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Artificial intelligence‑assisted 
fast screening cervical high grade 
squamous intraepithelial lesion 
and squamous cell carcinoma 
diagnosis and treatment planning
Ching‑Wei Wang1,2, Yi‑An Liou1, Yi‑Jia Lin3,4, Cheng‑Chang Chang5,6, Pei‑Hsuan Chu4, 
Yu‑Ching Lee2, Chih‑Hung Wang7 & Tai‑Kuang Chao3,4*

Every year cervical cancer affects more than 300,000 people, and on average one woman is diagnosed 
with cervical cancer every minute. Early diagnosis and classification of cervical lesions greatly boosts 
up the chance of successful treatments of patients, and automated diagnosis and classification of 
cervical lesions from Papanicolaou (Pap) smear images have become highly demanded. To the authors’ 
best knowledge, this is the first study of fully automated cervical lesions analysis on whole slide 
images (WSIs) of conventional Pap smear samples. The presented deep learning-based cervical lesions 
diagnosis system is demonstrated to be able to detect high grade squamous intraepithelial lesions 
(HSILs) or higher (squamous cell carcinoma; SQCC), which usually immediately indicate patients must 
be referred to colposcopy, but also to rapidly process WSIs in seconds for practical clinical usage. We 
evaluate this framework at scale on a dataset of 143 whole slide images, and the proposed method 
achieves a high precision 0.93, recall 0.90, F-measure 0.88, and Jaccard index 0.84, showing that the 
proposed system is capable of segmenting HSILs or higher (SQCC) with high precision and reaches 
sensitivity comparable to the referenced standard produced by pathologists. Based on Fisher’s Least 
Significant Difference (LSD) test (P < 0.0001), the proposed method performs significantly better than 
the two state-of-the-art benchmark methods (U-Net and SegNet) in precision, F-Measure, Jaccard 
index. For the run time analysis, the proposed method takes only 210 seconds to process a WSI and is 
20 times faster than U-Net and 19 times faster than SegNet, respectively. In summary, the proposed 
method is demonstrated to be able to both detect HSILs or higher (SQCC), which indicate patients 
for further treatments, including colposcopy and surgery to remove the lesion, and rapidly processing 
WSIs in seconds for practical clinical usages.

According to projections by the World Health Organization (WHO), cervical cancer affects more than 300,000 
people per year, with more than 85% of such deaths occurring in less developed countries in recent decades. Each 
minute, one woman is diagnosed with cervical cancer, namely one of the most common cancers in women’s health 
today1. Dysplasia could be detected earlier before cervical cancer grows. The sooner this is detected, the easier to 
cure cervical cancer. Cervical cancer is completely preventable and curable if pre-cancer signs are identified and 
treated at an early stage2. Pap smear is commonly used for medical diagnosis of the cervix to monitor cervical 
cancer and other diseases. The method of Pap smear is to obtain a small number of cervical cell samples, make 
a cell smear, observe the cells under the microscope for abnormalities, and then diagnose cervical disease. The 
sample usually screened by cytotechnologists to examine the cell sample for signs of malignancies. Through 
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this procedure, medical experts could both find proof of invasive cancer and detect certain cancer precursors, 
allowing for early and effective treatment. According to the WHO classification for cervical squamous lesion, 
the initial and mild stage of precancer is termed as mild dysplasia, which later advances to the next stage called 
moderate dysplasia, followed by severe dysplasia and squamous cell carcinoma in situ, and finally to invasive 
squamous cell carcinoma (SQCC) that invades other parts of the body.

In Cervical Intraepithelial Neoplasia (CIN) system, mild dysplasia is classified as CIN1, moderate dysplasia 
as CIN2, severe dysplasia, and squamous cell carcinoma in situ as CIN3, and the final stage as invasive SQCC. 
The Bethesda system is a standard system worldwide in cytological reporting of the cases in diagnosing cervical 
lesions. This system further eliminates the subclassification of CIN by categorizing CIN1 as low-grade squamous 
intraepithelial lesion (LSIL) and CIN2 and CIN3 as high-grade squamous intraepithelial lesion (HSIL) and the 
last stage as invasive cancer3. Atypical squamous cells (ASC) divides into two subcategories: atypical squamous 
cells of undetermined significance (ASC-US) and atypical squamous cells, which cannot exclude a high-grade 
squamous intraepithelial lesion (ASC-H). ASC-H is the less common qualifier, accounting for 5 to 10% of all 
ASC cases, but the risk of the potentially high-grade lesion is higher in this category than in ASC-US. This 
diagnostic category includes a mixture of real HSILs and its mimics4. Women with HSIL, for whom the risk of 
cancer is high, are immediately referred for colposcopy and, if the lesion is confirmed, surgery is required to 
remove the tumor5. The rate of concurrent and subsequent HSILs on follow up of ASC-H is reported as 29–75%, 
and it is recommended that women diagnosed with ASC-H also should be referred for colposcopy4. The detec-
tion of LSIL or ASC-US may lead to a follow-up smear being taken after a shorter time interval than the normal 
2–3 years. Pap smears can greatly reduce the incidence of cervical cancer. During the Pap smear examination, 
cytopathologists manually scan and inspect the whole slide at the microscope using magnification at 10× , and 
when something suspicious is seen, detailed inspection is conducted at magnification 40× . This process typically 
involves checking thousands of cells6. Manual analysis of the Pap smear images requires a large amount of well 
trained manpower, which is extremely expensive, time-consuming, laborious, and error-prone and not available 
in many hospitals. More importantly, if malignant cells are carelessly neglected during the manual screening 
process, this will jeopardize the subsequent treatment plan, causing the patient miss the opportunity of early 
treatment and even more serious consequences. In addition, high inter-observer variability substantially affects 
productivity in routine pathology and is especially ubiquitous in diagnostician-deficient medical centers7. With 
an increase in computing power and advance in imaging technologies, deep learning is being implemented for 
the diagnosis and classification of cervical lesions. Deep learning has been used for the detection of diseases, 
such as skin cancer8, lung cancer9, cardiac arrhythmia10, retinal disease11, intracranial hemorrhage12, neurological 
problems13, autism14, kidney disease15 and psychiatric problems16.

In 2019, Araújo et al.17 applied convolution neural networks (CNNs) to segment LSILs or ASCUSs using 
small size cervical cell images (1392 × 1040 pixels) acquired by manually identified regions of interests from 
microscopy, and Lin et al.18 applied CNNs to classify abnormal cells using single cervical cell image with averaged 
size (110 × 110 pixels), which is carefully prepared by manual localization and extraction of microscopic images. 
However, detection of LSILs or ASCUSs may only lead to a more shorter follow up interval, and both methods17,18 
require manual intervention to locate and acquire single-cell images or images of regions of interests, and thus 
the two methods could not be utilized for fully automatic WSI analysis in cervical HSILs or higher (SQCC) 
examination. To the authors’ best knowledge, there has been no published work on automated cervical HSILs or 
higher (SQCC) analysis using whole slide images (WSIs) of conventional Pap smear samples for practical usages.

In this study, we propose a deep learning based cervical HSILs or higher (SQCC) diagnosis and treatment 
planning system using Papanicolaou staining, enabling automatic examination of cervical smear on WSIs and 
identification and quantification of HSILs or higher (SQCC) for further treatment suggestion. If HSILs or higher 
(SQCC) are detected in a patient Pap smear sample, the further clinical step is to perform the biopsy, large loop 
excision of the transformation zone (LEEP/LLETZ), and cold knife conization of the cervix to achieve both 
diagnosis and treatment. The collection of WSIs stained by Papanicolaou was obtained from Tri-service general 
hospital, Taipei, Taiwan, and a reference standard is produced by manual annotations of HSILs or higher (SQCC) 
by pathologists. In evaluation, as this is the first study on automatic HSILs or higher (SQCC) segmentation, we 
compare the proposed method with Araújo et al.’s approach17 for LSIL segmentation as well as two state-of-the-
art deep learning methods (U-net19 and SegNet20) as shown in Fig. 1.

Data and results
Material.  De-identified, digitized whole-slide images of conventional Pap smear samples were obtained from 
the tissue bank of the Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, 
Taipei, Taiwan (n = 143 patients). A research ethics approval has been gained from the research ethics committee 
of the Tri-Service General Hospital (TSGHIRB No.1-107-05-171 and No.B202005070), and informed consent 
is formally waived by the approving committee. The data were de-identified and used for a retrospective study 
without impacting patient care. All methods were carried out in accordance with relevant guidelines and regula-
tions. Cervical scrapings were collected for cytological diagnosis by gynecologists. The slides were prepared and 
stained by the Pap method according to the usual laboratory protocol. The screening of cytology slides was first 
performed by the pool of cytotechnologists, and a pathologist always confirmed abnormal results. Cytology was 
performed using TBS 2014. A series of negative (n = 8), ASC-US (n = 8), LSIL (n = 8), ASC-H (n = 29), HSIL (n 
= 74), or higher (SQCC, n = 16), and the number of per category in the dataset as shown in Fig. 2a. All patients 
were treated and followed by the standard clinical protocol. The patients with ASC-US underwent a repeat Pap 
smear within 1 year, while the patients with ASC-H, HSIL or SQCC underwent colposcopy-directed cervical 
biopsy and subsequent therapy when indicated. WSIs are digitized glass slides from scanning devices. All stained 
slides were scanned using Leica AT Turbo (Leica, Germany), at 20× objective magnification. The network was 
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instead trained and tested using non-overlapping tiles (512–512 pixels) obtained from the WSIs. Distribution of 
the tile numbers per WSIs as shown in Fig. 2b. In computational pathology, the massive size of WSIs is one of 
the challenges. For automatic analysis the average size of WSIs is 91,257 × 41,546 pixels, 45.93 × 20.91 mm in our 
dataset, and the size distribution of the WSIs as shown in Fig. 2c. The proposed network structure with the asso-
ciated outputs of the selected layers are shown in Fig. 2d. A WSI generally contains billions of pixels, while the 
regions of interest could be as small as a few thousands of pixels (see Fig. 2e). We collected slide-level reviews and 
region-level annotations from pathologists. Slide-level reviews categorize each slide into a group of higher than 
LSIL including ASC-H, HSIL and SQCC. Region-level annotations represent specific HSILs or higher (SQCC) 
within a slide. The information for the dataset is shown in Table 1.

Experimental set‑up and implementation details.  In evaluation, the whole slide images were ran-
domly split into two sets: 68% for training and 32% for testing. As shown in Table 1, the training set consists of 
25 ASC-H, 57 HSIL, and 15 SQCC cases, and the tiles annotated and sampled for building AI models account 
for 0.006% of the training WSIs and for 0.004% of the whole data set, respectively. Moreover, the proposed 
framework is initialized using VGG16 model, and stochastic gradient descent (SGD) optimization and the cross 
entropy loss function are utilized. In addition, the network training parameters of the proposed method, includ-

Figure 1.   Segmentation results of randomly selected examples by the proposed method where the HSILs are 
highlighted in yellow.



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:16244  | https://doi.org/10.1038/s41598-021-95545-y

www.nature.com/scientificreports/

ing the learning rate, dropout ratio, and weight decay, are set to 1× 10−10 , 0.5, and 0.0005, respectively. The 
benchmark methods (U-net19 and SegNet20) are implemented using the keras impelementation of images seg-
mentation models by Gupta et al.21. For training, the benchmark methods (U-net19 and SegNet20) are initialized 
using a pre-trained VGG16 model with the networks optimized using Adadelta optimization, and the cross 
entropy function is used as a loss function. In addition, the network training parameters of U-Net and SegNet, 
including the learning rate, dropout ratio, and weight decay, are set to 0.0001, 0.2, and 0.0002, respectively. The 

Figure 2.   Data information and illustration of the proposed network framework. (a) The number of WSIs per 
category. (b) Distribution of the tile numbers per WSI. (c) Size distribution of the WSIs with width and height 
as black and red. (d) Illustration of the proposed modified FCN structure, and the feature maps of the sampling 
layers. (e) The results of the proposed method in WSIs.
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testing set accounting for 32% of the whole set, consisted of 8 Negative, 8 ASC-US, 8 LSIL, 4 ASC-H, 17 HSIL, 
and 1 SQCC. Further details on the data set could be found in Table 1. To assess the performance of the proposed 
method, we compared the AI segmentation results with the reference standard annotated by pathologists. Fur-
ther quantitative evaluation details are described in the next section.

Evaluation method.  In this study, two state-of-the-art deep learning methods (U-net19 and SegNet20) and 
Araújo et al.’s method17 are adopted as the benchmark approaches, and we compare the computing speed, preci-
sion, recall, F-measure, Jaccard index, which is often used in semantic segmentation to validate the pixel-level 
labeling performance22–26, of the proposed method and the benchmark approaches. Objects are classified into 
one of the four categories: TP, true positive; TN, true negative; FP, false positive; FN, false negative. The evalua-
tion metrics are formulated as follows.

Quantitative evaluation and statistical analysis.  In evaluation, as this is the first study on automatic 
HSILs or higher (SQCC) segmentation, we compare the proposed method with Araújo et al.’s approach17 for 
LSIL segmentation on small image patches as well as two state-of-the-art deep learning methods (U-net19 and 
SegNet20) as shown in Table. 2 where the reported numbers of Araújo et al.17 are referred. The results show that 
the proposed method achieves high precision 0.93, recall 0.90, F-measure 0.88 and Jaccard index 0.84 and out-
performs the three benchmark approaches in all four measurements. In comparison, the U-Net model obtains 
precision 0.15, recall 0.70, F-measure 0.17 and Jaccard 0.12; SegNet model obtains precision 0.26, recall 0.88, 
F-measure 0.27 and Jaccard 0.23; Araújo et al.’s approach17 is with precision 0.66, recall 0.72, F-measure 0.69 
and Jaccard 0.53. Furthermore, Fig. 3 presents qualitative segmentation results by the proposed method and 
two benchmark approaches for HSILs or higher (SQCC) detection. The results demonstrate the high precision, 
efficiency and reliability of the proposed model.

Table 3 presents detailed quantitative evaluation results in HSILs or higher (SQCC) segmentation for all sam-
ples and for separate evaluation on samples with high-grade lesions and samples with low-grade lesions or nega-
tive. The box plots of the quantitative evaluation results for all samples are provided in Fig. 4, showing that the 

(1)Precision =
TP

TP + FP

(2)Recall =
TP

TP + FN

(3)F-measure =2 ×
Precision × Recall

Precision + Recall
=

2TP

2TP + FP + FN

(4)Jaccard Index =
F-measure

( 2 − F-measure )
=

TP

TP + FP + FN

Table 1.   Data distribution and ratio of sampling tissue for AI training.

Category Types

Number of patients’ WSIs Ratio of sampling tissue in training

Training set Testing set With respect to training set With respect to whole set

≥ ASC-H

SQCC 15 1 0.00011 0.00010

HSIL 57 17 0.00006 0.00005

ASC-H 25 4 0.00004 0.00003

 < ASC-H

LSIL 0 8 0 0

ASC-US 0 8 0 0

Negative 0 8 0 0

Total (%) 97 (68%) 46 (32%) 0.00006 0.00004

Table 2.   Quantitative comparison with benchmark methods. The proposed method is significantly better than 
the benchmark approaches (p<0.0001).

Target Data type Aver. size (pixel) Precision Recall F-measure Jaccard

Proposed method HSIL WSIs 91257 41546 0.93 0.90 0.88 0.84

U-net19 HSIL WSIs 91257 41546 0.15 0.70 0.17 0.12

SegNet20 HSIL WSIs 91257 41546 0.26 0.88 0.27 0.23

Araújo et al.17 LSIL/ASCUS Image patches 1383 1036 0.66 0.72 0.69 0.53
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Figure 3.   Qualitative segmentation results by the proposed method and two benchmark approaches for HSIL 
detection.
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proposed method consistently performs well with high precision, recall, F-measure. Jaccard and specificity and 
outperforms the two state of the art deep learning methods, i.e. SegNet and U-net. The experimental results show 
that the two benchmark methods (U-net19 and SegNet20) perform poor in detecting HSILs or higher (SQCC), 
obtaining precision, recall, F-Measure, Jaccard index were < 26%,< 88%,< 27%,< 23% on average, respectively.

Furthermore, for statistical analysis, using SPSS software27, the quantitative scores were analyzed with the 
Fisher’s Least Significant Difference (LSD) to compare multiple methods (see Table 4). In precision, the presented 
method achieves 92.94% averaged and significantly outperforms both benchmark methods based on LSD tests 
( P < 0.0001 ). In recall, the presented method achieves 89.85% averaged and significantly outperforms the U-net 
method based on LSD tests ( P < 0.0001 ). In F-Measure, the presented method achieves 88.21% averaged and 
significantly outperforms both benchmark methods based on LSD tests ( P < 0.0001 ). In Jaccard index, the 
presented method achieves 83.57% averaged and significantly outperforms both benchmark methods based on 
LSD tests ( P < 0.0001 ). Figure 1 presents more segmentation results of randomly selected examples of by the 
proposed method.

Table 3.   Quantitative evaluation of the proposed method and two benchmark methods (U-Net and 
SegNet) in segmenting of HSILs or higher (SQCC). The proposed method is significantly better than the 
benchmarkapproaches (p<0.0001). a As there are no positive in these samples, the value is computed as 0.

Proposed method SegNet20 U-net19

All ≥ HSIL ≤ LSIL All ≥ HSIL ≤ LSIL All ≥ HSIL ≤ LSIL

Precision 0.9294 0.9913 0a 0.2573 0.5145 0a 0.1528 0.3195 0a

Recall (sensitivity) 0.8987 0.8987 NaN 0.8760 0.8760 NaN 0.7053 0.7053 NaN

F-measure 0.8831 0.9420 0a 0.2670 0.5341 0a 0.1691 0.3536 0a

Jaccard 0.8356 0.8913 0a 0.2259 0.4518 0a 0.1220 0.2550 0a

Specificity 1.0000 1.0000 1.0000 0.9833 0.9709 0.9946 0.5752 0.7327 0.4308

Figure 4.   The box plot of quantitative evaluation results in HSILs or higher (SQCC) segmentation. The 
presented method works constantly well overall and outperforms the state-of-the-art benchmark methods. 
Outliers greater than 1.5× and 3× the interquartile range are marked with a dot and a asterisk, respectively.
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Run time analysis.  Due to the enormous size of WSIs, the computational time for WSI analysis is criti-
cal for practical clinical usage. Therefore, we analyzed the AI inference time using different hardware settings 
(see Table 5a). For the run time analysis, the proposed method takes only 210 seconds to process a WSI and 
is 20 times faster than U-Net and 19 times faster than SegNet, respectively (see Table 5b). In comparison with 
Araújo et  al.’s method17, the proposed method processes 923,520 more pixels per second, and Araújo et  al.’s 
method requires twice of hardware memory (251 GB) than the proposed method (128 GB). Overall, the pro-
posed method is demonstrated to be able to both detect HSILs, which indicate patients for further treatments, 
including colposcopy and surgery to remove the lesion, and rapidly processing WSIs in seconds for practical 
clinical usages.

Discussion
To the authors’ best knowledge, this is the first work on automated cervical HSILs or higher (SQCC) analysis of 
WSIs on conventional Pap smear samples for practical usages. Our study demonstrates that the proposed new 
cervical Pap smear diagnosis system could be used to assist in automatic detection and quantification of cervical 
HSILs or higher (SQCC) from WSIs. The proposed method achieved a high precision 0.93, recall 0.90, F-measure 
0.88, and Jaccard index 0.84, and capable of unambiguously segmenting HSILs or higher (SQCC), showing that 
the proposed system is robust and capable of segmenting HSILs or higher (SQCC) with high precision and 
reaches sensitivity comparable to the referenced standard produced by pathologists. Moreover, the proposed 
method significantly outperforms two state of the art deep learning approaches ( P < 0.001 ). Cervical cancer 
develops through persistent infection with high-risk human papilloma virus (HR-HPV) and is a leading cause 
of death among women worldwide28. Regular screening strategies using HR-HPV, Pap smear and colposcopy 
alone or in combination can prevent the onset and development of cervical cancer28. Cervical cancer incidence 
can be reduced by as much as 90% where screening quality and coverage are high29. In 2018, the United States 
Preventive Services Task Force (USPSTF) updated its screening guidelines. In addition to continuing to recom-
mend triennial cytology (Pap test) for women between 21 and 29 years old, then continue with triennial cytology 
or increase HR-HPV testing every 5 years between 30 and 65 years old30. The major contribution of our proposed 
method in a cervical Pap smear screening workflow compared to manual cytology reading is that it reduces on 
the time required by the cytotechnician to screen many pap-smears by eliminating the obvious normal ones, 

Table 4.   Multiple comparisons for the segmentation of HSILs or higher (SQCC): Fisher’s LSD test. a The 
proposed method is significantly better than the benchmark methods (U-net19 and SegNet20) ( P < 0.0001).

LSD multiple comparisons

Dependent variable (I) Method (J) Method
Mean difference 
(I-J) Std. error Sig.

95% CI

Lower bound Upper bound

Precision Proposed method
U-net19 0.77696a 0.09093 < 0.0001 0.5966 0.9573

SegNet20 0.67273a 0.09146 < 0.0001 0.4913 0.8541

Recall Proposed method
U-net19 0.19469a 0.04242 < 0.0001 0.1091 0.2803

SegNet20 0.02283 0.04242 0.593 − 0.0628 0.1084

F-measure Proposed method
U-net19 0.71301a 0.09314 < 0.0001 0.5283 0.8977

SegNet20 0.61492a 0.09369 < 0.0001 0.4291 0.8007

Jaccard Proposed method
U-net19 0.71348a 0.07790 < 0.0001 0.5590 0.8680

SegNet20 0.61008a 0.07836 < 0.0001 0.4547 0.7655

Table 5.   Comparison on (a) hardware and (b) computing efficiency. a The size of the WSI in this evaluation is 
4,536,979,200 pixels (99,600×45,552 pixels). bAraúj et al.’s method17 takes 0.07 s for processing a patch with 
1392 × 1040 pixels; b219 s = 

⌊

99,600×45,552
1,392×1040

× 0.07

⌋

 ; 20,681,142 pixels = ⌊1392× 1040÷ 0.07⌋.

Method CPU RAM (GB) GPU

(a)

Proposed method Intel Xeon Gold 6134 CPU @ 3.20GHz 16 128 4 GeForce GTX 1080Ti

U-net19 Intel Xeon CPU E5-2650 v2 @ 2.60GHz 16 32 1 GeForce GTX 1080Ti

SegNet20 Intel Xeon CPU E5-2650 v2 @ 2.60GHz 16 32 1 GeForce GTX 1080Ti

Araúj et al.17 Intel Xeon E5-2643 @ 3.40 GHz 6 251 4 GeForce GTX Titan-X

Method Inference time in seconds (per WSIa) Inference pixels (per second)

(b)

Proposed method 210 21,604,662

U-net19 4370 1,038,196

SegNet20 4024 1,127,500

Araúj et al.17 219 l 20,681,142 l
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hence more time can be put on the suspicious slides. In recent decades, although the conventional Pap smear 
method has been the mainstay of the screening procedures. However, this technique is not without limitations, 
because the sensitivity and specificity are relatively low. Liquid-based cytology (LBC) was introduced in the 
1990s and was initially considered a better tool for processing cervical lesions. But now it has been found that 
LBC is more superior to conventional smears only with respect to a lesser number of unsatisfactory smears. 
There is no significant difference in the detection of epithelial cell abnormalities between the two methods31. 
LBC is being widely used in the United States, European countries, and many other developed nations. Although 
these approaches appear better clarity, uniform spread of smears, less time for screening and better handling of 
hemorrhagic and inflammatory samples32, but they are expensive and rely heavily on technology33. To consider 
the cost effectiveness and health insurance policy , the conventional Pap method is more feasible in our country. 
Although HPV testing is more sensitive to detect cervical precancerous lesions and cancers earlier than cytology, 
there are currently costs, infrastructure considerations and specificity issues that limit its use in low- and middle-
income countries34. The high frequency of transient HPV infection among women younger than 30 years can 
lead to unnecessary follow-up diagnostic and treatment interventions with potential for harm35. For the HR-HPV 
screening, the Food and Drug Administration (FDA) approved cobas HPV testing. This test detects HPV types 
16, 18, and 26 and additional HR-HPV types36. Despite the reported high sensitivity (86%) and negative predic-
tive value (82%) of HR-HPV testing37, some HSIL can still be missed38–40. The low specificity (31%) and positive 
predictive value (37%) even make the situation worse because they lead to more patients undergoing unnecessary 
referrals37. Recent studies have shown the correlation between epigenetics and development and progression of 
cervical cancer41. Increased methylation of host genes has been observed in women with cervical precancer and 
cancer. Several of these genes have been evaluated as candidates for triage of HPV-positive women. However, 
more longitudinal studies are needed to prove the longitudinal safety of negative methylation result42. Vaccina-
tion against HPV is a possible long-term solution for eradicating cervical cancer in developing countries, where 
a prophylactic HPV vaccine has already been approved. However, knowledge and awareness about cervical 
cancer, HPV, and the efficacy of the HPV vaccine in the prevention of cervical cancer are very low in the world. 
The low level of knowledge about HPV is considered to be the major hurdle for the implementation HPV vac-
cination programs30. Automatic screening of Papanicolaou system has been available for more than 25 years, 
such as AutoPap 30043 and the PapNet44, which were approved by the United States FDA in 1998. Cytyc was 
approved by the FDA in 2007 with the ThinPrep imaging system45. Recent reviews indicate that the previous 
image analysis and machine learning techniques used for automatic Pap smear screening are flawed, resulting 
in low accuracy. The development of fully automatic screening technology that does not rely on the human 
judgment has yet to be fully realized46. A fast automated deep learning system enables high throughput analysis 
across a wide cohort of patients, and also helps to obtain a large amount of data to analyze the enormous dimen-
sions of large gigapixel data of WSIs. There is limited research on automated analysis of cervical lesions on 
conventional Pap smear WSIs. Araújo et al.17 applied CNNs to segment LSIL or ASCUS using small size cervical 
cell images (1392 × 1040 pixels) acquired by manually identified regions of interests from microscopy, and Lin 
et al.18 applied CNNs to classify abnormal cells using single cervical cell image with average size (110 × 110 
pixels), which is carefully prepared by manual localization and extraction of microscopic images. Both methods 
require manual intervention to locate and acquire single-cell images or images of regions of interest. In com-
parison, we developed a fast and fully automatic deep learning fast screening system, which is capable of detection 
and quantification of HSILs or higher (SQCC) on WSIs in seconds for cervical lesion diagnosis and treatment 
suggestion. Our data demonstrated that AI-assisted cytology could distinguish most of CIN2+ (higher than 
CIN2) cytology based on a high precision 0.93, recall 0.90, F-measure 0.88, and Jaccard index 0.84. Compare to 
the manual cytology reading, it is close to an effective use in clinical practice due to complete CIN2+ cells labeling 
in a short time, which aid cytologists or cytotechnologists in screening and labeling cervical high grade dysplastic 
cells more easily and quickly. There are still some weaknesses in AI based Pap smear screening. When atypical 
cervical cells are gathered in different planes, traditional microscopes can overcome the focus problem by turning 
the adjustment wheel, but AI is not easy to correctly classify, such as HSIL present in three-dimensional groups 
closely mimic shed endometrial cells or HSIL pattern resembling reparative change. Specimen with rare, small, 
high nuclear to cytoplasmic ratio HSIL cells may be problematic with AI regard to identifying the single HSIL 
cells. The Pap smear image sometimes contain overlapping hyperchromatic crowded groups which can interfere 
the AI cytological diagnosis. Although our proposed method can correctly find out CIN2+ cells, but it still needs 
cytologists to confirm this diagnosis and divided CIN2+ cells into moderate dysplasia, severe dysplasia, squamous 
cell carcinoma in situ, nonkeratinizing SQCC or keratinizing SQCC. Furthermore, the proposed system is 
demonstrated to be superior than two state-of-the art deep learning methods, i.e. U-Net19 and SegNet20, in preci-
sion, recall, F-measure, Jaccard index and computing efficiency based on the experimental results using LSD test 
( P < 0.001 ). The precision, recall, F-measure and Jaccard index was calculated from a hospital-based, retrospec-
tive study using a research platform that may not be directly applicable to the clinical setting or to wider popula-
tions. The application of artificial intelligence may provide a new screening method of cervical Pap smear and 
warrants further validation in a larger population-based study in future work.

Our results show that the proposed AI assisted method with high sensitivity (0.9) and specificity (1.0) out-
performs conventional Pap smear examination and HPV testing, overcoming the limitation of low sensitivity in 
conventional Pap smear slides using light microscopic examination and low specificity in HPV testing. Artificial 
intelligence assisted rapid screening has great potential to provide much faster and cheaper service in the future. 
The processing time, material and labor cost could be greatly reduced using artificial intelligence assisted rapid 
screening. The proposed fast screening deep learning based system could not only avoid misdiagnosis by human 
negligence but also resolve lengthy screening process. The proposed system is applicable for practical clinical 
usage worldwide for comprehensive screening and ultimately has an impact on the areas with high incidences 
of cervical cancer.
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Methods
In this paper, we developed an efficient system to identify HSILs on WSIs with a cascaded multi-layer deep 
learning framework to improve accuracy and reduce the computing time. The proposed cascaded multi-layer 
utilizes a coarse-to-fine strategy to rapidly locate the tissues of interest and perform semantic segmentation to 
identify HSILs; at the coarse-level, fast localization of the tissues of interest is conducted, and at the fine-level, 
HSILs are identified based on the fast screening results of the tissues of interest. The framework of the proposed 
method is shown in Fig. 5.

Cascaded multi‑layer deep learning framework.  For dealing with gigapixel data efficiently, each WSI 
is formatted into a tile-based pyramid data structure, which is denoted by T =

{

tl,i,j
}

l=1,...,N
 where l is the cur-

rent level and i, j are the row and column index of a tile. M = {M1, . . . ,MN } represents the set of deep-learning 
model Ml at each layer, and an improved fully convolution network is developed as the deep learning-base 
model, which is described in the next section. The output of Ml is the probabilities of HSILs Pl,i,j at level l, which 
is used to produce an attention map al,i,j . A multi-layer attention map A = {al,i,j} l=1,...,N−1 is computed to select 

tiles of interest T ′ =

{

t ′l,i,j

}

l=2,...,N
 for further inspection at every next level l + 1 by a tile selector model � . The 

segmentation result of HSILs SN ,i,j(x, y) is generated by MN (t
′
N ,i,j(x, y)).

For initialization, t1,i,j , i.e. the tiles in the first level, is processed by M1 to generate the probabilities of HSILs 
P1,i,j , as shown in Eq. (5).

The output of Ml is the probabilities of HSILs Pl,i,j at level l, which is used to produce an attention map al,i,j . If 
any pixel of tl,i,j has a probability greater than or equal to α , set the attention map al,i,j of that tile to 1, as shown 
in Eq. (6). In the practical case, α is set to 0.5.

To render tiles of interest t ′l,i,j in every next level, the attention map al−1 in the previous level l − 1 is used by a 
tile selector model �l−1 with a mapping function as shown in Eq. (7). al−1,i,j , i.e. an attention map unit at l − 1 
level, is associated with 22z units at l level, and on the other hand, al,i,j is associated with the attention map unit at 

(5)P1,i,j
(

x, y
)

= M1

(

t1,i,j
(

x, y
))

(6)al,i,j =

{

1 ,max(Pl,i,j(x, y)) ≥ α

0 , otherwise

Figure 5.   System framework. Each WSI is formatted into a tile-based pyramid data structure and the 
probability of HSILs at every level is generated by multi-layer deep learning framework. A multi-layer attention 
map is computed to select tiles of interest at every next level by a tile selector model � , and the segmentation 
result of HSILs is generated by the last layer deep learning model MN (t

′
N ,i,j(x, y)).
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⌊

i × 2−z
⌋

,
⌊

j × 2−z
⌋

 at l − 1 level. Thus, a tile tl,i,j is selected for further inspection as t ′l,i,j when the corresponding 
attention map unit at the previous level al−1, ⌊i×2−z⌋, ⌊j×2−z⌋ equals to 1.

In our implementation, each tile is associated with an attention tile, which contains 16 attention-units ( 22 × 22 
squares), and if the segmentation model at that level confirms any pixel of that tile associated to the attention 
unit(s) as the target, the attention units will be activated to select tiles for the next level.

For the subsequent levels (l = [2,N]) , t ′l,i,j is processed by Ml to generate the probabilities of HSILs Pl,i,j , as 
shown in Eq. (8). Pl,i,j is then used to produce an attention map al,i,j for identification of tiles of interest in the 
next level by a tile selector model �l to generate t ′l+1,i,j as formulated in Eqs. (6)–(7).

In the level N, the selected tiles t ′N ,i,j produces probabilities PN ,i,j by using (8). The segmentation result of HSILs 
SN ,i,j(x, y) is generated by MN using t ′N ,i,j(x, y) as shown in eq.(9).

Modified FCN for segmentation of HSILs or higher (SQCC).  Fully Convolutional Network (FCN) 
has been demonstrated to be effective in pathology, such as segmentation of nuclei in the images47, cell counting 
in different kinds of microscopy images48 and neuropathology49. The Fully Convolutional Network (FCN)50 is 
mainly composed of 18 convolution layers (each convolution layer is followed by a RELU layer), five pooling 
layers for downsampling, a SoftMax layer and three upsampling layers, namely FCN-8s, FCN-16s, and FCN-32s 
models forming a three-stream net where the outputs from each stream are aggregated to form the final output. 
The architecture of the proposed FCN as shown in Table 6. In our preliminary test using a lung dataset provided 
by Automatic Cancer Detection and Classification in Whole Slide Lung Histopathology challenge, which is held 
with the IEEE International Symposium on Biomedical Imaging (ISBI) in 201951, we discover that single-stream 
FCN-32s could avoid overly fragmented segmentation results in comparison to the original three-stream net, 
as shown in Fig. 6. In addition, the cost of training and inference time is saved dramatically. In this study, we 
developed an improved FCN as the base deep learning model using the single-stream FCN-32s as the upsam-

(7)t ′l,i,j = �l−1

(

al−1, ⌊i×2−z⌋, ⌊j×2−z⌋, tl,i,j

)

=

{

tl,i,j , al−1, ⌊i×2−z⌋, ⌊j×2−z⌋ = 1

φ, otherwise

(8)Pl,i,j
(

x, y
)

= Ml(t
′
l,i,j(x, y))

(9)SN ,i,j

(

x, y
)

=

{

t ′N ,i,j(x, y) , MN (t
′
N ,i,j(x, y)) ≥ α

φ , otherwise

Table 6.   The architecture of the proposed deep learning network.

Layer Features (train) Features (inference) Kernel size Stride

Input 512 × 512 × 3 512 × 512 × 3 – –

Conv1_1 512 × 512 × 3 512 × 512 × 3 3 × 3 1 × 1

Conv1_2 710 × 710 × 64 710 × 710 × 64 3 × 3 1× 1

Pool1 710 × 710 × 64 710 × 710 × 64 2 × 2 2 × 2

Conv2_1 355 × 355 × 64 355 × 355 × 64 3 × 3 1 × 1

Conv2_2 355 × 355 × 128 355 × 355 × 128 3 × 3 1 × 1

Pool2 355 × 355 × 128 355 × 355 × 128 2 × 2 2 × 2

Conv3_1 178 × 178 × 128 178 × 178 × 128 3 × 3 1 × 1

Conv3_2 178 × 178 × 256 178 × 178 × 256 3 × 3 1 × 1

Conv3_3 178 × 178 × 256 178 × 178 × 256 3 × 3 1 × 1

Pool3 178 × 178 × 256 178 × 178 × 256 2 × 2 2 × 2

Conv4_1 89 × 89 × 256 89 × 89 × 256 3 × 3 1 × 1

Conv4_2 89 × 89 × 512 89 × 89 × 512 3 × 3 1 × 1

Conv4_3 89 × 89 × 512 89 × 89 × 512 3 × 3 1 × 1

Pool4 89 × 89 × 512 89 × 89 × 512 2 × 2 2 × 2

Conv5_1 45 × 45 × 512 45 × 45 × 512 3 × 3 1 × 1

Conv5_2 45 × 45 × 512 45 × 45 × 512 3 × 3 1 × 1

Conv5_3 45 × 45 × 512 45 × 45 × 512 3 × 3 1 × 1

Pool5 45 × 45 × 512 45 × 45 × 512 2 × 2 2 × 2

Drop6 23 × 23 × 512 16 × 16 × 512 – –

Drop7 17 × 17 × 4096 10 × 10 × 4096 – –

Upsampled 576 × 576 × 3 576 × 576 × 3 – –

Output 512 × 512 × 3 512 × 512 × 3 – –
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pling layers to improve segmentation result, lower GPU memory consumption, and speed-up the time for AI 
training and inference.
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