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Abstract

Purpose We present image classifiers based on Dense Convolutional Networks and transfer learning to classify chest X-ray
images according to three labels: COVID-19, pneumonia, and normal.

Methods We fine-tuned neural networks pretrained on ImageNet and applied a twice transfer learning approach, using NIH
ChestX-ray14 dataset as an intermediate step. We also suggested a novelty called output neuron keeping, which changes the
twice transfer learning technique. In order to clarify the modus operandi of the models, we used Layer-wise Relevance
Propagation (LRP) to generate heatmaps.

Results We were able to reach test accuracy of 100% on our test dataset. Twice transfer learning and output neuron keeping
showed promising results improving performances, mainly in the beginning of the training process. Although LRP revealed that
words on the X-rays can influence the networks’ predictions, we discovered this had only a very small effect on accuracy.
Conclusion Although clinical studies and larger datasets are still needed to further ensure good generalization, the state-of-the-art
performances we achieved show that, with the help of artificial intelligence, chest X-rays can become a cheap and accurate
auxiliary method for COVID-19 diagnosis. Heatmaps generated by LRP improve the interpretability of the deep neural networks
and indicate an analytical path for future research on diagnosis. Twice transfer learning with output neuron keeping improved
DNN performance.

Keywords COVID-19 detection - Neural networks - Chest X-ray - LRP - Twice transfer learning - Output neuron keeping

Introduction are commonly available and are faster and cheaper, but signals
associated with the presence of COVID-19 in the lungs can be

In 2020, COVID-19 became pandemic, affecting both devel- hard to detect.

oped and developing countries around the world. By October
2020, the virus had already infected more than 40,000,000
people and caused more than one million deaths (Hopkins
(2020)).

The most commonly used method for COVID-19 diagno-
sis is reverse transcriptase-polymerase chain reaction (RT-
PCR) (Wang et al. (2020)). It has a high specificity, but is also
expensive, slow and currently at a high demand. Chest X-rays
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Researchers have already suggested the use of deep neural
networks (DNNs) to help in the detection of the disease on
Chest X-ray images (Wang and Wong (2020), Shoeibi et al.
(2020)). In Wang and Wong (2020), the authors achieved
good results, with 92.6% test accuracy, 96.4% recall and
87% precision on the COVID-19 images.

Deep neural networks (DNNs) have been successful at
identifying pneumonia from X-rays, performing better than
radiologists (Rajpurkar et al. (2017)). In this work, we used
Dense Convolutional Networks or DenseNets (Huang et al.
(2016)). The first network is CheXNet (Rajpurkar et al.
(2017)), a 121 layers dense network (or DenseNet121) that
had already been pretrained on ImageNet (Deng et al.
(2009)) and on NIH ChestX-rayl4 dataset (Wang et al.
(2017)), a database with over 100,000 frontal X-ray images,
which contain 14 different diseases and also healthy individ-
uals. We applied transfer learning to teach the neural network

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s42600-021-00132-9&domain=pdf
http://orcid.org/0000-0002-8995-9423
mailto:p157007@dac.unicamp.br

140

Res. Biomed. Eng. (2022) 38:139-148

to differentiate between normal lungs, COVID-19 and pneu-
monia. Our COVID-19 dataset was assembled by merging
COVID-19, pneumonia and normal chest X-ray open datasets.
Other DNN is a 201 layers DenseNet that had been pretrained
on ImageNet (Deng et al. (2009)) and we also fine tuned it in
our COVID-19 database.

CheXNet is a neural network that had been trained twice
(on ImageNet and ChestX-rayl4) and we trained it again,
making our process a twice transfer learning or transfer learn-
ing in three steps. Inspired by this, we decided to explore the
technique. We downloaded a 201-layer DenseNet, already
pretrained on ImageNet, trained it on NIH ChestX-rayl4
dataset (Wang et al. (2017)) and then on our smaller dataset
containing the COVID-19 class.

In this paper, we also suggest an original modification to
twice transfer learning, which we called “output neuron keep-
ing.” As the NIH ChestX-rayl4 database already had the
healthy and pneumonia classes, we suggest keeping the
DNN output neurons for these classes in the last step of twice
transfer learning (training on the COVID-19 dataset). Our
hypothesis is that this will enable us to keep more of the
information learned in the second dataset (ChestX-ray14)
throughout training in the COVID-19 database, and in the
final network. We tested this approach with another
DenseNet201 and a CheXNet (maintaining only the neuron
that classified pneumonia in this last case).

After training the DNNs, we applied Layer-wise Relevance
Propagation (LRP) (Bach et al. (2015)), generating heatmaps
of the X-rays, along with the probabilities of COVID-19,
pneumonia and healthy lungs. These heatmaps show us the
regions of the image that mostly influenced the network clas-
sification, and also regions that were more representative of
other classes. Therefore, LRP can allow us to understand what
the DNN finds relevant in an input image. But it can also be
useful for a radiologist in identifying the effects of COVID-19
in the X-ray. An application of LRP in the context of neuro-
imaging can be seen at Thomas et al. (2019).

Methods

Databases
NIH ChestX-ray14

ChestX-ray14 is one of the largest chest X-ray datasets, with
112,120 images from 30,805 patients. The images were ob-
tained by the US National Institutes of Health. It has 14 dif-
ferent diseases and also images with no findings. Some X-rays
may show multiple conditions, making the classification of
this dataset a multi-label classification problem. The database
images originally had associated radiological reports, which
were analyzed by the dataset authors, using natural language
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processing, to create automated labels for the X-rays. These
labels, which will be used in this work, have an estimated
accuracy higher than 90% (Wang et al. (2017)). The dataset
is unbalanced. State-of-the-art pneumonia-detecting DNNs
were trained in this database: as an example, we can cite
CheXNet (Rajpurkar et al. (2017)), a DenseNet with 121
layers.

COVID-19 database

This database was assembled by the research group, joining
images from 3 chest X-ray datasets, the first containing
COVID-19 images, the second containing pneumonia images,
and the third with healthy lungs images.

We obtained 439 COVID-19 frontal X-rays from the
dataset “Covid-19 image data collection” (Cohen et al.
(2020)), downloaded in October 2020. To select these images
we started with all COVID-19 frontal chest X-rays from
Cohen et al. (2020) and excluded images with arrows. This
dataset was the largest COVID-19 X-ray collection that we
could find. It is also one of the best documented datasets,
many images contained information about the patient age,
gender, disease severity and image source. Their X-rays were
collected from public sources or indirectly from hospitals and
physicians (Cohen et al. (2020)).

The pneumonia images were extracted from the CheXpert
database. It is a collection of 224,316 chest X-rays, from
65,240 patients, classified according to 13 lung diseases or
healthy (Irvin et al. (2019)). We obtained 1255 images classi-
fied as pneumonia and whose patients were older than 18 years
old. Because the reported youngest COVID-19 patient in our
dataset was 20 years old, we decided that keeping children in
the other classes could be a source of bias. Like in NIH
ChestX-rayl4, the images in this dataset were automatically
labeled by the database authors, using natural language pro-
cessing to analyze radiological reports. These labels accuracy
are also estimated to be higher than 90%. The exceptions are 8
pneumonia images, which were manually labeled by three
board-certified radiologists. These images were on the original
CheXpert test dataset. The X-rays were obtained in the
Stanford University Hospital.

The healthy images were obtained from the Montgomery
and Shenzen databases (Jaeger et al. (2014)). They are a col-
lection of tuberculosis and healthy frontal chest X-rays, la-
beled by radiologists. The images were obtained from the
Department of Health and Human Services, Montgomery
County (Maryland, USA) and Shenzhen No. 3 People’s
Hospital in China (Jaeger et al. (2014)). To select our images,
we separated all normal X-rays and removed the ones whose
patients were underage. Therefore, we ended up with 370
normal images.

The labels that we used in our COVID-19 database had
been created by the authors of the above mentioned datasets
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and were provided along with the X-rays. Therefore, the
“healthy” and “COVID-19” labels were created in accordance
with radiological reports that accompanied the images, while
most of the pneumonia labels were produced by using natural
language processing to analyze radiological reports. The ex-
ceptions are 8 pneumonia labels that were manually created by
three radiologists (we included these images in our test
dataset, which will be explained in the section “Data process-
ing and Augmentation”).

Additional details of the assembled COVID-19 database

In this section, we will describe some general information
about the patients in our COVID-19 database.

There were 370 healthy patients (the database from Jaeger
et al. (2014) does not contain multiple images from the same
patient, according to the authors). The patients are 61.9% male
and their mean age is 36.1 years, with a standard deviation of
12.3 years.

Our pneumonia images were created with 1047 different
patients. They are 58.2% male, with a mean age of 61.8 years
and an age standard deviation of 19.3 years.

Our COVID-19 database contained 268 patients, 246 had
gender information and 199 had age information. Their mean
age was 42.8 years, with standard deviation of 16.4 years.
They were 64.2% male.

We also have information about disease severity in some
COVID-19 patients. We have survival information about 81
patients, with a survival rate of 81.5%. We have information
about intubation on 69 patients, with an intubation rate of
59.4%. We have information about supplemental oxygen on
94 patients, with 59.6% of them needing it. At last, we have
ICU information on 112 patients, 59.8% of them were in the
intensive care unit.

Transfer learning, twice transfer learning, and output
neuron keeping

Introduction to transfer learning

When we add dimensions to a neural network input, the data
tends to become sparser. Thus, with larger inputs (like our
224 x 224 images), we need more data to create a good statis-
tical model of the inputs and labels distribution. This problem
is known as the “curse of dimensionality”” (Trunk (1979)).
Deep neural networks are mathematical models with many
trainable parameters, enabling them to model complex data
distributions and statistical relations. But, when we do not
have enough data, this also makes them prone to learn small
variations and noise in the training dataset, which are exclu-
sive to that database and do not reflect the real phenomenon
we are trying to model. Thus, with insufficient data, we can
generate overfitting, hence creating a neural network that

performs well on the training dataset but badly on the test
database (Goodfellow et al. (2016)).

In summary, DNNs have a tendency to overfit when
trained on small datasets and large inputs. Transfer learning
is a technique that helps to avoid this problem. It consists in
using a network that was already trained to solve a task in one
dataset, and training it again (or fine-tuning) on another data-
base, to solve another task. Doing this, we hope that represen-
tations learned by the DNN in the first database can help the
model generalization on the second. This is particularly help-
ful when the first dataset is much larger than the second one
(Goodfellow et al. (2016)).

When we train a deep neural network, each layer learns to
map the information it receives onto a new representation of
the input data, creating what is called representation learning
(Bengio et al. (2012)). Thus, the layers implicitly extract fea-
tures of the inputs. The nearer from the network output a layer
is, the higher the level of abstraction the learned feature has
(Goodfellow et al. (2016)). What makes transfer learning ef-
fective is that some features, learned from the first task and
dataset, can help the DNN solve the second task, in the second
dataset. For example, a network trained with a large image
classification dataset, like ImageNet (Deng et al. (2009)),
can learn, in that database, to identify image edges, a feature
that can also be useful for interpreting X-rays, in a dataset like
ChestXray-14.

We can observe that, if the two tasks are similar, more
features learned in the first dataset will be useful in the second
one, increasing the benefit of transfer learning. Thus, an ideal
case would be to have a first dataset that is very large and
whose task is very similar to that of the second one.

When we use an already trained network in another dataset,
we need to pay attention to whether the input size remains the
same (if not, the inputs are generally re-scaled). Also, because
we are changing the task, the DNN output needs to change.
One can add new layers at the end of the network or replace
the last layers with new ones (Goodfellow et al. (2016)). A
common approach is to replace just the output layer, removing
it and adding a new one, with randomized weights and biases.
The more similar the two tasks are, the more the last layers
learned representations will be useful in the second dataset,
and the more we would want to keep them.

Twice transfer learning

It is common to choose ImageNet as the first dataset when we
have image classification tasks (like in Rajpurkar et al.
(2017)), as it is a database with millions of images and many
classes. But one can argue that classifying these images is not
a task particularly similar to that of classifying chest X-rays as
COVID-19, pneumonia or normal.

NIH ChestX-rayl4 classification was a task much more
alike ours, and the dataset is still very large, with over
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100,000 X-rays. Also, beginning with a DNN already
pretrained on ImageNet would accelerate training on the
NIH database and the network could keep some information,
learned in ImageNet, through training on ChestX-ray14. This
information might also help in the final fine-tuning, on the
COVID-19 dataset.

Thus, a twice transfer learning, or transfer learning in three
steps seemed like a good proposition: a DNN would be first
trained on ImageNet (Denget al. (2009)), then on ChestX-
rayl4 (Wang et al. (2017)) and, finally, on the COVID-19
dataset that we assembled. Fine-tuning CheXNet in the
COVID-19 dataset indirectly created a transfer learning in
three steps: we took a DNN that had already been trained on
ImageNet and then on ChestX-ray14, and we applied the third
step, training it on the COVID-19 dataset.

But we can also train other neural networks with this twice
transfer learning if, after downloading them pretrained on
ImageNet, we train them on ChestX-ray14 and then on the
COVID-19 dataset. Looking for twice transfer learning on
other works, we found that it was already used, with success,
for mammogram images classification (Cai et al. (2018)).

Output neuron keeping

In this paper, we propose an original addition to the twice
transfer learning technique: output neuron keeping. In three-
step transfer learning, we look for a task in the second step that
is very similar to the final step task. Having two alike datasets,
one might find that they share classes. In our study, ChestX-
ray 14 and the COVID-19 dataset have both a class for healthy
individuals (called “no findings” in ChestX-rayl4 and “nor-
mal” in the COVID-19 dataset). Also, ChestX-rayl4 shares
the pneumonia class with our dataset.

Thus, we suggest that, having the same or very similar
classes in the second and third step of twice transfer learning,
when preparing the network for the third step, one could keep
the output neurons that classify those classes and change only
the other output neurons. Doing this, the representations that
these artificial neurons learned in the second step can be main-
tained and this may improve training speed or performance in
the final task.

To keep output neurons, a simple approach in PyTorch
begins by copying their weights and biases at the end of twice
transfer learning step two (training on the second dataset).
Then, in the beginning of step 3, change the DNN output layer
to match the new desired output format, find the neurons that
will classify the classes similar to step two’s, and substitute
their weights and biases for the copied ones.

Trained DNNs

In this work, we trained five DNNs, which we will call A, B,
C, D, and E.
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Network A is a 201 layers DenseNet, downloaded
pretrained on ImageNet, and trained again on the COVID-19
dataset. Thus, it received a simple transfer learning approach.

Network B is also a DenseNet201, downloaded pretrained
on ImageNet. But it was then trained on ChestX-rayl4 and
then on the COVID-19 dataset. Thus, it used twice transfer
learning (with ImageNet in the first step, ChestX-ray14 in the
middle step and the COVID-19 dataset in the last).

Network C is the same as network B, but, besides the twice
transfer learning approach, we used output neuron keeping:
the neurons that classified the no findings and pneumonia
classes in ChestX-rayl4 were assigned to classify normal
and pneumonia in the COVID-19 dataset, the other output
neurons were removed and a new one, with random weights
and biases, was added to classify the chance of COVID-19.
Thus, here we used a twice transfer learning with output neu-
ron keeping.

Network D is a 121-layer DenseNet. We downloaded a
pretrained CheXNet (already trained on ImageNet and then
on ChestX-ray14) and trained it on the COVID-19 database.
So, it had a twice transfer learning, but only the last step was
done by us.

The last network, E, is also a DenseNet121. It began as a
pretrained CheXNet and we again trained it on the COVID-19
dataset. But, before training on this dataset, we copied the
weights and bias from the neuron that classified pneumonia
to the one that would classify pneumonia on the
final database. Thus, it used a twice transfer learning with
output neuron keeping, and maintained just one output neu-
ron. We note that CheXNet had no neuron to classify the
chances of healthy lungs (it had 14 output neurons, one for
each of the 14 diseases on ChestX-ray14), therefore, we could
not keep two output neurons.

Our motivation to choose working with dense neural net-
works was CheXNet’s excellent result in ChestX-ray14, even
surpassing 4 radiologists in pneumonia detection (Rajpurkar
et al.(2017)).

Table 1 summarizes all DNNs we created.

Data processing and augmentation
ChestX-ray14

As we would also train DenseNets in this dataset, we based
our dataset processing for ChestX-rayl4 in what the authors
did when training CheXNet (Rajpurkar et al. (2017)). All im-
ages were resized to 224 x 224 size, with 3 channels, and
normalized with the mean and standard deviation from the
network’s previous training in ImageNet. We used the origi-
nally reported test dataset as our test dataset. The other images
were randomly split, with 80% of the X-rays to create the
training dataset and 20% for validation (holdout). Different
datasets had no images from the same patient. Fifteen labels
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Table 1 Created deep neural

Training process

networks Name DNN architecture
A 201-layers DenseNet
B 201-layers DenseNet
C 201-layers DenseNet
D 121-layers DenseNet (CheXNet)
E

121-layers DenseNet (CheXNet)

Transfer learning

Twice transfer learning

Twice transfer learning + output neuron keeping
Twice transfer learning

Twice transfer learning + output neuron keeping

were created, one for each disease and one for “no findings”
(they were organized in a binary vector with 15 dimensions).

Like the authors did when training CheXNet (Rajpurkar
et al. (2017)), we applied random horizontal flips (with 50%
chance) to the training images before giving them to the DNN.
This was done online and, if the image was flipped, we would
only feed the new image to the network, not the new and the
old one (thus, not making the mini-batch bigger).

COVID-19

Firstly, we divided our assembled COVID-19 dataset into
three: training, validation and test. To create the test dataset,
we randomly took 50 images of each class (normal, pneumo-
nia and COVID-19). After removing the 150 test images, we
took 90% of the remaining images for training and 10% for
validating. This was also done randomly, but preserving the
same class proportions in the two datasets. Again, different
datasets had no images from the same patient. All images were
loaded in greyscale (to minimize color variations between the
datasets), reshaped from 1024 x 1024 pixels to 224 x 224,
converted to three channels and then normalized to the same
mean and standard deviation used in the ChestX-rayl14 and
ImageNet normalization.

The CheXpert database had 8 pneumonia images that were
labeled by three board-certified radiologists. These images
were included in our testing dataset, along with 42 other ran-
dom pneumonia images from the CheXpert.

Many of the images had letters or words on them, and some
of these words were exclusive for certain classes. For exam-
ple, some COVID-19 images (from Italy) had the word
“SEDUTO” (Italian word for “seated”) written on the upper
left corner. We were afraid that this could affect the network
classification performance; hence, we decided to manually
edit our test dataset images, removing the words or letters.
They were simply covered with black rectangles and, as they
were not over the lungs, no relevant information was lost. The
objective was only to test the network ability analyzing the
lungs and, by editing only the test dataset, there would be no
risk of teaching the DNN to identify our black rectangles
during training.

We decided to apply data augmentation for two reasons: it
improves the DNN performance for small datasets (like our

COVID-19 database), and because it would balance our
datasets. As we would also benefit from a balanced validation
dataset, we applied augmentation in training and validation.

We used three image augmentation methods: rotations (be-
tween —40 and 40 degrees), translations (up to 28 pixels left
and right or up and down) and flipping (horizontal). These
transformations could augment our data and also make the
DNN more robust to input translations and rotations. All aug-
mentation was done online and, after one operation, we would
not substitute the original image, we would just add the new
one, randomly rotated, translated and possibly flipped (50%
chance), to the mini-batch (making it bigger). We augmented
our normal image database 30 times, our pneumonia images 8
times, and our COVID-19 images 24 times. We ended up with
a training dataset of 8280 COVID-19, 8640 pneumonia and
8640 normal lung augmented images. To feed the DNN a
completely balanced dataset, 360 pneumonia and normal lung
augmented images were left out in each epoch. In every epoch
we randomly changed which images would be left out, there-
fore every image was used in the training process.

Creating and training the DNNs
On the ChestX-ray14 dataset

As networks B and C have the same training process in the
twice transfer learning first and second steps, we are able to
train only one network on the ChestX-ray14 database, which
would be used for creating networks B and C in the future.

To create the DNN we downloaded an ImageNet
pretrained PyTorch version of DenseNet201. The only chang-
es we made on it was substituting its output layer for one with
15 neurons (one for each of the 14 diseases in this dataset and
one for the “no findings” class) and we kept this layer’s acti-
vation as a sigmoid function. The training process was carried
out in PyTorch, with binary cross entropy loss, stochastic
gradient descent with momentum of 0.9, mini-batches of 16
images, and hold-out validation. We trained the networks on
two NVidia GTX 1080 GPUs.

We began by freezing all model parameters except for the
output layer’s and training for 20 epochs, with a learning rate
of 0.001. We then set the learning rate to 0.0001, unfroze all
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the model parameters and trained for 90 epochs more, in the
end of which the DNN was already overfitting.

On the COVID-19 dataset

To create network A we downloaded the ImageNet pretrained
PyTorch version of DenseNet201, removed the output layer
and added a new one, with three neurons and softmax activa-
tion. For DNN B we started with the neural network we had
trained on ChestX-rayl4, also removed its last layer and
added a new one, like the above mentioned. For network C
we made the same output layer substitution in the network we
had trained on ChestX-ray14, but we copied the weights and
biases from the output neurons that classified “no findings”
and “pneumonia” to the ones that would classify “normal” and
“pneumonia” in the COVID-19 dataset.

For network D, we downloaded a pretrained CheXNet (on
ImageNet and ChestX-rayl4) from Zech (2018), and
proceeded by also changing its final layer for one with three
neurons and softmax activation. Finally, for network E, we
downloaded the same network (Zech (2018)), also changed
the final layer as in network D, but we copied the weights and
bias for the output neuron that classified pneumonia to the one
that would again classify pneumonia, in the new dataset.

For all networks, the training process in the COVID-19
dataset was the same, given that their architectures were sim-
ilar, and this allowed us to better compare the transfer learning
methods. We used PyTorch, cross entropy loss, stochastic
gradient descent with momentum of 0.9, and mini-batches of
9 images. We trained the networks on two NVidia GTX 1080
GPUs. We also used holdout validation. Most training param-
eters were determined with many preliminary tests, for exam-
ple, weight decay was used in the beginning to avoid fast
overfitting, but was removed when we noticed the DNNs
had stopped improving training error.

The training process had 4 phases, which we will describe
now. We began by freezing all the network parameters except
for the output layer’s and we trained for 10 epochs, using a
learning rate of 0.001 and weight decay of 0.01. We then
unfroze all parameters, trained for 48 epochs, with early stop
and patience of 20, learning rate of 0.0001 in the last layer and
decreasing by a factor of 10 for each previous dense block and
its transition layer. We lowered the learning rate to 0.00001
(now in every layer) and trained for 48 epochs more, with the
same early stop and weight decay. Finally, for the last phase,
we removed the weight decay and early stop and trained for 48
epochs again.

Layer-wise relevance propagation
Layer-wise Relevance Propagation (LRP) is an explanation

technique that aims to make DNNs (complex and nonlinear
structures with millions of parameters and connections)
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interpretable by humans. It decomposes the network predic-
tion, showing, in a heatmap, how each input variable contrib-
uted to the output (Bach et al. (2015)). We note that
interpreting deep neural networks can be challenging. A
Taylor Decomposition, based on the Taylor expansion of the
network output, is unstable in deep neural networks, due to
noisy gradients and the existence of adversarial examples
(Montavon et al. (2019)).

We may choose any output neuron to start the relevance
propagation, and this choice will define the meaning of the
colors in the resulting heatmap. For example, if we choose to
start LRP on the output neuron that classifies COVID-19, red
colors on the map will indicate areas that the DNN associated
with COVID-19, while blue areas will point characteristics
associated with the other classes, normal and pneumonia.
Examples can be seen in the section “Analysis with LRP.”
Unless stated otherwise, the heatmaps shown in this paper
were created starting the propagation at the winning output
neuron, i.e., the one with the highest output for the input X-
ray.

LRP is based on propagating the DNN prediction back-
ward through the layers, using local propagation rules, which
may change for different layers. This relevance propagation
has a conservation property, in the way that the quantity of
relevance a neuron receives from the upper layer will be dis-
tributed in equal amount to the neurons in the lower layer
(Montavon et al. (2019)). This property ensures that the quan-
tity of explanation we get in the input (in the heatmap) relates
to what can be explained by the output. As examples of med-
ical contexts in which LRP was used we can cite neuroimag-
ing (Thomas et al. (2019)) and explaining therapy predictions
(Yang et al. (2018)).

Analyzing our network with LRP allows us to identify
problems in the DNN classification method, and also to
generate a heatmap of the X-ray image, showing where in
the lungs the network identified issues. This map could be
given to radiologists along with the network predictions,
helping them to verify the classifier analysis, providing
insights about the X-rays and allowing a more profitable
cooperation between human experts and artificial
intelligence.

We can choose between many propagation rules in each
neural network layer, and presets are selections of these rules
for the many layers in a DNN. We can compare them,
searching for one that creates good human interpretability
and fidelity to the network operation. We used the Python
library iNNvestigate (Alber et al. (2019)), which already im-
plemented LRP for DNNs like DenseNet and has parameter
presets that work well for these networks. This library works
with Keras and TensorFlow, but we trained our DNNs on
PyTorch, thus, we used the library pytorch2keras
(Malivenko (2018)) to convert our models. After the conver-
sion, we tested them again, and obtained the same accuracies
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we had on PyTorch, confirming that the conversion worked =~ Table 2 Confusion matrix for network A
well. Predicted class
Normal Pneumonia COVID-

Results 19

) ) o Real class Normal 49 0 1
Figure 1 shows how test accuracy changed during training on Preumonia 0 50 0
the COVID-19 dataset, for all five DNNs. These measure- COVID-19 0 0 50

ments were taken for the best networks (according to valida-
tion loss) in each of the four training phases described in the
section “Creating and Training the DNNs” (which correspond
to epochs 10, 58, 106 and 154). Our best test accuracy was
100%, achieved by both the CheXNets and the DenseNet201
with twice transfer learning and output neuron keeping.

In Tables 2 and 3, we show the confusion matrices from
networks that did not achieve 100% accuracies, DNNs A and
B. Network B made 2 mistakes in the 150 test images: 2
COVID-19 images were classified as pneumonia. DNN A
misclassified 1 healthy patient as COVID-19.

With 100% accuracy, our DNNs C, D and E have preci-
sion, recall and F1 score of 1 in our test dataset.

We applied Layer-wise Relevance Propagation to the
trained neural networks. The generated heatmaps allowed us
to analyze how each part of the input X-rays influenced the
DNN classification. This topic will be discussed in more detail
in the section “Analysis with LRP,” along with examples of
the heatmaps.

Discussion

Analyzing Fig. 1, we start comparing the DenseNet201
DNN:Ss. In the first epochs, we note that network C, with twice
transfer learning and output neuron keeping, started with no-
ticeably better accuracy, followed by network B and then

Fig. 1 Test accuracies during

training plot
&p 100.0
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920
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network C, which used simple transfer learning. The perfor-
mance differences become smaller with more training. When
we compare the best results, we observe that DNN C had
100% accuracy, DNN A 99.3% and DNN B 98.7%.

Comparing the two CheXNets, we observe that their per-
formances were similar; both had the same accuracies in the
beginning and achieved equal results in the end. We think
that output neuron keeping with only one neuron had a
smaller effect than with two neurons, therefore the differ-
ence between networks B and C are larger than between
DNNs D and E. We also see that these networks started with
accuracies higher than network A and B, but smaller than
DNN C, which used output neuron keeping on two neurons.

Analyzing Tables 2 and 3, we observe that even on the
networks that committed mistakes, no patient with some dis-
ease was classified as healthy, which would be the most dan-
gerous type of misclassification.

We achieved test accuracies of 100% with three networks,
but we must note that our test dataset only has 150 images.
Maybe these DNNs could make some mistakes in a bigger test
database (which we did not use due to the limitation in the
number of COVID-19 images).

Looking at the state-of-the-art in COVID-19 detection with
deep learning, we observe that, according to the review

Test accuracy during training on COVID-19 dataset

== Network A:
DenseMet201 with
transfer learning

== Network B:
DenseMet201 with
twice transfer learning

Network C:
DenseMet201 with
twice transfer learning
and output neuron
keeping

== Network D: CheXNet

== Network E: CheXNet
with output neuron
keeping

58 106 154

MNumber of training epochs in the COVID-19 database
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Table 3  Confusion matrix for network B
Predicted class
Normal Pneumonia COVID-
19
Real class Normal 50 0
Pneumonia 0 50
COVID-19 0 2 48

Shoeibi et al. (2020), most of the techniques using DNNs have
accuracies in the 90% to 100% range. Therefore, our work is
on par with the current state-of-the-art.

Analysis with LRP

We tested different LRP presets on iNNvestigate and got more
understandable and coherent heatmaps with “LRP-
PresetAFlat.” Figure 2 shows a correctly classified COVID-
19 X-ray test image and the heatmap for it, taken from one of
our best performing DNNs, network C. The more red the
region on the map, the more important it was for the DNN
classification as COVID-19. The more blue, the more that
region is related to other classes (like a healthy part of the lung
or a region that the DNN assosciated to pneumonia
sympthoms). We observed our DNN found signs of
COVID-19 in both lungs. We also note that, on some images,
our black rectangles can create some artifacts in their borders
(red or blue lines, as can be seen on the neck region of Fig. 4),
but, given that they were used only for testing and in all clas-
ses, we do not think this can affect accuracy.

We decided to analyze the effect of words and letters on the
X-ray images, fearing that words used on the datasets could be
sources of bias. We used the same test COVID-19 image
shown in Fig. 2, but without removing the word “SEDUTO”
from its upper right corner and the letters “DX” from the upper
left corner. The resulting heatmap is shown in Fig. 3 (also

Fig. 2 Heatmap for test COVID-
19 image

@ Springer

created with network C). It becomes clear, by the red color
on the map, that the network learned to associate these words
with the COVID-19 class.

To measure the effect of this problem we tested the DNNs
we trained with our testing dataset but unedited (with the
words and letters that it originally had). This test generated
only small changes in accuracy, which increased or decreased,
at most, 1.33% on fully trained networks. DNNs on early
training stages showed changes up to 3.33%. Our best neural
networks (C, D and E), when fully trained, showed no accu-
racy change.

Another test was trying to “fool” our networks, adding to a
COVID-19 lungs X-ray test image the letters “L PA,” which
were copied from a healthy image (L above and PA below, in
a small rectangle). The network C given probability for
COVID-19 changed from 99.94 to 99.91%, and for normal
increased from 0.036 to 0.055%. Figure 4 shows a heatmap
created by LRP starting on the output neuron that classifies the
normal class. Therefore, red colors indicate areas associated
with normal. We can observe that the letters PA are red on the
heatmap, meaning that they are influencing the DNN to
choose normal instead of COVID-19. The letter L, above the
PA, is blue. This letter was very common in all classes, thus it
was not associated with the normal class. Given the small
output probabilities change, we see that, in this case, the letters
effect was tiny.

Conclusion

The proposed method of output neuron keeping, with twice
transfer learning, outperformed the sole use of twice transfer
learning and simple transfer learning in the 201-layer dense
networks. Taking into account this work and the great results
three steps transfer learning had in Cai et al. (2018), we think
that the technique and our output neuron keeping method are
promising and could also improve performances in other clas-
sification problems.
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Fig. 3 Heatmap for test COVID-
19 image without removing word
“SEDUTO” and letters “DX”

We were surprised by the fact that the CheXNet DNNs could
keep up with and even surpass most of the DenseNet201 DNNSs.
We concluded that the main reason for this is that, even though
we used data augmentation, the effect of overfitting was stronger
on the 201-layer dense neural networks.

LRP showed promising results highlighting details in
the X-rays that most influenced the network classification.
We hope that this may indicate a possibility to help radi-
ologists and provide a better interaction between experts
and artificial intelligence. It also allowed us to discover
that words and letters can influence the DNN classifica-
tions. This influence was small in the fully trained DNNs,
with accuracies changing at most 1.33% if we do not
remove the words and letters from the testing dataset.
On DNNs at the beginning of the training process this
effect was larger, with accuracies increasing or decreasing
up to 3.33%.

We should state that the dataset used in this study is
not ideal. Although we used the largest open COVID-19
X-ray database that we could find in October 2020, we
could only utilize 439 coronavirus X-rays. A much larger

Fig. 4 Normal output neuron
heatmap for test COVID-19 im-
age edited with letters (indicated
by arrows) copied from a normal
image

dataset, with all the classes collected from the same
sources, would allow the creation of better generalizing
classification models. It would also reduce possible causes
of bias, as different sources can have different character-
istics, like the letters and words that we analyzed in this
work. We emphasize the need for such a database and
hope to continue this research when it becomes available.
Furthermore, clinical studies would be required to ensure
that the high accuracies obtained in this and other studies
(Shoeibi et al. (2020)) would also be achieved in a real-
world scenario.

Although larger databases and clinical studies are still
needed, this study and other initiatives (Wang and Wong
(2020), Shoeibi et al. (2020)) show that DNNs have the
potential of making chest X-ray a fast, accurate, cheap
and easily available auxiliary method for COVID-19 di-
agnosis. The trained networks proposed here are open
source and available for download in Bassi and Attux
(2020): we hope DNNs can be further tested in clinical
studies and help in the creation of tools to fight the
COVID-19 pandemic.

- P8
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