Fi-
nally, fragment pairs involving loops are the most
common binding patterns of cell signal transduction,
such as the binding motifs found in SH2 or SH3
domains.

The benchmark test of complex assembly using interface
fragment pair library

In order to evaluate the completeness of protein quater-
nary structural space represented by the interface frag-
ment pair library, we applied the library to a large-scale
benchmark set. The protein-protein docking benchmark
constructed by ZLAB was used in our study [32]. The
most updated version of the benchmark (4.0) includes a
set of 176 non-redundant protein—protein complexes.
For each entry in the benchmark, we first separated
subunits from the complex. Subunits were assembled to-
gether by aligning the corresponding fragments in their
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structures with each of the 459 interface fragment pairs
in the library, based on the algorithm introduced in the
method. Among the derived ensemble of all complex
models, we further found the target that has the lowest
RMSD from the structure of the native complex. The
distribution of the lowest RMSD models for all 176
benchmark entries is plotted as a histogram in Figure 7.
The figure shows that the peak of the distribution is at
4.0 Angstrom. For more than 90% of the 176 entries, we
can find structural models that have RMSD less than 6.0
Angstrom from the native complexes, indicating that the
native binding can be reproduced with a high successful
rate. Our benchmark results thus suggest that the space
of protein quaternary structures can be simplified by a
limited number of modes expanded by the interface
fragment pair library. It is worth mentioning that the
purpose of this test is not for systematic comparison of
docking algorithms, but to enumerate all binding modes
of a complex through a fragment-based library. Thereby,
we used bound structures of subunits during complex
assembly instead of unbound structures that are nor-
mally used in docking tests.

Some specific examples of our modeling results are
shown in Figure 8. The Ca traces in red and green are
the lowest RMSD structural models of assembled recep-
tors and ligands, while their native structures are super-
imposed transparently by cartoon representation. The
PDB id of the selected complexes, and the RMSD values
between the model and the native structures are also
listed in the figure. A variety of different secondary
structure types are presented at the binding interfaces of

Count
= N W
o O

o O

Figure 7 We tested the library by a large-scale benchmark
including a set of 176 non-redundant protein-protein
complexes. For each entry in the benchmark, a large number of
structural models were generated. Among the derived ensemble
of all complex models, we further found the target that has the
lowest RMSD from the structure of the native complex. The
distribution of the lowest RMSD models for all 176 entries is
plotted by the histogram. The figure suggests that the native-like
binding is highly likely in the structural ensemble of modeled
protein complexes that were built through the library.
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Figure 8 We show some specific examples of our benchmark
results. A variety of different secondary structure types are presented
at the binding interfaces of these complexes. An SS motif in which two
strands form hydrogen-bond-based contacts is observed in (a). A pair
of helices is observed at the interface of (b). Comparatively, the
complex in (c) contains a more extensive interface. The native-like
binding modes were successfully reproduced in these three cases,
while (d) shows an example in which we failed to assemble the
proteins into a complex that is close to the native quaternary structure.
The interface fragment pairs are highlighted in the modeled

structural complexes. The fragments located at the interfaces of green
monomers are shown in blue and the fragments located at the
interfaces of red monomers are shown in yellow.

these complexes. An SS motif in which two strands form
hydrogen-bond-based contacts is observed in Figure 8a,
while in Figure 8b, binding is achieved through interac-
tions between a pair of helices. Comparatively, the com-
plex in Figure 8c contains a more extensive interface.
In all these three cases, the native-like binding modes
exist in the structural ensemble we constructed
through the interface fragment pair library. In con-
trast, Figure 8d shows an example in which we failed
to assemble the proteins into a complex that is close
to the native quaternary structure. The interface of the
receptor in this complex contains a long region of dis-
ordered loop. The corresponding fragment pairs in
this interface may not appear in our library, leading
into the result that its native-like binding cannot be
derived.

In order to estimate the difficulty in finding good can-
didates from the ensemble of structural model, we have
also included the total number of structural models gen-
erated for each entry in the benchmark in additional to
the lowest RMSD. The distribution of total number of
structural models for all 176 benchmark entries is
plotted as a histogram in supplemental document as
Additional file 1: Figure S2. The figure shows that our
assembly algorithm generated less than 200 structural
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models for about 90% of entries. The average number of
structural models over all entries is 127. The number of
structural models generated in the ensemble of each
entry depends on the size of interacting proteins, as well
as the structural features at their binding interface.
Overall, the result indicates that native-like binding
modes between proteins can be found among a relatively
small number of structural models by our assembling al-
gorithm. Finally, it is worth mentioning that the library
of 459 fragment pairs is a highly selective representation
of the 3did database, which originally includes 153127
pairs. A clustering procedure was performed, and all
pairs in one cluster were merged into one as a represen-
tative model. Additionally, only the most abundant
clusters containing more than 20 members were se-
lected. Consequently, the original information of which
fragment pair belongs to which protein structure has
been averaged our during this clustering and selection
process. Furthermore, our current library of fragment
pairs only contains structural information. There is no
sequence information associated with these fragment
pairs. In other words, the primary purpose of this study
is to study the features of protein quaternary structural
space. Therefore, in current benchmark test, we did not
eliminate the potential overlap between the 3did data-
base and the docking benchmark. However, in future de-
velopment, statistical-based sequence profile will be
assigned to fragment pairs in the library. The library
with sequence information will be used to predict and
evaluate the structural models of protein-protein inter-
actions. Under this circumstance, the overlap between
our library and any benchmark set will be accordingly
removed.

Conclusions

The physical interactions between proteins play pivotal
roles in many biological processes. Understanding the
structural features of these interactions is the basis to
study protein functions in cells. However, the spatial ar-
rangement between two interacting proteins or protein
domains is highly diversified, leading into an interesting
question of whether the complexity of protein binding
interfaces can be simplified. Similar to the space of pro-
tein tertiary structures in which discrete patterns are
clearly observed on fold and sub-fold motif levels, it has
been found that the space of protein quaternary struc-
tures is highly degenerate due to the packing of compact
secondary structure elements at interfaces. Therefore, it
is necessary to further decompose the protein quater-
nary structural space into a more local representation.
Fragment-based methods have been proved their success
in predicting protein tertiary structures. In this article,
similar idea has been extended to protein interfaces. Spe-
cifically, a library was constructed by collecting the
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interface fragment pairs from the structural database of
protein interacting domains. After structural-based clus-
tering, we found that more than 90% of these interface
fragment pairs can be represented by a limited number of
highly abundant motifs. These motifs were further used to
guide complex assembly. A large-scale benchmark test
shows that the native-like binding is highly likely in the
structural ensemble of modeled protein complexes that
were built through the library. Overall, our study presents
supportive evidences that the space of protein quaternary
structures can be represented by the combination of a
small set of secondary-structure-based packing at binding
interfaces.

In order to conduct a comparative study between dif-
ferent databases, we downloaded information of protein
interactions from iPfam. The iPfam database includes a
total number of 8160 intermolecular domain interac-
tions. These interactions belong to either homodomain
or heterodomain. For each interacting domain structure
in iPfam, we enumerated all interface fragment pairs
based on the same criteria introduced in the method.
We compared all these interface fragment pairs with our
fragment pair library derived from 3did. We calculated
RMSD between fragment pairs in iPfam and our library.
The RMSD of the closest fragment pair in the library
was recorded. The distribution of this closest RMSD for
fragment pairs in all 8160 iPfam interactions is plotted as
a histogram in the supplemental document (Additional file
1: Figure S3). Based on the statistical results shown in the
figure, for more than 98% of fragment pairs in iPfam data-
base, we are able to find an entry from our library which
RMSD is below 4 Angstrom. This comparative analysis
indicates that the features of quaternary packing are
conserved across different structural databases of protein-
protein interactions. Moreover, the cutoff value of 20
members in each cluster was empirically determined. In
order to test the robustness of our clustering procedure
and investigate if change of this parameter does not sig-
nificantly affect the quality of the final library, we reduced
the cutoff value from 20 to 10, so that any clusters with
larger than 10 members was selected. Consequently, the
library was expanded from 459 to 596 clusters. We tested
the library including 596 clusters to all domain inter-
actions in the iPfam database. As shown in Additional
file 1: Figure S3, the striped bar is the statistical results
for library with 596 clusters, while black bar is the
statistical results for the original library with 459 clus-
ters. The figure shows that distributions in these two
histograms are highly similar, indicating that changing
cluster size does not significantly affect the quality of
the final library.

Although the native-like complex models are among
the structural ensembles in most cases of the benchmark
test, as shown in Figure 7, we are not able to identify
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them from other models due to the fact that the current
library is purely geometric-based. The primary purpose
of constructing the library is not to develop a docking
algorithm or predict protein-protein interactions, but to
study the features of protein quaternary structural space.
However, the method will become practically useful after
integrating the sequence or energetic information into
the library. For instances, future improvements include
assigning statistical-based sequence profiles to each frag-
ment pair in the library [35]. During complex assembly,
corresponding sequences in proteins will be aligned to
the profiles of the fragments. Only fragments with align-
ment scores higher than certain cutoff values will be se-
lected. This will narrow down the searching space when
we generate structural ensembles of target complexes.
Moreover, our method can also be combined with bind-
ing sites prediction [36,37], so that only the fragments at
the predicted binding sites of target proteins will be se-
lected and compared with fragment pairs in the library.
Finally, currently available energy-based or empirical
scoring functions [38] can be applied to distinguish
native-like conformations from generated structural en-
sembles. The interface fragment pair library provides an
efficient tool of sampling the space of protein quaternary
structures.

Additional file

Additional file 1: Figure S1. We have tested the stability of our
clustering process across different runs. Five independent clustering runs
were carried out. Each run was generated by a random order. Clusters in
all runs were ranked by the number of their members. The ranking
profiles are plotted. The high similarity of these profiles suggests that the
topology of clusters does not change between different runs. Figure S2.
In order to estimate the difficulty in finding good candidates from the
ensemble of structural model, we included the total number of structural
models generated for each entry in the benchmark in additional to the
lowest RMSD. The distribution of total number of structural models for all
176 benchmark entries is plotted as a histogram. The figure shows that
our assembly algorithm generated less than 200 structural models for
about 90% of entries. The average number of structural models over all
entries is 127. The number of structural models generated in the
ensemble of each entry depends on the size of interacting proteins, as
well as the structural features at their binding interface. Figure S3. We
calculated RMSD between fragment pairs in iPfam and our libraries. The
RMSD of the closest fragment pair in each library was recorded. The
distributions of this closest RMSD for fragment pairs in all 8160 iPfam
interactions are plotted as histograms. The black bar is the statistical
results for library with 459clusters, while the striped bar is the statistical
results for library with 596 clusters. Table S1. We have tested the stability
of our clustering process across different runs. Five independent
clustering runs were carried out. Each run was generated by a random
order. The clustering results are listed in the table.
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