
sensors

Article

Using Secure Multi-Party Computation to Protect Privacy on a
Permissioned Blockchain

Jiapeng Zhou , Yuxiang Feng *, Zhenyu Wang and Danyi Guo

����������
�������

Citation: Zhou, J.; Feng, Y.; Wang, Z.;

Guo, D. Using Secure Multi-Party

Computation to Protect Privacy on a

Permissioned Blockchain. Sensors

2021, 21, 1540. https://doi.org/

10.3390/s21041540

Academic Editor: Fatos Xhafa

Received: 25 January 2021

Accepted: 19 February 2021

Published: 23 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Software Engineering, South China University of Technology, Guangzhou 510006, China;
201821038647@mail.scut.edu.cn (J.Z.); wangzy@scut.edu.cn (Z.W.); 201821038605@mail.scut.edu.cn (D.G.)
* Correspondence: yxfeng@scut.edu.cn; Tel.: +86-1892-512-7353

Abstract: The development of information technology has brought great convenience to our lives,
but at the same time, the unfairness and privacy issues brought about by traditional centralized
systems cannot be ignored. Blockchain is a peer-to-peer and decentralized ledger technology that
has the characteristics of transparency, consistency, traceability and fairness, but it reveals private
information in some scenarios. Secure multi-party computation (MPC) guarantees enhanced privacy
and correctness, so many researchers have been trying to combine secure MPC with blockchain to
deal with privacy and trust issues. In this paper, we used homomorphic encryption, secret sharing
and zero-knowledge proofs to construct a publicly verifiable secure MPC protocol consisting of two
parts—an on-chain computation phase and an off-chain preprocessing phase—and we integrated the
protocol as part of the chaincode in Hyperledger Fabric to protect the privacy of transaction data.
Experiments showed that our solution performed well on a permissioned blockchain. Most of the
time taken to complete the protocol was spent on communication, so the performance has a great
deal of room to grow.

Keywords: privacy; secure multi-party computation; permissioned blockchain; Hyperledger Fabric

1. Introduction

Traditional centralized systems provide efficient and personalized service, but the
negative effects of centralization are increasingly appearing: corruption, inequality and
privacy issues. As it turns out, some decentralized technologies [1] are urgent. Blockchain
is a peer-to-peer and decentralized ledger technology that has the characteristics of trans-
parency, consistency, immutability and traceability. First popularized for crypto-currency
systems such as Bitcoin [2], blockchain has seen explosive development in recent years.
There are two types of blockchain: public and permissioned. Anyone can freely join a pub-
lic blockchain and submit proposals, whereas a permissioned blockchain is dominated by
a group of known nodes and restricts joining the network via access control.

A core problem is that all users who have joined the blockchain see an identical ledger,
making it thorny to handle transactions that rely on confidential data [3]. Access control
mechanisms are usually used to deal with the privacy requirements of the associated stake-
holders in decentralized networks [4] such as blockchains. One instance is the Hyperledger
Fabric Channel, which protects privacy by restricting data access, but the problem still
exists, resulting from the fact that nodes in the same channel deal with identical trans-
actions. A simpler solution is public key cryptography. In this solution, the participant
encrypts a message using his public key and submits it to the ledger, but ciphertexts under
different public keys can not be collaboratively analyzed. The privacy issues limit the wide
application of blockchain.

Excitingly, the cryptographic technology of secure multi-party computation is a perfect
way to deal with the problem of privacy. This concept dates back to what is called “Yao’s
millionaires’ problem” [5], a famous problem introduced by Andrew Yao in 1982. Formally,
we assume that n participants (P1, P2, ..., Pn) all hold the secret data x1, x2, ..., xn and that they

Sensors 2021, 21, 1540. https://doi.org/10.3390/s21041540 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9028-8575
https://doi.org/10.3390/s21041540
https://doi.org/10.3390/s21041540
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21041540
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/1424-8220/21/4/1540?type=check_update&version=2

Sensors 2021, 21, 1540 2 of 17

are willing to cooperate to compute a function (y1, y2, ..., yn) ← F(x1, x2, ..., xn). Throughout
the whole process, each participant Pi only learns his own value xi, yi, and information can
be derived from yi. Beyond that, he learns nothing. Many studies have been undertaken
in order to design secure multi-party computation (MPC) protocols, such as oblivious
transfer [6], garbled circuit [7], homomorphic encryption [8] and the linear secret sharing
scheme [9,10].

Secure MPC provides enhanced privacy, correctness and independence of inputs,
and guarantees output delivery. Blockchain perfectly suits secure MPC protocols because
they all deal with security and trust issues in distributed environments [11]. There are
many practical scenarios that benefit from utilizing secure MPC based on blockchain, such
as statistical analysis of health data [12], anonymous electronic voting [13], initial public
offering(IPO) [3] and edge computing [14].

In this paper, we propose a publicly verifiable, secure MPC protocol to protect the
transaction privacy of a permissioned blockchain. The protocol contains two parts: an
on-chain computation phase and an off-chain preprocessing phase. Operations such as key
generation, data encryption and generating pre-processing data are implemented off-chain,
and secure computations are performed on-chain. The execution of the on-chain protocol
is integrated as part of the chaincode in Hyperledger Fabric [15]. Concretely, this paper
makes the following contributions:

(1) In the on-chain phase, we facilitate additive secret sharing and the Paillier cryp-
tosystem, an additive homomorphism encryption scheme, to preserve the confidentiality of
private data. Computations are based on encrypted shares and can be parallelized, which
greatly resolves the N-1 attack problem. We integrated the on-chain protocol as part of the
smart contract to utilize its correctness and verifiability. (2) We adopted zero-knowledge
proof technology, specifically that of Pedersen [16], to construct a non-interactive verifiable
secret sharing scheme and to prove the correctness of calculation tasks. Any stage and any
intermediate result can be verified by opening commitments. (3) In the off-chain phase,
based on Beaver randomization technology [17], we designed a new protocol to generate
< a, b, c, d > quadruples, making it possible to perform multiplication on encrypted secret
shares (differently from SPDZ [18]). (4) Finally, we describe how to integrate our secure MPC
protocol into Hyperledger Fabric. By adding a pluggable component called “decryptor” to
Hyperledger Fabric, we allow peers to process decryption requests during the endorsement
phase, which eliminates communication interactions among participants and the blockchain.
For as long as decryptors are online, what participants need to do is encrypt, input and wait
for outputs.

The remainder of the paper is structured as follows. In Section 2, previous studies on
privacy protection in blockchains are briefly reviewed. In Section 3, details of the proposed
method are described. Section 4 discusses the security issues surrounding the proposed
method. In Section 5, experimental results of the computational performance are presented.
In Section 6, we provide our conclusions on the work presented in this paper.

2. Related Work

Many works have been done to protect privacy in the blockchain in recent years.
Frequently used cryptographic techniques [19] for privacy protection in blockchains [20–23]
include ring signature, mixing services and zero-knowledge proof.

Here we mainly focus on investigating the development of the combination of
blockchain and secure MPC. Bitcoin was first utilized to obtain fairness in a secure multi-
party protocol [24–26]. Other researchers have also endeavored to deploy secure MPC on
blockchains to solve the problem of privacy.

Sánchez [27] considered outsourcing encrypted computation to cloud-based blockchain
and rewarding miners for generating preprocessing data for secure multi-party computation.
To provide correctness, verifiability and privacy confidentiality for smart contracts in the
blockchain, they combined proof-carrying code and secure multi-party computation, which
effectively handle Gyges and DAO attacks. In addition, zero-knowledge proofs of proofs is

Sensors 2021, 21, 1540 3 of 17

used to prove the validity of smart contracts. Enigma, proposed by Zyskind et al. [28], is a
blockchain-based decentralized computation platform. Their architecture consists of two
parts: blockchain and Enigma. Enigma is an off-chain network responsible for private and
intensive computations. Blockchain deals with access control, identity management, link
protocols and the tamper-proof log of events in Enigma. They made a series of performance
improvements to secure MPC, such as hierarchical secure MPC, adaptable circuits and
network reduction, making the technology practical even when used in a large network.
Kosba et al. [29] proposed HAWK, a user-friendly framework for creating smart contracts
with guaranteed privacy. Hawk provides a compiler with which programmers have no
necessity to implement any cryptography. It relies on a trusted manager to handle con-
fidential data and the manager is trusted not to leak secrets, which can be implemented
by trusted hardware or instantiated with multi-party computation. Choudhuri et al. [30]
used witness encryption to transform the fairness problem in secure MPC into the one in
decryption. They utilized bulletin boards such as Google’s certificate transparency logs and
a blockchain to record some publicly untamable information. Participants need to release to
the bulletin board tokens with shares, which others could use to decrypt ciphertext, and
then they must publish their secret in limited time.

Some researchers focused on Hyperledger Fabric, a typical permissioned blockchain
hosted by the Linux Foundation. Benhamouda et al. [31] used secure MPC to support
private-data computation in Hyperledger Fabric. In contrast to previous studies, they
integrated secure MPC protocols as part of the smart contract rather than running them in
an off-chain network. However, their solution requires “privileged clients” that have access
to the same private key peers used for data encryption. Ghadamyari et al. [12] also focused
on Hyperledger Fabric. Although they facilitated the Paillier cryptosystem to obtain data
privacy and used access control list rules to restrict access to the ledger, data owned by
different participants are encrypted by the same public key, resulting in disclosing privacy
when the owner of the private key and the invoker of the smart contract conspire.

The previous work can be classified into two main types: on-chain secure MPC pro-
tocols that integrate the protocols into the blockchain architecture itself, and off-chain
secure MPC protocols that offload intensive computation to an off-chain network. Ben-
hamouda [31] described a comparison between these two types of protocols, and we briefly
sum that up as follows: Running the secure MPC on-chain enables us to take use of the
blockchain facilities for communication and identity management, which need to be re-
implemented in the off-chain secure MPC protocol. The core advantage of an off-chain
secure MPC protocol is its efficiency of computation, but the situation is more applica-
ble to permissionless blockchains, which are typically slower than permissioned ones.
Thus, on-chain secure MPC protocols are more applicable to be deployed on permissioned
blockchains, such as Hyperledger Fabric.

Our MPC-over-Fabric architecture is similar to the on-chain secure MPC protocol
described by Benhamouda [31], but not quite the same. One key difference is that we do not
require “privileged clients” or a “helper server”, which may raise some security concerns.
Without any security assumptions, we add a pluggable component called a “decryptor” to
the peer responsible for decrypting during the endorsement phase. Another difference is
that secrets belong to the participants—the data providers who take part in computation
through clients of the blockchain. Participants split their secrets into shares and encrypt
these shares using different public keys, ensuring no single participant can see all of them.
Endorsement peers only execute smart contracts, but those in [31] also serve as the entities
with the secrets.

3. The Proposed Method
3.1. Overview of Our Framework

In this section, we describe the main framework of the proposed secure MPC com-
putation scheme. Figure 1 shows the proposed architecture for secure MPC based on
a blockchain, which contains two phases: an on-chain computation phase and an off-chain

Sensors 2021, 21, 1540 4 of 17

preprocessing phase. Operations such as generating preprocessing data, key generation
and data encryption are implemented off-chain, and secure computations are performed
on-chain. The execution of MPC computation protocol is integrated as part of the chaincode
in Hyperledger Fabric.

Cache

Quadruple Generation
Protocol

Sacrifice Protocol

Off-chain Preprocessing Phase

<a,b,c,d>

On-chain Compute Phase

Compute Function

Smart Conctrat

On-chain MPC Protocol

Peer
Decryptor

org

Blockchain network

Participant

org org

org

Key

<a,b,c,d>
<a,b,c,d> ……

Figure 1. Architecture overview of the secure MPC scheme. Participants interact with the blockchain
through peers, which have joined in the organizations in the blockchain.

The related parties are briefly explained as follows:

• Participant: the data owner.
• Peer: compute node in Hyperledger Fabric, concretely the endorsement node.
• Decryptor: a component in the Peer assisting decrypting during the endorsement

phase. (details can be seen in Section 3.4.3).
• Compute function: the computational logic provided by participants.
• On-chain MPC protocol: the auxiliary protocol utilized to perform on-chain, secure,

multi-party computation.
• Quadruple generation protocol: the protocol used to generate preprocessing data

(< a, b, c, d > quadruples) for on-chain secure multi-party computation.
• Sacrifice protocol: the protocol used to check whether a quadruple is valid.

A jointly secure computation task proceeds according to the following steps:

1. (Off-chain preprocessing phase): All participants use the quadruple generation proto-
col to obtain a sufficient number of < a, b, c, d > quadruples and check whether the
quadruples are valid using the sacrifice protocol. This step is not necessary for every
task. A huge number of quadruples can be generated in advance for future tasks.

2. (On-chain computation phase): All participants break raw input values to secret
shares, encrypt secret shares and quadruple shares, generate commitments and submit
all of them to the ledger.

3. (On-chain computation phase): Participants store the addresses of decryptors to the
ledger.

4. (On-chain computation phase): The invoker (one of the participants) invokes the
MPC smart contract to execute the computation task.

5. (On-chain computation phase): Participants decrypt their outputs, which can also be
carried out by decryptors, and reconstruct the final result.

Sensors 2021, 21, 1540 5 of 17

3.2. The Algorithms Used

In this section, we describe the cryptography algorithms used in our protocol.

(1) Additive homomorphism encryption

Additive homomorphic encryption allows one to perform computations on ciphertext.
The result of the calculation is the encryption of their sum.

Let AHE = (KeyGen, Enc, Dec, Add, Sub, cMul) be an instance of an asymmetric
additive homomorphism encryption scheme. We will use the following definitions: The
message space is denoted as M̃, and the ciphertext space is denoted as C̃. ⊕ denotes the
addition of C̃ and 	 denotes the subtraction of C̃. The multiplication of a scalar plaintext
m ∈ M̃ and a ciphertext c ∈ C̃ is denoted as⊗, and the encryption of the plaintext message
m is denoted as m̄ ∈ C̃. AHE is denoted as follows:

1. KeyGen(κ): takes the security parameter κ as the input, and outputs the private key
sk and the public key pk.

2. Enc(pk, m): takes the message m ∈ M̃ and the public key pk as the inputs, and outputs
the ciphertext m̄ ∈ C̃.

3. Dec(sk, c): takes the ciphertext c ∈ C̃ and a private key sk as the inputs, and outputs
the decrypted result m ∈ M̃.

4. Add(c1, c2): takes two ciphertexts c1, c2 ∈ C̃ as the inputs, and outputs the ciphertext
c3 = c1

⊕
c2, so that Dec(sk, c3) = Dec(sk, c1) + Dec(sk, c2)

5. Sub(c1, c2): takes two ciphertexts c1, c2 ∈ C̃ as the inputs, and outputs the ciphertext
c3 = c1	 c2, so that Dec(sk, c3) = Dec(sk, c1)− Dec(sk, c2)

6. cMul(m1, c1): takes the scalar m1 ∈ M̃ and the ciphertext c1 ∈ C̃ as the inputs, and
outputs the ciphertext c2 = m1

⊗
c1 ∈ C̃, so that Dec(sk, c2) = m1 ∗ Dec(sk, c1)

In this paper, we use the popular Paillier [32] cryptosystem as the additive homomor-
phism encryption scheme due to its simple structure and high execution efficiency. It has
been applied to many practical scenarios, such as electronic voting and federated learning.
The Paillier cryptosystem has the plaintext space ZN and the ciphertext space ZN2 *, and N
is the security parameter.

(2) Additive secret sharing

In this paper, we use (n,n)-threshold additive secret sharing scheme and its implemen-
tation is as follows [33].

1. Secret shares: To share a secret a, the dealer chooses n − 1 random shares aj (j =
1, 2, ..., n− 1) in GF(p), and computes a = an + ∑n−1

j=1 ai (mod p). The dealer then sends
the shares ai to participant Pi (i = 1, ..., n).

2. Secret reconstruction: All participants collaboratively reconstruct the secret: a = ∑n
j=1

ai(mod p).

The above implementation possesses additive homomorphism. Concretely, if partici-
pants P1, P2, ..., Pn, respectively, hold shares a1, a2, ..., an and b1, b2, ..., bn that are associated
with secrets a and b, the shares of (a + b) are a1 + b1, a2 + b2, ..., an + bn.

(3) Pedersen

Pedersen [16,34] is a non-interactive commitment scheme with additive homomor-
phism, so we can easily perform the same calculation on commitments to prove the
correctness of the results at any stage. We use Pedersen to construct our non-interactive
verifiable secret sharing scheme. There are three phases in the Pedersen scheme used in
our proposed method:

1. Setup Phase: All participants agree on an elliptic curve E over a field Fn, a generator
G ∈ E/Fn and H ∈ E/Fn.

2. Commitment Phase: Participant Pi chooses a random number r ∈ Fn, and computes
the point Commi = C(xi, r) = r ∗ G + xi ∗ H, which represents the commitment for Pi

Sensors 2021, 21, 1540 6 of 17

’s secret xi. r is a blinding factor that prevents observers from guessing xi. Pi sends
Commi to the receiver Pj.

3. Open Phase: Pi sends (xi, r) to the receiver Pj and Pj verifies whether r ∗ G + xi ∗ H
equals Commi. Pj refuses the commitment if they are not equal.

The Pedersen algorithm also has additive homomorphism and it is easy to prove the
following equations:

Comm(v1 + v2, r1 + r2) = Comm(v1, r1) + Comm(v2, r2)

Comm(v1− v2, r1− r2) = Comm(v1, r1)− Comm(v2, r2)

Comm(c ∗ v, c ∗ r) = c ∗ Comm(v, r)

3.3. The Secure MPC Protocol

In this section, we present the core idea of our secure MPC protocol. Since a blockchain
is completely public, we aim to build a protocol for multi-party arithmetic computation over
Fk

p , which is composed of addition and multiplication, and has the following characteristics:

1. Privacy confidentiality: All the input values and output values are in encrypted form
and no one learns anything except his own input secret and output values.

2. Publicly verifiable: Computations can be publicly executed and are controlled by no
one. Any step during computation can be publicly verified.

Similarly to SPDZ [18], structured in an offline phase and an online phase, our solu-
tion consists of an on-chain computation phase and an off-chain preprocessing phase. We
combine additive secret sharing and the Paillier cryptosystem to preserve the confiden-
tiality of privacy. Computations are based on encrypted shares, which can be parallelized.
What is more, the Pedersen system is utilized to ensure the verifiability of secret sharing
and computations.

We assume a publicly trusted processor (PTP), which can be instantiated with a trusted
execution environment (TEE) or a trusted player. In this paper, the smart contract in the
blockchain plays the role of PTP. PTP receives inputs, calculates functions and generates
outputs without mistakes. All behaviors of PTP are public and can be verified.

3.3.1. On-Chain Computation Procotol

The on-chain computation phase consists of four sub-protocols—protocol input, proto-
col addition, protocol multiplication and protocol output. We assume enough < a, b, c, d >
quadruples have been generated in the off-chain preprocessing phase. Details about
quadruple generation can be seen in Section 3.3.2.

(1) Protocol Input

1. All participants Pi (i = 1, 2, ..., m) use the Paillier algorithm to generate their private
key ski and public key pki.

2. Each participant Pi serves as a dealer, who uses additive secret sharing to break his
secret Si to n shares Sij (j = 1, 2, ..., n), and then Pi encrypts the share for Pj using Pj’s
public key:

Sij ← Enc(pk j, Sij), j = 1, 2, ..., n (1)

3. Pi chooses n random blinding factor xij ∈ Fn(j = 0, 1, 2, ..., n), and computes the
commitments for shares Sij(j = 1, 2, ..., n):

Commij = C(Sij, xij)← xij ∗ G + Sij ∗ H, j = 1, 2, ..., n (2)

4. Pi encrypts the blinding factor:

xij ← Enc(pk j, xij), j = 1, 2, ..., n (3)

Sensors 2021, 21, 1540 7 of 17

5. Pi generates the commitment of the secret value itself:

Commi = C(Si, x0)← x0 ∗ G + Si ∗ H, x0 =
n

∑
k=1

xk (4)

6. Finally, Pi submits his input

{Si1, Si2, ..., Sin, Commi, Commi1, Commi2, ..., Commin, xi1, xi2, ..., xin} (5)

to PTP.

Other participants Pj(j 6= i) can freely get Pi’s input from PTP and decrypt Sij, xij
using his secret key sk j, and then open and verify the commitments by checking whether
the following equations are all true:

Dec(sk j, xij) ∗ G + Dec(sk j, Sij) ∗ H = Commij

Commi =
n

∑
k=1

Commik
(6)

If true, the share Sij is valid and Pi splits his secret value correctly, meaning the Pi has
honestly submitted his input.

Moreover, participants must submit enough quadruples < a, b, c, d > and commit-
ments of quadruples shares to PTP before computation. Pi encrypts his quadruple shares
using his public key pki and submits it to PTP:

< aik, bik, cik, dik >← Enc(ski,< aik, bik, cik, dik >), k is the index o f quadruples (7)

(2) Protocol Addition

An addition gate is defined as follows:

{y1, y2, ..., yn} ← F̃(< S1 >,< S2 >, ...,< Sm >)

< Sk >← (Sk1, Sk2, ..., Skn), k = 1, 2, ..., m
(8)

The inputs are the encrypted shares of secret inputs Si (i = 1, 2, ..., m), and there are n
output values for n participants. The i-th output value yi is a ciphertext encrypted by Pi’s
public key pki. We define the addition gate as computation of any linear function:

F(·)←
m

∑
i=1

ci ∗ Si (9)

1. To compute Si + Sj, PTP computes:

yk = Sijk ← Sik ⊕ Sjk, k = 1, 2, ..., n (10)

2. For a public scalar c ∈ GF(p) and a secret input Si, to compute c ∗ Si, PTP computes:

yk = Scik ← c⊗ Sik, k = 1, 2, ..., n (11)

3. To compute c + Si, PTP computes:

yk = Scik ←ck ⊕ Sik , k = 1, 2, ..., n

(c1 = Enc(sk1, c), cj = Enc(sk j, 0) (j = 2, ..., n))
(12)

Since both (n,n)-threshold additive secret sharing and the Paillier cryptosystem are
additively homomorphic, any linear function with n inputs can be computed locally
without interactions.

Sensors 2021, 21, 1540 8 of 17

Then, we can prove the equation:

F(S1, S2, ..., Sm, c1, c2, ..., cm) =
n

∑
k=1

Dec(skk, yk) (13)

1. For Si + Sj:
n

∑
k=1

Dec(skk, yk) =
n

∑
k=1

(Sik + Sjk) = Si + Sj (14)

2. For c ∗ Si:
n

∑
k=1

Dec(skk, yk) =
n

∑
k=1

c ∗ Sik = c ∗ Si (15)

3. For c + Si:
n

∑
k=1

Dec(skk, yk) = (c + Si1) +
n

∑
k=2

(0 + Sik) = c + Si (16)

Moreover, the commitments of outputs can be calculated in the same way to provide
the verifiability:

Commyk ← F(Comm1k, Comm2k, ..., Commmk, c1, c2, ..., cm), k = 1, 2, ..., n (17)

Commy ← F(Comm1, Comm2, ..., Commm, c1, c2, ..., cm) (18)

The result holds since the Pedersen algorithm is additively homomorphic.
Note that we do not need open commitment after every addition gate, resulting from

the fact that the addition gate can be automatically operated by PTP without interactions
(except the final one).

(3) Protocol Multiplication

A multiplication gate is defined as follows:

{y1, y2, ..., yn} ← F̃(< S1 >,< S2 >, ...,< Sm >)

< Sk >← (Sk1, Sk2, ..., Skn)
(19)

The input is the encrypted shares of secret inputs Si (i = 1, 2, ..., m), and there are n
output values for n participants. The i-th output value yi is a ciphertext encrypted by Pi’s
public key pki. We define the multiplication gate as the computation of the multiplica-
tive monomial:

F(·)←
m

∏
i=1

Si (20)

Multiplication consumes < a, b, c, d > quadruples, which is similar to Beaver triples [17].
The basic process is as follows:

x ∗ y = (x− a + a) ∗ (y− b + b)

= (x− a)(y− b) + a(y− b) + b(x− a) + ab

= t ∗ s ∗ d + a ∗ s + b ∗ t + c

(21)

a, b and c are random finite field elements unknown to everyone, and d equals 1. d is neces-
sary because it makes it possible to perform Beaver Multiplication [17] in encrypted form.

To compute Si ∗ Sj, there are three steps:

1. Obtain the encrypted shares of Si − a and Sj − b:

Tsiak ← Sik 	 ak, k = 1, 2, ..., n

Tsjbk ← Sjk 	 bk, k = 1, 2, ..., n
(22)

Sensors 2021, 21, 1540 9 of 17

2. Obtain t, s and ts:

t←
n

∑
k=1

Dec(skk, Tsiak)

s←
n

∑
k=1

Dec(skk, Tsjbk)

ts← t ∗ s

(23)

3. Obtain the encrypted shares of Si ∗ Sj:

yk = Tsijk ← (ts⊗ dk)⊕ (s⊗ ak)⊕ (t⊗ bk)⊕ (ck), k = 1, 2, ..., n (24)

Now we have:

n

∑
k=1

Dec(skk, yk) =
n

∑
k=1

(ts ∗ dk + s ∗ ak + t ∗ bk + ck)

= ts ∗
n

∑
k=1

dk + s ∗
n

∑
k=1

ak + t ∗
n

∑
k=1

bk +
n

∑
k=1

ck

= ts + s ∗ a + t ∗ b + c

= (Si − a) ∗ (Sj − b) + a ∗ (Sj − b) + b ∗ (Si − a) + a ∗ b

= (Si − a + a) ∗ (Sj − b + b)

= Si ∗ Sj

(25)

Therefore, the result is correct.
To reduce the communication complexity and improve the computation efficiency,

we build our multiplication gate in a hierarchical way, as shown in Figure 2. Assuming
the length of a multiplicative monomial is m, then the depth of the multiplication gate is
log(m), and computations in the same layer can be performed in parallel. The maximum
depth of an arithmetic computation equals the maximum depth of monomials—log(m).

log(M)← max(log(m1), log(m2), ..) (26)

X1 ESS

X2 ESS

X3 ESS

X4 ESS

X5 ESS

X6 ESS

X7 ESS

X8 ESS

Product ESS

Mul Gate

Mul Gate

Mul Gate

Mul Gate

Mul Gate

Mul Gate

Mul Gate

Figure 2. Hierarchical multiplication gate. ESS stands for “encrypted secret shares”.

Sensors 2021, 21, 1540 10 of 17

As with the addition gate, we can perform the same computation on the blinding
factor xij to get the commitments of the outputs, and verify the correctness by opening
commitments. In contrast, some decryption operations exist in the multiplication gate,
which are performed by participants (decryptors) rather than PTP, leading to untrusted
interactions. However, we do not need to open commitments after every multiplication gate.
We can open commitments forwardly only when it fails to open the final commitments.

Any tamper behavior during the decryption phase would never succeed because PTP
detects the attack by checking the commitments.

(4) Protocol Output

The output is n ciphertexts, i-th of which is encrypted by Pi’s public key pki.

{y1, y2, ..., yn} ← F̃(S1, S2, ..., Sn)

∑ yi = F(s1, s2, ..., sn)
(27)

The input values are secretly shared by the input gate and the computations of the
addition gate and multiplication gate are based on encrypted shares, which reveal no
information about input values. According to the analysis above, the corresponding com-
mitments of the output values can be opened and checked, ensuring the result is corrected.

Participants require all the decrypted shares to recover the final result:

Y ←
n

∑
i=1

Dec(ski, yi) (28)

3.3.2. Off-Chain Preprocessing Protocol

The off-chain preprocessing phase generates multiplicative < a, b, c, d > quadruples,
which is independent of inputs and can be generated in large amounts in advance.

c = a ∗ b, d = 1 (29)

a, b and c are random finite field elements unknown to everyone. Our off-chain protocol
is similar to that in SPDZ [18], but there are some modifications to support our on-chain
protocol. Like the generation of Beaver triples in [18,35], generating the quadruples is an ex-
pensive process based on somewhat homomorphic encryption (SHE), but it is independent
of the onchain protocol so it can be preprocessed.

Participants distributedly generate a quadruple < a, b, c, d > where a, b and c are
unknown to everyone and d equals 1. Pi holds ai, bi, ci, di, which is the i-th share of
< a, b, c, d >. The details of the generation are provided below.

1. Each participant Pi generates ai, bi ∈ Fk
p . Let

a :=
n

∑
i=1

ai, b :=
n

∑
i=1

bi (30)

2. Each participant Pi computes and broadcasts

ai ← Enc(pk, ai), bi ← Enc(pk, bi) (31)

3. All participants set

a← a1 ⊕ ...⊕ an , b← b1 ⊕ ...⊕ bn , d = Enc(pk, 1) (32)

4. All participants compute c← a⊗ b

Sensors 2021, 21, 1540 11 of 17

5. Participants set

(c1, ..., cn, c′)← Reshare(c, NewCiphertext)

(d1, ..., dn, d′)← Reshare(d, NewCiphertext)
(33)

6. Participants invoke “Sacrifice” to check that indeed a ∗ b = c:

{true, f alse} ← Sacri f icing(< a, b, c >) (34)

“Reshare” and “Sacrifice” are the same as that in SPDZ, and an overview of them is
provided below:

Protocol Reshare(m, NewCiphertext): Takes a ciphertext m ∈ C̃ as the input, and
outputs a new secret sharing m1, m2, ..., mn ∈ M̃ and a new "fresh" ciphertext m′ ∈ C̃ such
that Dec(sk, m′) = ∑i mi.

Protocol Sacrifice (< a, b, c >): Takes a triple and outputs whether the triple satisfies
c = a ∗ b.

3.4. On-Chain Secure MPC in Hyperledger Fabric
3.4.1. A Brief Introduction to Hyperledger Fabric

In Hyperledger Fabric, peers have access to the ledger and execute specific programs—
chaincode (smart contract). Clients send transaction proposals to one or more peers with
setting the endorsement policy. The endorsing peers then execute the chaincode to decide
whether the transaction should be endorsed. If so, endorsing peers change the state on the
ledger according to the targeted chaincode. An endorsement policy is a condition on what
endorses a transaction [15]. Thus a pre-specified endorsement policy is necessary when
installing specific chaincode. Some example endorsement policies include “at least one
from among the four organizations” and “all organizations”.

A critical detail is that all endorsing peers see identical transaction proposals (no matter
whether they would be accepted in the next phase). Transactions are executed and verified
in the endorsement phase so we run our on-chain compute protocol during that phase.

3.4.2. A Crucial Additional Component

A participant is a data provider who connects to the blockchain network by a client.
Any participant can own at least one peer, through which he can join in one or more
organizations in Fabric. As mentioned earlier, participants store encrypted inputs in the
ledger (PTP). As inputs are encrypted by different public keys, we need to deal with
the question of how to perform decryption while executing multiplication gate. Unlike
the solution of Benhamouda [31], we do not require “privileged clients” or a “helper
server”. Participants each store their private keys locally in one of their peers that serves
as a “decryptor”, which is responsible for processing decryption requests during the
endorsement phase. A decryptor does not need to be an endorsing node, but it must
remain online during the endorsement phase.

The decryptor utilizes cache technology to avoid processing duplicate decryption
requests since different endorsing peers execute identical transactions during the endorse-
ment phase. When receiving same requests, decryptors immediately obtain the result from
the cache and respond. A decryptor is a pluggable component, so we do not need to do
many code modifications to Fabric.

Moreover, a decryptor helps to eliminate communication interactions among partici-
pants and the blockchain. For as long as the decryptors are online, all a participant needs
to do is encrypt and submit his input and wait for the outputs.

3.4.3. Implementation Details

The details of our secure MPC protocol are explained in Section 3.3. Here, we describe
how the protocol can be integrated into Fabric.

Sensors 2021, 21, 1540 12 of 17

Our MPC library was written in C++, and we used Java chaincode in Fabric. To call
the MPC library in Java chaincode, we used JNI [36] technology, which allows us to call
C++ code from Java. We used a customized Docker container, fabric-javaenv, where our
MPC library was installed.

In regard to the implementation, there are two problems. The first is how the chaincode
find the correct decryptors that it needs to communicate with. The second problem is how
to tell decryptors the progress of the computation so it can verify whether the decryption
request is valid and whether to accept the request. To solve the first problem, we opted
for simple solutions where decryptors’ addresses (IP address and port) are dynamically
written into the ledger as transaction proposals by clients in advance. The solution requires
no code modifications to Hyperledger Fabric.

To solve the second problem, we need some definitions to the data packet of the
decryption request:

//DecryptionRequest
String mpcId;
int stepId;
int receiverId;
int operateType;
int dataType;
String data;

The mpcId is a unique id used to distinguish different computation requests. The
stepId, which increases from 0, represents the progress of the current computation and is
controlled by the chaincode. With mpcId and stepId, decryptors are able to check whether the
request corresponds to a correct step by calculating the commitments locally and opening
commitments after decrypting the data. If succeeding in opening commitments, decryptors
store them into the cache and respond. If it fails, they ignore the request. Note that the results
of decryption are some random values, which reveal no information about input values.

4. Security Analysis

In this section, we discuss the security issue of our solution. As we pointed out at the
beginning, the most critical problem is the leakage of the input data. No one should be able
to learn anything except for their own inputs and outputs.

Data privacy and Privacy control: The combination of homomorphic encryption and
secret sharing allows computations to be performed on the encrypted shares. Pi encrypts
different share using different participants’ public key so that other participants can only see
their own authorized share, which are meaninglessly random values and would never reveal
any valid information about Pi’s input value Si. No secret can be reconstructed without
decrypting all the shares. What’s more, intermediate data (t and s) generated by decryptors
are meaninglessly random values if no participant knows a or b of the < a, b, c, d > quadruple
(actually it is). According to our settings, Pi holds the i-th share of a and b, and no one knows
a or b. Commitment Comm(x, a) is theoretically private since there exist many possible
combinations of x and a that would generate the same Comm. Even with the same private
data a, Comm(x, a) would be totally different when different values of x exist. If x is truly
random, an attacker would be completely unable to figure out a [37].

Resistance to collusion attacks: In our solution, a secret is broken into shares by
the additive secret sharing scheme and then different shares are encrypted by different
participants’ public key. The threshold of the additive secret sharing scheme is n, which
means our scheme remains safe even there are up to n− 1 conspiracy adversaries among
the participants. PTP automatically verifies the data decrypted by decryptors by opening
commitments so that decryptors fail upon tampering.

Publicly verifiable MPC: Participants can verify whether the input value is valid and
whether the dealer is honest by opening commitments. Due to commitments being public
and automatically computed by PTP, everyone can check the correctness of the result by

Sensors 2021, 21, 1540 13 of 17

opening commitments. Although there are interactions in the multiplication gate, an active
attack can be defended against, since any tamper behavior during the decryption phase
would never succeed because PTP detects the attack by verifying the commitments.

Trust model: The trust model of the proposed on-chain secure MPC protocol depends
on the endorsement policy set when installing the chaincode. For example, if the trust
model allows no more than k adversarial participants, we can simply set an endorsement
policy that demands at least k+ 1 endorsing peers, guaranteeing that transactions tampered
by some adversaries will never be successfully endorsed.

5. Experimental Results and Discussions

Our running environment was ubuntu 18.04, Intel(R) Core(TM) i5-6400 CPU @
2.70 GHz, 16 GB of RAM and Hyperledger Fabric v1.4.0. We used the customized Docker
container fabric-javaenv, as mentioned in Section 3.4.3, for chaincode execution. Peers
and chaincode were all running on separate Docker containers on the same machine. We
communicated with the blockchain network using Hyperledger Fabric SDK for Java v1.4.0.
In all of our experiments, each organization had only a single peer and peers belonged to
different participants. We set “all organizations” as the endorsement policy, meaning that
the number of participants equals the number of computing nodes.

5.1. Comparison of Running Time Based on Different Key Sizes

In this experiment, we studied the impact of key size in Paillier Cryptosystem on
running time. We jointly computed the weighted average of inputs from 10 participants
and set i as the weight of Pi. Thus, the function is

F(·) = ∑n
i=1 i ∗ Si

∑n
i=1 i

, n = 10 (35)

Figure 3 shows the total response time for securely computing the above function
based on our secure MPC protocol, and the CPU time in a single node (ignoring the
consensus time or communication time).

91.61

139.05

229.33

430.48

1.71 3.26 6.16
14.3

0

50

100

150

200

250

300

350

400

450

500

512 1024 2048 4096

R
u

n
n

in
g

 T
im

e
(m

s)

Key Size (Bit)

Number of Participants = 10, Number of Compute Nodes = 10

Respone Time CPU Time (single node)

Figure 3. Response time and CPU time based on different key sizes. The number of computing nodes
was ten.

(1) It can be seen that the total response time ranges from 91.61 milliseconds for 512 bits
to 430.48 milliseconds for 4096 bits, and the CPU time in a single node ranges from 1.71
milliseconds for 512 bits to 14.3 milliseconds for 4096 bits. Both response time and CPU
time grow with the increase in key size. This is normal because of the larger ciphertext and
the increasing computational complexity, but it leads to higher security.

Sensors 2021, 21, 1540 14 of 17

(2) In addition, the CPU time is negligible compared to the total response time. Even
when the key size is 4096 bits, the CPU time accounts for less than 4% of the total response
time, and most of the time is spent on communication and reaching consensus, mean-
ing that the performance has a lot of room to grow with the increasing optimization of
communication channels.

The NIST [38] recommends 2048-bit key as the standard key size. Therefore, for
simplicity, we use a 2048-bit key in the following experiments.

5.2. Comparison of Response Time Based on Different Schemes

In this experiment, we compared the response times for securely computing the sum
of two inputs with an increase in the number of participants (computing nodes) based on
three other schemes and our solution in this paper. The results are shown in Figure 4.

Scheme 1 offloads private and intensive computations to an off-chain network. Similar
to our solution, scheme 2 runs the secure MPC protocol on-chain and uses the Paillier
cryptosystem. Scheme 3 has the same architecture as that in scheme 2, but we replace its
homomorphic encryption scheme with BFV [39] to support multiplicative homomorphic
operations by using the SEAL [40] (an open-source library contributed by Microsoft).

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
es

p
o

n
se

 T
im

e
(m

s)

Number of Compute Nodes

Scheme 1: PS-MPC[28]

Scheme 2: Ghadamyari[12]

Scheme 3: Ghadamyari-FHE[12,39]

Scheme 4: Our Solution

Figure 4. Response time based on different schemes and different numbers of computing nodes.

(1) As illustrated, when there are no more than 20 computing nodes, our solution takes
less time compared to scheme 1, but it seems that scheme 1 has a better performance when
the network is large. This is because scheme 1 only stores MACs [18] and commitments on
the blockchain for verification. Additionally, they separate the verification from compu-
tation, which is offloaded to an off-chain network. The architecture makes it efficient to
perform computations in a large network, but it has similar performance in a small one.
Differently, we take the on-chain way. When peers finish endorsement, both computations
and verifications are done. The one-step method saves the performance. When the net-
work grows, the overhead time required for consensus increases gradually, resulting in
long latency. Therefore, our solution is more suitable for computations in permissioned
blockchain, such as Hyperledger Fabric, which meets the initial goal in this paper.

(2) We can see that scheme 2 consumes the least time. However, compared with
our solution, the time consumption difference is quite small. Both of us use the Paillier
cryptosystem, but organizations in scheme 2 encrypt values using the same key. Although
they use access control list (ACL) rules to control access to the ledger, there still exists a
conspiracy between the key owner and smart contract invoker. Differently, our scheme
remains safe even there are up to n − 1 conspiracy adversaries according to the above

Sensors 2021, 21, 1540 15 of 17

analysis. What is more, scheme 2 only supports addition operations or scalar multiplication
operations, but we are able to perform multiplication on ciphertext, which is deserved at
the expense of a small loss in the computational performance.

(3) Figure 4 shows that scheme 3 consumes the most time among all solutions based on
blockchain, because the performance of fully homomorphic encryption (FHE) is currently
quite inefficient. Many experts and scholars are making efforts to find a balance between
utility, protection and performance.

(4) In addition, we can see that, even for 20 nodes, the running time of our solution is
about 350 milliseconds, which is longer than the time it takes to commit a block (concretely
2254 milliseconds for ten organizations in our experimental environment).

6. Conclusions and Future Work

In this paper, we proposed a publicly verifiable, secure MPC protocol consisting of two
parts: an on-chain computation phase and an off-chain preprocessing phase. The scheme
has the following advantages: (1) Privacy confidentiality: all input values and output
values are in encrypted form and everyone learns nothing except his own input secret and
output values. (2) Correctness and verifiability: Computations can be publicly executed
and are controlled by no one. All the steps during computation can be publicly verified. We
also described how the proposed secure MPC protocol can be integrated into Hyperledger
Fabric, which helps to handle transactions that rely on confidential data owned by different
participants. The scheme greatly guarantees the privacy of smart contract execution. The
experiments showed that our solution had good execution efficiency. Meanwhile, most of
the time taken to complete the protocol was spent on communication so the performance
has a great deal of room to grow.

The expensive communication costs limit our solution’s scalability to a larger network.
In the future, we will explore the ways in which communication times and data exchange
during computation can be reduced, or try to build a more efficient P2P communication
channel for the decryptor. Moreover, using the proposed method to solve practical prob-
lems such as statistical analysis on credit data with guaranteed privacy is also among
our plans.

Author Contributions: Conceptualization, J.Z., Y.F., Z.W. and D.G.; methodology, J.Z., Y.F. and Z.W.;
validation, J.Z., Y.F. and Z.W.; writing—original draft preparation, J.Z.; writing—review and editing,
J.Z. and Y.F.; supervision, J.Z., Y.F. and Z.W. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by University Innovation and Entrepreneurship Education Fund
Project of Guangzhou (number 2019PT103).

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this paper:

MPC Multi-party Computation
PTP Publicly Trusted Processor

References
1. De Montesquieu, C. Montesquieu: The Spirit of the Laws; Cambridge University Press: Cambridge, UK, 1989.
2. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System; Technical Report. 2019. Available online: https://git.dhimmel.

com/bitcoin-whitepaper/ (accessed on 22 February 2021).
3. Benhamouda, F.; DeCaro, A.; Halevi, S.; Halevi, T.; Jutla, C.; Manevich, Y.; Zhang, Q. Initial public offering (IPO) on permissioned

blockchain using secure multiparty computation. In Proceedings of the 2019 IEEE International Conference on Blockchain
(Blockchain), Atlanta, GA, USA, 14–17 July 2019.

https://git.dhimmel.com/bitcoin-whitepaper/
https://git.dhimmel.com/bitcoin-whitepaper/

Sensors 2021, 21, 1540 16 of 17

4. Kayes, A.; Kalaria, R.; Sarker, I.H.; Islam, M.; Watters, P.A.; Ng, A.; Hammoudeh, M.; Badsha, S.; Kumara, I. A survey of context-aware
access control mechanisms for cloud and fog networks: Taxonomy and open research issues. Sensors 2020, 20, 2464. [CrossRef]
[PubMed]

5. Yao, A.C. Protocols for secure computations. In Proceedings of the 23rd Annual Symposium on Foundations of Computer
Science (sfcs 1982), Chicago, IL, USA, 3–5 November 1982; pp. 160–164.

6. Crépeau, C.; van de Graaf, J.; Tapp, A. Committed oblivious transfer and private multi-party computation. In Annual International
Cryptology Conference; Springer: Berlin, Germany, 1995; pp. 110–123.

7. Ben-Efraim, A.; Lindell, Y.; Omri, E. Efficient scalable constant-round MPC via garbled circuits. In International Conference on the
Theory and Application of Cryptology and Information Security; Springer: Berlin, Germany, 2017; pp. 471–498.

8. Wiki. Available online: https://en.wikipedia.org/wiki/Homomorphic_encryption (accessed on 22 February 2021).
9. Shamir, A. How to share a secret. Commun. ACM 1979, 22, 612–613. [CrossRef]
10. Blakley, G.R. Safeguarding cryptographic keys. In Proceedings of the 1979 International Workshop on Managing Requirements

Knowledge (MARK), New York, NY, USA, 4–7 June 1979; pp. 313–318.
11. Zhong, H.; Sang, Y.; Zhang, Y.; Xi, Z. Secure multi-party computation on blockchain: An overview. In International Symposium on

Parallel Architectures, Algorithms and Programming; Springer: Berlin, Germany, 2019, pp. 452–460.
12. Ghadamyari, M.; Samet, S. Privacy-Preserving Statistical Analysis of Health Data Using Paillier Homomorphic Encryption and

Permissioned Blockchain. In Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA,
USA, 9–12 December 2019; pp. 5474–5479.

13. Zaghloul, E.; Li, T.; Ren, J. Anonymous and Coercion-Resistant Distributed Electronic Voting. In Proceedings of the 2020 International
Conference on Computing, Networking and Communications (ICNC), Big Island, HI, USA, 17–20 February 2020; pp. 389–393.

14. Yan, X.; Wu, Q.; Sun, Y. A Homomorphic Encryption and Privacy Protection Method Based on Blockchain and Edge Computing.
Wirel. Commun. Mob. Comput. 2020, 2020, 8832341. [CrossRef]

15. Hyperledger Fabric. Available online: https://hyperledger-fabric.readthedocs.io/en/latest/whatis.html (accessed on 22 February
2021).

16. Pedersen, T.P. Non-interactive and information-theoretic secure verifiable secret sharing. In Annual International Cryptology
Conference; Springer: Berlin, Germany, 1991; pp. 129–140.

17. Beaver, D. Efficient multiparty protocols using circuit randomization. In Annual International Cryptology Conference; Springer:
Berlin, Germany, 1991; pp. 420–432.

18. Damgård, I.; Pastro, V.; Smart, N.; Zakarias, S. Multiparty computation from somewhat homomorphic encryption. In Annual
Cryptology Conference; Springer: Berlin, Germany, 2012; pp. 643–662.

19. Feng, Q.; He, D.; Zeadally, S.; Khan, M.K.; Kumar, N. A survey on privacy protection in blockchain system. J. Netw. Comput. Appl.
2019, 126, 45–58. [CrossRef]

20. Miers, I.; Garman, C.; Green, M.; Rubin, A.D. Zerocoin: Anonymous distributed e-cash from bitcoin. In Proceedings of the 2013
IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 19–22 May 2013; pp. 397–411.

21. Bonneau, J.; Narayanan, A.; Miller, A.; Clark, J.; Kroll, J.A.; Felten, E.W. Mixcoin: Anonymity for bitcoin with accountable mixes.
In International Conference on Financial Cryptography and Data Security; Springer: Berlin, Germany, 2014; pp. 486–504.

22. Heilman, E.; Baldimtsi, F.; Goldberg, S. Blindly signed contracts: Anonymous on-blockchain and off-blockchain bitcoin
transactions. In International Conference on Financial Cryptography and Data Security; Springer: Berlin, Germany, 2016; pp. 43–60.

23. Sun, S.F.; Au, M.H.; Liu, J.K.; Yuen, T.H. Ringct 2.0: A compact accumulator-based (linkable ring signature) protocol for blockchain
cryptocurrency monero. In European Symposium on Research in Computer Security; Springer: Berlin, Germany, 2017; pp. 456–474.

24. Andrychowicz, M.; Dziembowski, S.; Malinowski, D.; Mazurek, L. Secure multiparty computations on bitcoin. In Proceedings of
the 2014 IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 18–21 May 2014; pp. 443–458.

25. Bentov, I.; Kumaresan, R. How to use bitcoin to design fair protocols. In Annual Cryptology Conference; Springer: Berlin, Germany,
2014; pp. 421–439.

26. Kumaresan, R.; Vaikuntanathan, V.; Vasudevan, P.N. Improvements to secure computation with penalties. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016; pp. 406–417.

27. Sánchez, D.C. Raziel: Private and verifiable smart contracts on blockchains. arXiv 2018, arXiv:1807.09484.
28. Zyskind, G.; Nathan, O.; Pentland, A. Enigma: Decentralized computation platform with guaranteed privacy. arXiv 2015,

arXiv:1506.03471.
29. Kosba, A.; Miller, A.; Shi, E.; Wen, Z.; Papamanthou, C. Hawk: The blockchain model of cryptography and privacy-preserving smart

contracts. In Proceedings of the 2016 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2016; pp. 839–858.
30. Choudhuri, A.R.; Green, M.; Jain, A.; Kaptchuk, G.; Miers, I. Fairness in an unfair world: Fair multiparty computation from

public bulletin boards. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, Dallas,
TX, USA, 30 October–3 November 2017; pp. 719–728.

31. Benhamouda, F.; Halevi, S.; Halevi, T. Supporting private data on hyperledger fabric with secure multiparty computation. IBM J.
Res. Dev. 2019, 63, 3:1–3:8. [CrossRef]

32. Paillier, P. Public-key cryptosystems based on composite degree residuosity classes. In International Conference on the Theory and
Applications of Cryptographic Techniques; Springer: Berlin, Germany, 1999; pp. 223–238.

http://doi.org/10.3390/s20092464
http://www.ncbi.nlm.nih.gov/pubmed/32349242
https://en.wikipedia.org/wiki/Homomorphic_encryption
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1155/2020/8832341
https://hyperledger-fabric.readthedocs.io/en/latest/whatis.html
http://dx.doi.org/10.1016/j.jnca.2018.10.020
http://dx.doi.org/10.1147/JRD.2019.2913621

Sensors 2021, 21, 1540 17 of 17

33. Ghodosi, H.; Pieprzyk, J.; Steinfeld, R. Multi-party computation with conversion of secret sharing. Des. Codes Cryptogr. 2012,
62, 259–272. [CrossRef]

34. Chatzigiannakis, I.; Pyrgelis, A.; Spirakis, P.G.; Stamatiou, Y.C. Elliptic curve based zero knowledge proofs and their applicability
on resource constrained devices. In Proceedings of the 2011 IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor
Systems, Valencia, Spain, 17–22 October 2011; pp. 715–720.

35. Keller, M.; Pastro, V.; Rotaru, D. Overdrive: Making SPDZ great again. In Annual International Conference on the Theory and Applications
of Cryptographic Techniques; Springer: Berlin, Germany, 2018; pp. 158–189.

36. Liang, S. The JAVA Native Interface: Programmer’s Guide and Specification; Addison-Wesley Professional: Boston, MA, USA, 1999.
37. Scozzafava, P. Uniform distribution and sum modulo m of independent random variables. Stat. Probab. Lett. 1993, 18, 313–314.

[CrossRef]
38. Barker, E.; Burr, W.; Jones, A.; Polk, T.; Rose, S.; Smid, M.; Dang, Q. Recommendation for key management part 3: Application-

specific key management guidance. NIST Spec. Publ. 2009, 800, 57.
39. Fan, J.; Vercauteren, F. Somewhat Practical Fully Homomorphic Encryption. IACR Cryptol. ePrint Arch. 2012, 2012, 144.
40. Microsoft. Available online: https://github.com/microsoft/SEAL (accessed on 22 February 2021).

http://dx.doi.org/10.1007/s10623-011-9515-z
http://dx.doi.org/10.1016/0167-7152(93)90021-A
https://github.com/microsoft/SEAL

	Introduction
	Related Work
	The Proposed Method
	Overview of Our Framework
	The Algorithms Used
	The Secure MPC Protocol
	On-Chain Computation Procotol
	Off-Chain Preprocessing Protocol

	On-Chain Secure MPC in Hyperledger Fabric
	A Brief Introduction to Hyperledger Fabric
	A Crucial Additional Component
	Implementation Details

	Security Analysis
	Experimental Results and Discussions
	Comparison of Running Time Based on Different Key Sizes
	Comparison of Response Time Based on Different Schemes

	Conclusions and Future Work
	References

