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Prospective Evaluation of Automated Contouring
for CT-Based Brachytherapy for Gynecologic
Malignancies
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Purpose: The use of deep learning to auto-contour organs at risk (OARs) in gynecologic radiation treatment is well established. Yet,
there is limited data investigating the prospective use of auto-contouring in clinical practice. In this study, we assess the accuracy and
efficiency of auto-contouring OARs for computed tomography−based brachytherapy treatment planning of gynecologic malignancies.
Methods and Materials: An inhouse contouring tool automatically delineated 5 OARs in gynecologic radiation treatment planning:
the bladder, small bowel, sigmoid, rectum, and urethra. Accuracy of each auto-contour was evaluated using a 5-point Likert scale: a
score of 5 indicated the contour could be used without edits, while a score of 1 indicated the contour was unusable. During scoring,
automated contours were edited and subsequently used for treatment planning. Dice similarity coefficient, mean surface distance, 95%
Hausdorff distance, Hausdorff distance, and dosimetric changes between original and edited contours were calculated. Contour
approval time and total planning time of a prospective auto-contoured (AC) cohort were compared with times from a retrospective
manually contoured (MC) cohort.
Results: Thirty AC cases from January 2022 to July 2022 and 31 MC cases from July 2021 to January 2022 were included. The mean
(§SD) Likert score for each OAR was the following: bladder 4.77 (§0.58), small bowel 3.96 (§0.91), sigmoid colon 3.92 (§0.81),
rectum 4.6 (§0.71), and urethra 4.27 (§0.78). No ACs required major edits. All OARs had a mean Dice similarity coefficient > 0.86,
mean surface distance < 0.48 mm, 95% Hausdorff distance < 3.2 mm, and Hausdorff distance < 10.32 mm between original and edited
contours. There was no significant difference in dose-volume histogram metrics (D2.0 cc/D0.1 cc) between original and edited
contours (P values > .05). The average time to plan approval in the AC cohort was 19% less than the MC cohort. (AC vs MC,
117.0 + 18.0 minutes vs 144.9 § 64.5 minutes, P = .045).
Conclusions: Automated contouring is useful and accurate in clinical practice. Auto-contouring OARs streamlines radiation treatment
workflows and decreases time required to design and approve gynecologic brachytherapy plans.
© 2024 The Authors. Published by Elsevier Inc. on behalf of American Society for Radiation Oncology. This is an open access
article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction
Brachytherapy is an integral component for the defini-
tive treatment of locally advanced cervical cancer and
other gynecologic malignancies. This modality has
matured for over a century, progressing from conven-
tional “Point A” planning with tandem and ovoid applica-
tors to 3-dimensional image-guided brachytherapy
leveraging a variety of intracavitary and interstitial appli-
cators.1 Despite advancements in applicator development,
dose prescription methods, and standardization of clinical
target delineation, brachytherapy remains a costly, time-
consuming task for physicians. Time-driven, activity-
based cost evaluations comparing breast and cervical
brachytherapy to traditional external beam radiation have
shown that brachytherapy is more costly, requiring sub-
stantially more time from physicians and medical physi-
cists.2-4 With the advent of artificial intelligence,
brachytherapy may be at another precipice of evolution if
automatic contouring, or auto-contouring (AC), is intro-
duced into the treatment planning process.

Delineation of clinical target volumes (CTVs) and
organs at risk (OARs) is a time-intensive process for
physicians and is known to have large inter- and intraob-
server variability. In the past decade, a fourth-generation
of deep learning via convolutional neural networks has
been introduced to AC CTVs and OARs in a variety of
disease sites.5 Most gynecologic studies have shown clini-
cal acceptability of AC in computed tomography (CT)
−based external beam radiation treatment.6-12 In gyneco-
logic brachytherapy, needles and applicators are
implanted into the patient, making it more desirable to
shorten the time for contouring. Studies have demon-
strated successful auto-digitization of applicators and
delineation of CTVs and OARs in both CT- and magnetic
resonance imaging (MRI)−based planning.13-19 However,
these retrospective analyses contain limited data on the
effect of integration of AC into a clinical workflow where
high-dose brachytherapy can be administered shortly
after applicator placement.

The objective of our study was to validate the efficiency
and accuracy of AC in CT-based gynecologic brachyther-
apy. First, we evaluated the integration of AC into clinical
practice with the hypothesis that AC would decrease phy-
sician contour approval time and total planning time. Sec-
ond, we evaluated the clinical acceptability of AC by
physician review of AC and by comparing the geometric
and dosimetric differences between original and edited
contours. To the best of our knowledge, this is the first
study that prospectively evaluates the accuracy and effi-
ciency of AC in gynecologic brachytherapy treatment
planning. Here we demonstrate successful implementa-
tion of a deep learning contouring tool at a large academic
medical center. This addition is important as it validates
previously published retrospective studies and provides a
framework on how to effectively implement AC in clinical
practice.
Methods and Materials
AC model

Institutional review board approval was requested and
obtained. Brachytherapy simulation CT scans from 50
patients with gynecologic cancer previously treated at our
institution were used to train the AC model. Each patient
was treated using an interstitial applicator and received
intravenous contrast during CT simulation to improve
urethral and bladder delineation. Bladder, small bowel,
sigmoid colon, rectum, and urethra clinical contours were
retrospectively inspected and edited, if needed, to stan-
dardize contouring practices before training the model. A
3-dimensional (3D) U-Net architecture was used to auto-
matically contour bladder, small bowel, sigmoid colon,
rectum, and urethra volumes. The deep learning network
was trained to 1000 epochs using a 5-fold cross-validation
technique and employed early stopping to avoid overfit-
ting. The model was trained using 2 RTX 3090 Nvidia
GPUs using a dedicated training workstation (Lambda
Inc, San Francisco, CA). During testing, test-time aug-
mentations were used and predictions from the 5 trained
model weights are combined for improved contouring
accuracy.20 The training cohort included cases previously
treated using Syed (Alpha-Omega Services, Bellflower,
CA) or tandem and ring (Varian Medical Systems, Palo
Alto, CA) applicators; patients were simulated following
institutional guidelines: with a full bladder technique and
a Foley catheter inflated with a small amount of contrast
material (Omnipaque) for improved urethral identifica-
tion, and using 1-mm axial slices acquired on a Philips
Brilliance 64 CT scanner (Philips Health care, Cleveland,
OH).
Architecture and training parameters

A hyperparameter search was performed to identify
the optimal parameters (eg, kernel size, resolution steps)
on a modified 3D U-Net architecture.21 Our U-Net model
used a residual function (short-connections) similar to
that described by Milletari et al22 and used batch normali-
zation23 after each 3D convolutional layer. The same
architecture was used to train 5 separate model weights
with random initialization of weights. These models were
used in an ensemble approach to further improve the con-
fidence in the resulting segmentation.20 The model was
trained using the Adam optimizer with a learning rate of
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0.001 and early stopping regularization to avoid overfit-
ting of the models. Commonly used data augmentations
(eg, translation, rotation) were used during training. The
loss was set to the sum of the Dice loss and cross-entropy
loss (L ¼ LDice þ LCE). Before training, CT scans were pre-
processed using linear HU transformation with prede-
fined window/level settings (-600, 1200 Housfield Units)
to have values from 0 to 1 (ie, -600 HU ! 0 and 1200
HU! 1) and to have isotropic (1 mm £ 1 mm £ 1 mm)
voxel spacing. A patch-based approach was used for train-
ing and inference with an input size of 128 £ 128 £ 48
voxels in the x, y, and z coordinates. During inference,
predictions from the 5 models were combined using
majority voting.
Clinical implementation of AC

Before clinical implementation, AC quality was evalu-
ated retrospectively on 10 cases not included in our model
training cohort. For each patient, ACs were reviewed on a
slice-by-slice basis and scored using a 5-point Likert scale,
shown in Table 1. Scores of 1 and 2 indicated that the AC
was so deficient that it was not helpful to the treating phy-
sician. A score of 3 indicated the AC required minor edits
for clinical acceptability but was still more useful than
starting from scratch. ACs scored a 4 or 5 were considered
clinically safe and accurate, as minor edits were due to sty-
listic difference and not clinically important (score of 4),
or no edits were required, and the AC could be used as is
(score of 5). If a majority (>75%) of ACs retrospectively
evaluated received favorable scores (either 4 or higher),
then this would satisfy our quality standard and suggest
the model was useful for prospective clinical use.
Workflow efficiency

To assess the efficiency of AC in clinical practice, we
compared the planning time of a prospective, AC cohort
Table 1 Scoring criteria of 5-point Likert scale for model accur

Score Description

5: Use as-is Clinically acceptable, could be used

4: Minor edits are
not necessary

Stylistic differences, but not clinicall

3: Minors edits are
necessary

Edits are clinically important, but it
than start from scratch.

2: Major edits Edits are required to ensure approp
prefer to start from scratch.

1: Unusable The automatically generated contou

The treating physician qualitatively scored each automatically generated conto
to the planning time of a retrospectively selected, manu-
ally contoured (MC) cohort. The MC cohort cases
selected included all intracavitary and interstitial gyneco-
logic cancer cases treated between August 2021 through
January 2022. Demographics of these 2 cohorts are given
in Table 2. While there are some slight differences in pri-
mary disease staging between AC and MC cohorts, these
differences were not considered to inherently affect nor-
mal tissue contours and contouring time. In both the AC
and MC cohorts, planning and contouring were synchro-
nized (ie, performed in parallel) by duplicating the CT
scan immediately after import into the treatment plan-
ning system (TPS); 1 structure set was designated for
planning, and the second structure set was designated for
contouring. This enabled a comparison between MC and
AC cohorts which was minimally biased by treatment
planning differences. This approach of synchronizing
planning and contouring for both the AC and MC
cohorts, by duplicating the CT image immediately after
import into the TPS, was a critical step in our methodol-
ogy. By assigning 1 structure set for planning and a sepa-
rate, identical set for contouring, we effectively isolated
the contouring process from the planning process. This
isolation meant that any time variations observed could
be more confidently attributed to the differences in con-
touring methods (AC vs MC) rather than variations in
the planning process itself. For instance, if 1 cohort had
received more complex treatment plans by default, it
could have inadvertently introduced additional time
requirements for contouring due to the complexity of the
plans. By standardizing the planning aspect across both
cohorts, we minimized such confounding variables. Fur-
thermore, this standardization ensured that each cohort’s
planning time was not influenced by potentially variable
factors such as planner experience, planning complexity,
or software performance during the planning phase. As a
result, any significant differences in the time required for
contouring could be more reliably linked to the efficiency
of the AC software as opposed to other aspects of the
treatment planning process. This careful control of
acy

for treatment without change.

y important. The current contours are acceptable.

is more efficient to edit the automatically generated contours

riate treatment and sufficiently significant that the user would

rs are so poor that they are unusable.

ur on its accuracy using a 5-point Likert scale.



Table 2 Descriptive characteristics of manually and automatically contoured cohorts

Characteristic
No. (%)

MC cohort (N, %) AC cohort (N, %)

Age, mean (range), y 52 (30-78) 54 (28-81)

High-risk CTV, mean (range), cc 50 (28-176) 49 (16-189)

Cervical cancer (FIGO stage)

IA1 2 (6) 2 (7)

IB2 4 (13) 0 (0)

IB3 0 (0) 3 (10)

IIA1 1 (3) 2 (7)

IIA2 5 (16) 4 (13)

IIB 1 (3) 3 (10)

IIIA 0 (0) 1 (3)

IIIB 3 (10) 0 (0)

IIIC1 5 (16) 9 (30)

IIIC2 0 (0) 0 (0)

IV 1 (3) 4 (13)

Endometrial cancer (FIGO stage)

IA 2 (6) 0 (0)

IIIA 1 (3) 0 (0)

IIIB 1 (3) 0 (0)

Vaginal cancer (FIGO stage)

IB 1 (3) 0 (0)

IIB 1 (3) 1 (3)

IVA 2 (6) 1 (3)

Ovarian cancer - Stage II 1 (3) 0 (0)

External beam radiation therapy

Yes 30 (97) 30 (100)

No 1 (3) 0 (0)

Brachytherapy total dose/fx

24 Gy/3 fx 8 (26) 7 (23)

24 Gy/4 fx 9 (29) 6 (19)

28 Gy/4 fx 12 (39) 15 (48)

25 Gy/5 fx 0 (0) 2 (6)

30 Gy/5 fx 1 (3) 0 (0)

35 Gy/5 fx 1 (3) 0 (0)

Abbreviations: AC= automatically contoured; CTV = clinical target volume; FIGO = International Federation of Gynecology and Obstetrics;
fx = fractions; MC = manually contoured,
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variables thus allowed for a more direct and unbiased
comparison between the MC and AC cohorts, providing
clearer insights into the effect of AC implementation on
clinical workflow efficiency.

In this study, we define planning time as the time
difference between import of the CT image into the TPS
(Eclipse 16.1, Varian Medical Systems, Palo Alto, CA),
and final physics plan approval, which are recorded in the
TPS time stamps. Similarly, we quantified time to contour
approval by measuring the time difference between
import of the CT image into the TPS and the last modifi-
cation made to plan’s structure set, as recorded by time
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stamps within the TPS. The MC group was composed of
31 patients who were treated immediately before the
implementation of the AC tool. Mean, SD, and SE of each
cohort’s planning times were analyzed via the unpaired
t test. In addition, physician slice-by-slice review of AC
OARs and overall contouring time, including additions of
clinical targets, were measured for each case in the AC
cohort. Here, the overall contouring time captures the
amount of time spent by the treating physician editing
AC (if needed) and MC of additional structures such as
targets.
Prospective use quantitative and qualitative
evaluation

Our inhouse developed AC system maintains a data-
base of previously AC structures from clinical cases. Using
the unedited, original version of the ACs, we quantita-
tively evaluated edits made to ACs before clinical use
using standard contour overlap and distance metrics. The
Dice similarity coefficient (DSC) is a metric that measures
twice the volume of overlap between 2 volumes divided

by the sum of the volumes DSC ¼ 2 � A\B
A þ B

� �
.24 A DSC

equaling 1 describes 2 structures with perfect overlap,
whereas a DSC of 0 indicates no overlap between 2 struc-
tures. The mean surface distance (MSD), 95% Hausdorff
distance (95HD), and max HD were calculated to quantify
the overall extent of the edits made to deem the edited
ACs clinically usable.25 A larger distance metric repre-
sents greater difference between the original and edited
ACs. In addition, we compare the passing rate for dosi-
metric goals measured on edited contours and original
contours. Clinical goals evaluated in standard practice at
our institution are included in Table E1.

Furthermore, a single board-certified radiation oncolo-
gist with extensive brachytherapy expertise, who was also
the treating physician, qualitatively evaluated each OARs’
AC. The 5-point Likert scale shown in Table 1 was used
in this evaluation. The distribution of Likert scores was
analyzed and further evaluated by calculating the mean,
SD, and SE for each OAR.
Statistical methods

The unpaired Welch’s t test was used to test our
hypothesis that AC resulted in less time between CT sim-
ulation and plan approval. A P value < .05 was considered
significant. All statistical tests, where applicable, are
2-sided. To elucidate the relationship between the qualita-
tive assessments of the OAR contours and the quantitative
changes made during editing, we employed Spearman’s
rank correlation coefficient. This nonparametric measure
was chosen to determine the strength and direction of the
association between the ordinal data from the Likert scale
evaluations—reflecting the radiation oncologist’s subjec-
tive judgment of contour quality—and the continuous
variables derived from geometric similarity and dose-vol-
ume histogram (DVH) metrics. By applying Spearman’s
rank correlation, we aim to identify whether a higher
qualitative score (indicating a better-perceived quality of
the AC by the expert) correlates with a closer geometric
similarity between the original, ACs and the manually
edited, clinically used contours. Furthermore, to compare
the DVH metrics derived from the automatically
generated contours with those from the clinically used
contours, we used the Wilcoxon signed-rank test. All
statistics were calculated using SAS version 9.4 (SAS
Institute).
Results
In January 2022, our institution designed and imple-
mented an inhouse contouring tool to automatically
delineate 5 OARs in CT-based gynecology brachytherapy:
the bladder, small bowel, sigmoid colon, rectum, and
urethra. Retrospective evaluation resulted in a majority of
ACs receiving scores of 4 or 5 (47/60), meeting our pre-
requisite goal (>75%) for clinical release of the AC tool.
From implementation to July 2022, 30 patients were
treated using the AC tool and were identified as the pro-
spective AC cohort.
Workflow efficiency

Time to contour approval of the AC and MC cohorts
were compared, with results shown in Figure 1A and B.
Average contour approval time was 63 minutes (SD, 18
minutes; range, 40-111 minutes) for the AC group and 99
minutes (SD, 68 minutes; range, 29-304 minutes) for the
MC group (P < .0071). Clinical implementation of
AC significantly decreased total planning time by 19%
(P < .045). Furthermore, the variance in total planning
time among AC cases was 33 minutes compared with 65
minutes for the MC group. Lastly, physician slice-by-slice
review and editing of ACs took an average 4.6 minutes
(SD, 3.1 minutes; range, 1.7-13.4 minutes). Total contour-
ing time, including delineation of clinical targets with
fused MRI, took an average 15.8 minutes (SD, 5.3
minutes; range, 7.3-28.2 minutes). All AC OARs
were generated and automatically imported into the TPS
< 5 minutes.
AC accuracy

The mean DSC, MSD, 95HD, and HD between the
original and edited ACs of each OAR are given in Table 3.



Figure 1 Comparison of contouring and total planning times between manually contoured (MC) and automatically con-
toured (AC) cases. (A) Average contouring time, defined as the time between computed tomography image importation
to treatment planning systems and contour completion, was reduced by 36 minutes in the AC cohort when compared to a
MC group (p = .0071). (B) Total planning time was defined as the time between computed tomography image importation
to treatment planning systems and plan approval. AC reduced total planning time by 19% (p = .045).
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Among all OAR contours, 76% had a DSC > 0.95. Ure-
thral contours accounted for 68% of contours with a DSC
< 0.95. All structures had a mean MSD < 0.48 mm, a
mean 95HD < 3.2 mm, and a mean HD < 10.3 mm.
Across all geometric measures, the sigmoid colon and ure-
thra showed the largest difference between the original
and edited ACs. D2 cc or D0.1 cc difference between the
original and edited ACs of each OAR were evaluated
using D2 cc (except for the urethra where D0.1 cc was
used). Overall, there was no statistically significant differ-
ence between the DVH metrics from the original and
edited ACs (P values > .05 for all OARs; Table 3).

The distribution of Likert scores by OARs are given in
Figure 2. The mean Likert score for each OAR was the fol-
lowing: bladder 4.77 (SD, 0.58), small bowel 3.96 (SD,
0.91), sigmoid colon 3.92 (SD, 0.81), rectum 4.6 (SD,
Table 3 Summary of 5-point Likert scores for the original au
ence between the original and edited auto-contours

Structure Bladder Small bowe

5-point Likert score 4.8 § 0.6 4.0 § 0.9

DSC (%) 0.99 § 0.00 0.99 § 0.01

MSD (mm) 0.05 § 0.03 0.27 § 0.44

95HD (mm) 0.4 § 0.2 1. 5 § 2.5

HD (mm) 1. 8 § 0.6 10.2 § 13.1

Original D2cc (Gy)* 17.8 § 6.7 7.5 § 4.4

Edited D2cc (Gy)* 17.8 § 6.7 7.9 § 4.8

D2cc difference (Gy)* 0.03 § 0.26 �0.45 § 1.1

P value (original vs edited D2cc) .358 .795

Abbreviations: 95HD = 95% Hausdorff distance; DSC = Dice similarity coeffic
*All dose volume histogram metrics were evaluated with D2cc, except for the
(Gy) versus edited D2cc (Gy) values were calculated using the 2-tailed Wilcox
0.71), and urethra 4.27 (SD, 0.78). No automatically gen-
erated contour received a Likert score of 1 or 2. Small
bowel ACs were considered the least accurate with 42% of
contours receiving a score of 3. However, all OARs,
including the small bowel, received a majority of AC
scores between 4 and 5.

The Spearman’s rank correlation analysis revealed the
degree of association between the Likert scores, assigned
based on qualitative expert evaluation, and the geometric
similarity and DVH metrics that characterize the differen-
ces between the original ACs and their edited counter-
parts for all OARs. There was a weakly positive
relationship between Likert score and DSC (r(126) = 0.28;
P = .002), while there was a negative relationship between
Likert score and MSD (r(126) = -0.36; P < .001), 95HD
(r(126) = -0.36; P < .001.), and HD (r(126) = -0.49;
to-contours, geometric similarity metrics and D2cc differ-

l Sigmoid colon Rectum Urethra

3.9 § 0.8 4.6 § 0.7 4.3 § 0.8

0.96 § 0.04 0.98 § 0.10 0.87 § 0.10

0.45 § 0.87 0.16 § 0.24 0.47 § 0.88

3.2 § 7.1 1.0 § 2.1 2.4 § 5.6

10.3 § 14.3 4.0 § 5.3 3.6 § 7.5

10.7 § 4.9 13.0 § 5.5 8.7 § 5.8*

11.1 § 5.4 12.9 § 5.7 8.7 § 6.0*

1 �0.41 § 1.35 0.07 § 0.60 �0.08 § 0.40*

.787 .704 .542

ient; HD= Hausdorff distance; MSD = mean surface distance.
urethra, for which D0.1cc was used. P values comparing original D2cc
on signed-rank test. All measures reported in the format mean § SD.



Figure 2 Distribution of 5-point Likert scores by organ
at risk. All auto-contours of each organ at risk were evalu-
ated by the treating physician. No auto-contours received
lower than a score of 3, meaning no auto-contour
required major edits, and all auto-contours were clinically
helpful.
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P < .0010). Lastly, there was a weakly negative relation-
ship between the Likert score and percent change in D2
cc (r(126) = -0.22; P = .011).
Discussion
In this study, we constructed an inhouse contouring
tool to automatically delineate OARs in CT-based gyneco-
logic brachytherapy, then successfully implemented this
tool into clinical practice at a large academic medical
center. The contouring tool reduced time to contour
approval, total planning time, and time variation among
AC cases compared with an MC cohort. When reviewed
by the treating physician, all automatically generated con-
tours were scored as clinically helpful, with no contours
requiring major edits. Furthermore, when comparing
dosimetric parameters, edited ACs had no significant dif-
ference in D2 cc compared with their original, unedited
counterparts. Overall, this is the first study to discuss the
integration of AC into clinical practice and to prospec-
tively demonstrate that contouring via deep learning is an
efficient, accurate modality to automatically contour
OARs in CT-based gynecologic brachytherapy.

To increase objectivity in the current analysis, we chose
to use TPS time stamps to measure contour approval and
overall planning times in our retrospective and prospec-
tive cohorts. A key factor in this decision was that there
were no changes in clinical workflow during AC imple-
mentation, meaning that the contouring/planning work-
flows were not optimized around the AC application. In
our clinical practice, the brachytherapy medical physicist,
who is present during CT simulation, is in charge of
importing the planning CT to the TPS and preparing
image data (MRIs, etc) for planning. It is not uncommon
for there to be some waiting time during this hand-off
process, as the clinical team member may be attending to
multiple clinical needs. In the thoughtful design of this
study, our team concluded that using the TPS time stamps
provides a more “real-life” quantification of time which
includes this inherent hand-off time observed in the over-
all planning process.

The time saving benefit of automated contouring can
largely be attributed to the standardization of time to con-
tour approval among cases. Time to contour approval of
the MC cohort ranged from 29.0 to 304.0 minutes, while
the AC cohort ranged from 71.0 to 111.0 minutes. During
MC, radiation oncologists may have additional clinical
responsibilities (such as attending clinical needs of the
brachytherapy patient, providing simulation CT/stereo-
tactic body radiation therapy coverage, and seeing
patients under treatment), that could lead to additional
interruptions in the contouring process. The implementa-
tion of AC may decrease these interruptions and eliminate
large time variation among cases and could explain the
difference in “contour approval” times observed in our
data. In addition, we found our contouring tool facilitated
simultaneous completion of treatment planning require-
ments; while ACs for OARs were generated outside the
TPS, the treating physician could begin delineating clini-
cal targets, and the medical physicist could start digitizing
applicators. Synchronizing these tasks promoted a
streamlined workflow with quicker planning times. This,
in particular, could improve the comfort of patients
receiving inpatient or outpatient brachytherapy while also
creating the potential for more patients to be treated in
the same day.

Our AC tool was highly accurate based on physician
scoring and geometric concordance between the original
and edited contours, which quantitatively measured the
extent of contour editing completed by the treating physi-
cian. Bladder ACs consistently scored the highest among
all criteria (mean Likert, 4.77; DSC, 0.99; MSD, 0.052
mm; 95HD, 0.39 mm; HD, 1.78 mm), which can largely
be attributed to bladder filling protocols at our institution
and the consistent shape and size of the bladder. In con-
trast to the bladder, the architecture of the small bowel
and sigmoid colon can vary greatly among patients; thus,
we observed less accurate Likert scoring and geometric
similarity metrics for these 2 OARs. Similar results have
been highlighted in previous studies, given in Table 4.
Interestingly, the urethra was the only OAR with a mean
DSC < 0.95 and had relatively poor geometric concor-
dance despite a high Likert score versus other structures
(4.27). This is most likely due to the urethra’s small size,
causing any contour edits to have a disproportionately
large effects on the spatial overlay between original and
edited contours.

We observed no significant difference in DVH metrics
between the original and edited contours among all
OARs. Not surprisingly, OARs with relatively poor
geometric concordance, specifically the small bowel and



Table 4 Results of geometric evaluation from previous studies

Study Our method Mohammadi et al.18 Jiang et al.16 Zhang et al.17 Yoganathan et al.19

Radiation modality CT-based brachytherapy,
original vs edited
auto-contour

CT-based brachytherapy,
manual vs auto-contour

CT-based brachytherapy,
manual vs auto-contour

CT-based brachytherapy,
manual vs auto-contour

MRI-based brachytherapy,
manual vs auto-contour

DSC (%) Bladder, 0.995 § 0.003 Bladder, 0.974 Bladder, 0.860 § 0.086 Bladder, 0.869 § 0.032 Bladder, 0.90 § 0.05

Rectum, 0.984 § 0.097 Rectum, 0.972 Rectum, 0.858 § 0.089 Rectum, 0.821 § 0.05 Rectum, 0.76 § 0.07

Sigmoid, 0.964 § 0.043 Sigmoid, 94.1 Sigmoid, 0.664 § 0.123 Sigmoid, 0.645 § 0.079 Sigmoid, 0.65 § 0.12

Small bowel, 0.987 § 0.014 Small bowel, 0.563 § 0.129 Small bowel, 0.803 § 0.058 Small bowel, 0.54 § 0.12

Urethra, 0.868 § 0.097

MSD (mm) Bladder, 0.052 § 0.032 - - - -

Rectum, 0.156 § 0.238

Sigmoid, 0.452 § 0.870

Small bowel, 0.269 § 0.443

Urethra, 0.474 § 0.876

95HD (mm) Bladder, 0.399 § 0.211 Bladder, 1.64 - - Bladder, 6.28 § 3.42

Rectum, 1.005 § 2.112 Rectum, 1.37 Rectum, 8.20 § 4.07

Sigmoid, 3.215 § 7.055 Sigmoid, 1.84 Sigmoid, 20.44 § 11.70

Small bowel, 01.446 § 2.480 Small bowel, 22.3 § 13.66

Urethra, 2.447 § 5.612

HD (mm) Bladder, 1.778 § 0.610 Bladder, 3.51 Bladder, 19.981 § 11.418 Bladder, 12.1 § 4.0 -

Rectum, 3.968 § 5.322 Rectum, 1.89 Rectum, 12.273 § 8.080 Rectum, 9.2 § 4.6

Sigmoid, 10.320 § 14.330 Sigmoid, 2.82 Sigmoid, 98.409 § 50.984 Sigmoid, 19.6 § 8.7

Small bowel, 10.177 § 13.123 Small bowel, 68.123 § 33.781 Small bowel, 27.8 § 10.8

Urethra, 3.629 § 7.499

Abbreviations: 95HD = 95% Hausdorff distance; CT = computed tomography; DSC = Dice similarity coefficient; MRI = magnetic resonance imaging; MSD = mean surface distance; HD= Hausdorff distance.
There have been limited studies evaluating the accuracy of auto-contouring in gynecologic brachytherapy. If a previous study compared multiple models, the most accurate model is reported. Measures
reported in mean § SD.
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sigmoid colon, had the greatest DVH parameter differ-
ence between the original and edited contours (mean
Δ%D2 cc, 6.2% and 4.7% respectively). Even with this dif-
ference, original DVH metrics of the small bowel and sig-
moid colon met clinical goals in 100% and 93% of cases,
respectively (D2 cc < 18.00 Gy). The rectum had the larg-
est number of cases violating DVH metric planning goals
(36.7%); however, this was true for both the original and
edited contours, and the percent change in D2 cc among
all rectal contours was <2%. This suggests changes to
these rectal contours were overall not clinically significant,
which supports their mean Likert score of 4.60. While
DVH comparisons showed that physician edits to ACs
resulted in no statistical difference in DVH metrics for
these OARs (Table 3), it remains to be determined
whether planning on unedited ACs results in clinically
acceptable plans on edited structures.

Few studies have evaluated automated contouring of
female pelvic structures for CT-based brachytherapy
treatment. Jiang and colleagues estimated AC decreased
OAR delineation time by 60 to 75%.15 Our study strength-
ens their conclusion as we compared times between man-
ually and automatically contoured cohorts, while they
compared AC duration versus the estimated duration of
MC at their institution. To the best of our knowledge, this
is the only previous study regarding CT-based brachy-
therapy that has discussed time-saving benefits of AC.
However, there are multiple studies covering nongyneco-
logic disease sites that have demonstrated reduction of
planning time up to 40%.26-28

All previous studies evaluating the accuracy of AC in
gynecologic brachytherapy have been retrospective. These
studies, given in Table 4, have compared geometric con-
cordance between manually delineated contours used in
the patient care and automatic generated contours.
Mohammed et al compared contours of 2 deep learning
models (ResU-Net and UNet) with previously manually
delineated contours of the bladder, rectum, and sigmoid.
Jiang et al and Zhang et al evaluated multiple AC models
for the bladder, rectum, sigmoid, and small bowel. Among
the overlap/distance metrics evaluated in the present
study (DSC, 95HD, and HD), our model resulted in
greater concordance between compared structures. It is
important to note that while we compared original ACs
with subsequently edited versions, previous studies evalu-
ated similarity between MCs and ACs. Thus, it is expected
our model would produce higher geometric concordance,
and we cannot suggest our model demonstrated improved
performance. However, our study is the only prospective
evaluation of AC’s integration into brachytherapy prac-
tice, and the concordance between original and edited
contours could be a more clinically relevant metric
because it quantifies the number of edits required to make
a contour ready for patient care. Rather than assessing
whether our model worked better than previous models,
the results of our study validate previous retrospective
data and demonstrate that AC can be successfully used in
patient care.

There are several limitations to our study. When com-
paring time metrics between manual and AC, we used a
retrospective selected MC cohort and a prospectively
selected AC cohort; thus, there could be confounding bias
not accounted for due to nonrandomized sampling. Fur-
thermore, as mentioned above, all previous studies have
compared geometric concordance between MCs and ACs,
while we have evaluated geometric similarities between an
original AC and its physician-edited counterpart. Thus,
we are unable to make reliable conclusions on whether
our contouring tool outperforms previously described
models. Furthermore, the current study does not consider
interobserver variation or variation in clinical practices
when evaluating edits of the clinically used ACs, and it
remains to be determined how other (ie, nontreating)
physicians would have edited the ACs before planning.
Conclusion
Brachytherapy is a critical component in the definitive
treatment of multiple gynecologic cancers and has evolved
over time to improve patient outcomes via improvements
in technique, applicators, and treatment planning soft-
ware. We present the first clinical implementation of
automated contouring into brachytherapy practice at a
large academic medical center and demonstrate that AC
is an accurate and reliable tool to delineate female pelvic
structures in CT-based brachytherapy. Looking forward,
these results further push the evolution of brachytherapy
as AC increases clinical efficiency of gynecologic cancer
care and improves the patient experience in the treatment
process.
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