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Abstract

Hantaviruses are zoonotic hemorrhagic fever viruses for which prevention of human spillover remains the first priority in
disease management. Tailored intervention measures require an understanding of the drivers of enzootic dynamics, com-
monly inferred from distorted human incidence data. Here, we use longitudinal sampling of approximately three decades
of Puumala orthohantavirus (PUUV) evolution in isolated reservoir populations to estimate PUUV evolutionary rates, and
apply these to study the impact of environmental factors on viral spread. We find that PUUV accumulates genetic changes
at a rate of �10�4 substitutions per site per year and that land cover type defines the dispersal dynamics of PUUV, with
forests facilitating and croplands impeding virus spread. By providing reliable short-term PUUV evolutionary rate estimates,
this work facilitates the evaluation of spatial risk heterogeneity starting from timed phylogeographic reconstructions based
on virus sampling in its animal reservoir, thereby side-stepping the need for difficult-to-collect human disease incidence
data.
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1. Introduction

Hantaviruses are important zoonotic pathogens that can cause
hemorrhagic fever with renal syndrome (HFRS) and hantavirus
pulmonary syndrome, potentially life-threatening diseases in
humans (Maes et al. 2004). Concomitant with the increasing
public health relevance of hantaviruses (Kruger et al. 2015),
there is a growing interest in uncovering the present-day pat-
terns and drivers of the spatiotemporal dynamics of hantavirus
circulation in its host reservoirs (Guivier et al. 2011; Barrios et al.
2013a,b; Haredasht et al. 2013a,b; Korva et al. 2013; Weber de
Melo et al. 2015; Laenen et al. 2016; Tian et al. 2017) due to its po-
tential in assisting risk determination and targeting surveil-
lance efforts. Human infections result from inhaling infectious
aerosols from excreta of infected animals. HFRS incidence is
strongly correlated with the reservoir host population dynam-
ics, resulting in seasonal and multi-annual fluctuations in inci-
dence rates and sporadic local outbreaks (Kallio et al. 2009;
Haredasht et al. 2014; Luis et al. 2015). Urbanization and land-
scape factors such as habitat composition, size and quality af-
fect small mammal biodiversity and shape host distribution
and metapopulation dynamics, consequently influencing han-
tavirus transmission within the host population and spillover to
humans (Guivier et al. 2011; Ecke et al. 2017; Tian et al. 2018).
Because of the difficulties associated with collecting reliable in-
cidence data covering longer time periods and large geographic
areas (e.g. due to subclinical infections (Clement et al. 1997) and
differences in notification status of disease among regions
(Heyman, Vaheri, and Members 2008)), the imprint of epidemic
events that is contained in virus genetic data constitutes an at-
tractive alternative source of information (see Biek and Real
2010; Bloomquist, Lemey, and Suchard 2010; Pybus, Tatem, and
Lemey 2015; Holmes et al. 2016; for recent reviews on this topic).
To use such imprints in genomic sequences for identifying the
drivers of virus emergence and spread; however, it is crucial
that the epidemiological history of the virus of interest that
underlies all inferences, is accurately dated. This can be
achieved by exploiting the temporal dimension in samples col-
lected over the last few years or decades. Such temporally
spaced virus genomic data can reliably inform evolutionary rate
estimates when they foster a statistically significant number of
genetic differences (Drummond, Pybus, and Rambaut 2003), and
it is now well-recognized that this assumption should be thor-
oughly tested in order to avoid spurious results (Firth et al. 2010;
Duchêne et al. 2015; Murray et al. 2016; Rambaut et al. 2016).

In Western and Northern Europe, Puumala orthohantavirus
(PUUV) is the principal causative agent of hantavirus disease in
humans (Maes et al. 2004; Kruger et al. 2015). The natural host
of PUUV is the bank vole (Myodes glareolus), which has broadleaf
forests with dense undergrowth as a preferred habitat in
Western Europe (Mazurkiewicz 1994; Linard et al. 2007). Bank
voles remain persistently infected with PUUV, but there can be
remarkable dissimilarity in the persistence of PUUV variants
over time within local vole populations, with both high rates of
lineage turnover and preservation of identical variants for sev-
eral years (Johansson et al. 2008; Weber de Melo et al. 2015).
This extensive variation in the substitution rate among lineages
likely results from a complex interplay between virus and host
ecology. For example, Voutilainen et al. (2015) reported a strong
variability in individual PUUV excretion dynamics of bank voles
in natural settings, possibly reflecting differences in virus repli-
cation due to fluctuating immune responses as a result of
changes in resource availability. Bank voles can get infected
with PUUV either through direct contact or indirectly via

contaminated food or environment (Sauvage et al. 2003). The
relative importance of each transmission path depends on sea-
sonal fluctuations in ecological factors and bank vole behavior
(Tersago, Verhagen, and Leirs 2011) and on multiannual popula-
tion density cycles (Voutilainen et al. 2016). Additionally, hanta-
virus ex vivo stability varies substantially depending on the
environmental conditions (Kallio et al. 2006; Linard et al. 2007),
thereby influencing the efficiency of the indirect transmission
path. Thus, population-specific differences in transmission dy-
namics can affect the PUUV evolutionary rate as well as its con-
stancy. This is important because substantial deviations of the
linear accumulation of divergence through time can confound
evolutionary rate estimations (Trovao et al. 2015; Raghwani
et al. 2016). Furthermore, within-host life-history traits that
counter the effects of short-sighted evolution may add to the
high heterogeneity in evolutionary rates along different line-
ages, as is often observed in chronic viral infections (Vrancken
et al. 2014; Lythgoe et al. 2017; Vrancken, Suchard, and Lemey
2017).

We here capitalize on the longest available sampling
through time of well-defined PUUV populations infecting bank
voles to estimate the rate of PUUV evolution at a timescale rele-
vant for the present-day epidemic emergence and spread.
We first exhaustively investigate the veracity of the temporal
signal before estimating substitution rates and, in the time-
structured clades, evaluate the impact of several landscape fac-
tors on the rate of PUUV spread.

2. Results
2.1 Dataset compilation

A total of 664 bank voles were trapped at eight locations in
Belgium between 2006 and 2016, and ninety-eight (14.8%) were
PUUV IgG positive. Complete S segment sequences were gener-
ated from eighty-two (83.7%) of these samples. In addition, 2 S
segments from early passage PUUV isolates originating from
bank voles captured between 1984 and 1986, were also se-
quenced. The new sequence data were complemented with the
available PUUV S-segment data from NCBI GenBank.

2.2 Identifying isolated populations

We first focused on the fragment of the S segment that is most
frequently sequenced (nucleotide (nt) positions 400–900 in
PUUV strain Sotkamo, NC_005224) to frame the Belgian PUUV
diversity in a global perspective. An unconstrained analysis
(with no molecular clock enforced) using MrBayes showed that
all Belgian PUUV lineages group in a well-supported clade that
also includes strains from nearby locations in France
(Charleville (Castel et al. 2015)), Germany (Cologne (Essbauer
et al. 2007), Erft (Heiske et al. 1999), Koblenz (Schilling et al.
2007)), and The Netherlands (Middelbeers, Oirschot, and
Kaatsheuvel (de Vries et al. 2016)) Supplementary Fig. S1. Next,
we focused on this ‘Belgian’ cluster and extended the scope to
the entire coding region of the S segment (1,299 nt) to more reli-
ably identify PUUVs that have been evolving in isolated bank
vole populations. This analysis showed that the Belgian line-
ages group in three well-defined clades (each having 100% pos-
terior support), that can roughly be assigned to the north,
middle, and south of Belgium (Fig. 1). These lineages will in this
manuscript be further referred to as the Campine, Sonian
Forest, and Ardennes clades, respectively.
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Figure 1. Spatial distribution and phylogenetic relationship of PUUV. (A) Map showing the trapping locations of the bank vole populations that were sampled. Locations with

newly generated virus sequence data that were generated for this study (n = 8) are indicated with filled symbols. Locations with virus sequence data available in NCBI GenBank

are indicated with open symbols. Trapping locations are denoted by numbers ranging from 1 to 17, with 1: Kaatsheuvel, 2: Oirschot, 3: Middelbeers, 4: Gierle, 5: Zevendonk

(Turnhout), 6: Sonian Forest, 7: Fontaine l’Evêque, 8: Thuin, 9: Beaumont, 10: Rance, 11: Montbliart, 12: Chimay, 13: Momignies, 14: Olloy-sur-Viroin, 15: Viroinval, 16: Couvin, and

17: Charleville. (B) MCC tree representation of the three PUUV populations estimated from the protein-coding part of the S segment. Nodes indicated with an asterisk have a pos-

terior support of 1. The geographical clustering of lineages is indicated by colored symbols (orange triangles, Ardennes; green circles, Campine; blue squares, Sonian Forest).

Sampling locations from other countries are marked by country codes (DE, Germany; FR, France). Branch lengths are expressed in substitutions per site as indicated by

the scale bar.

L. Laenen et al. | 3



2.3 Validation of temporal structure and estimating
evolutionary rates

To explore the presence of temporal structure and the data
quality for the Campine, Sonian Forest, and Ardennes clades
(Supplementary Fig. S2) the genetic divergence was regressed
against time. This revealed a complete lack of temporal struc-
ture in the Sonian Forest clade (Supplementary Fig. S2C), that
only has 4 months between the earliest and the most recent
available sequence. In contrast, there appeared to be a time-
related accumulation of mutations in the Campine and Ardennes
clades, and for this reason, we focused on these PUUV populations
in subsequent explorations (Supplementary Fig. S2A and B).
For neither clade, there was evidence of confounding between the
genetic and temporal structure (Table 1), and the regression-based
analyses indicate that the observed correlation between the root-
to-tip distances and time only differs significantly from what is
expected in the absence of a temporal structure for the Ardennes
lineage (Murray et al. 2016). Additionally, the proportion of
explained variation (R2) is low for both the Ardennes and Campine
datasets (Table 1), and large residuals indicate that the data may
better fit a model where the substitution rate can vary along the
branches (Supplementary Fig. S2A and B).

The suboptimal R2 values of the regression analysis and the
possible confounding impact of the non-independence of the
data (Drummond, Pybus, and Rambaut 2003; Vrancken,

Suchard, and Lemey 2017), motivated us to further evaluate the
presence of temporal signal using a tip-date randomization test
in conjunction with BEAST (Firth et al. 2010). In addition to ap-
propriately accounting for the shared ancestry, this also allows
to capture differences in the rate of evolution along lineages
with a relaxed molecular clock (Drummond et al. 2006). Relaxed
clock models provide an estimate of the variation in evolution-
ary rate among lineages, the coefficient of variation (CoV) statis-
tic that can be used to evaluate the clocklikeness of evolution.
Specifically, the CoV statistic depicts the scaled variance in evo-
lutionary rate among lineages, meaning that a strict clock
model may fit the data better than a relaxed clock model when

Table 1. Quantifying the temporal structure.

Clade Sampling time
range (years)

Mantel Linear regression

P Correlation P R2

Ardennes 26.6 0.272 0.301 0.022 0.09
Campine 31.8 0.184 0.222 0.127 0.05

Each clade was tested for confounding between the genetic distances and exact

sampling time differences using the Mantel test (Murray et al. 2016). P-values �
0.05 indicate no evidence for confounding of the temporal with the genetic

structure of the data was present. The heterochronicity of each clade was ana-

lyzed using a linear regression of the root-to-tip divergence against the sam-

pling dates. The P-values relate to the correlation between root-to-tip genetic

distance and sampling times.
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Figure 2. Population size histories for the Ardennes and Campine clades. Demographic histories were estimated under a flexible non-parametric coalescent model (Gill

et al. 2013). The choice of the oldest change point (the ‘cutoff’) was based on the upper limit of the 95 per cent BCI of the time to the most recent common ancestor

(tMRCA) from a preliminary analysis with the skyline coalescent model (Drummond et al. 2005). The dashed red line marks a possible constant population size scenario

and shows that for both the Ardennes clade (A) and the Campine clade (B) the demographic history mimics a constant population size scenario. Note that population

structure can induce an artefactual signal of a population decline towards the most recent sampling time (Heller, Chikhi, and Siegismund 2013).
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the posterior densities and the datasets is indicated in this figure.
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the 95 per cent highest posterior density (HPD) interval of the
CoV statistic borders zero (Drummond et al. 2006; Gray et al.
2011). Reconstructions of the demographic histories of the
Ardennes and Campine clade using a non-parametric coales-
cent model were in agreement with a constant population size
scenario for both clades (Fig. 2). This was implemented in subse-
quent phylogenetic inferences.

The credible interval of the CoV for the Ardennes dataset
(Fig. 3) buts to zero, but the rather liberal range of plausible CoV
values indicates that a relaxed and strict clock model may have
a comparable goodness of fit of the data. The Campine CoV pos-
terior density (Fig. 3) also shows that the CoV cannot be used to
unambiguously set apart different clock model hypotheses, al-
beit the support for rate heterogeneity is more outspoken.
Because of these ambiguities, we formally compared the fit of
strict and relaxed clock models to both datasets using a
Generalized Stepping Stone marginal likelihood estimator in
BEAST (Table 2) (Baele, Lemey, and Suchard 2016). In agreement
with the patterns that emerge from Fig. 3, we find that both types
of clock models fit the Ardennes data comparably well and the re-
laxed clock model fits the Campine data slightly better.

Additionally, the Campine CoV posterior density indicates
that levels of rate variation comparable to those observed for
the Ardennes clade are slightly better supported than higher
levels (Fig. 3). Furthermore, a comparison of the maximum
clade credibility (MCC) trees, corresponding to the sampled
states of the converged Markov Chain Monte Carlo (MCMC)
chain with a CoV larger respectively smaller than 1, shows that
extreme levels of among branch rate variation (CoV > 1) involve
unrealistically high rates (�10�2 substitutions/site/year) on par-
ticular internal branches linking the subclades (Supplementary
Fig. S3). This is likely consequential to the combination of the
parameter-rich relaxed clock model and data with noisy and/or
weak temporal signal. Because very non-clock like data impede
reliably estimating substitution rates (Trovao et al. 2015;
Raghwani et al. 2016), we attempted to shrink the level of
among-lineage rate heterogeneity in the Campine clade by im-
posing a monophyly constraint that involves the Gierle-
Zevendonk-Turnhout subclade (see Supplementary Fig. S3, red
box). The rationale is that this subclade has 100 per cent poste-
rior support for being monophyletic in the unconstrained analy-
sis and requiring these taxa to co-cluster does not allow for the
topology of the MCC tree that is seen for high levels of among
branch rate variation (CoV > 1, Supplementary Fig. S3).

Because of these uncertainties, the tip-date randomization
test was done with both types of clock models (Fig. 4). This

reveals that the Ardennes PUUVs clearly represent a ‘measur-
ably evolving population’ (Drummond, Pybus, and Rambaut
2003). The evolutionary rate estimates for the Ardennes clade
are 1.8 � 10�4 s/s/y (95% HPD: 1.1 � 10�4 � 2.5 � 10�4) under a
strict clock and 2.0 � 10�4 s/s/y (95% HPD: 1.2 � 10�4 � 3.0 �
10�4) under a relaxed clock model and are robust to the clock
model specification (Figs 4 and 5). Although the monophyly
constraint on the Gierle-Zevendonk-Turnhout subclade im-
proved the model fit (Table 2) and indeed reduces the level of
rate heterogeneity (Fig. 3), it is clear from the large overlap of
the 95 per cent Bayesian credible interval (BCI) of the tip-date in-
formed evolutionary rate estimate with the 95 per cent BCIs of
the estimates obtained from tip-date randomized datasets, that
the substitution rate estimate from the Campine dataset is not
as clearly informed by the data as for the Ardennes clade
(Fig. 4). Yet, that the posterior density of the tip-date informed
substitution rate is shifted towards higher values when com-
pared with the null distribution (i.e. the expectation when ran-
domizing the sampling dates), shows that there is signal for a
build-up of genetic divergences over the sampling time. Indeed,
analogously to the decreasing slope (i.e. substitution rate) with
decreasing clock signal in a regression of root-to-tip divergence
versus sampling time, it is expected that with decreasing tem-
poral signal the substitution rate will increasingly tend towards
the null distribution, which is opposite to what is observed
here. Furthermore, the rate estimates of the Campine dataset
largely overlap with the Ardennes estimates, irrespective of the
type of clock model (Fig. 5). Overall, these results show that the
temporally annotated PUUV genetic data can be used to reliably
frame this virus’ recent evolution in absolute time.

2.4 The impact of landscape factors on the Puumala
virus dispersal velocity

Combining geographic data with dated sequence evolution ena-
bles the reconstruction of virus dispersal dynamics. In turn, this
allows relating molecular epidemiology with landscape ecology
and testing of hypotheses about the effect of landscape configu-
ration on PUUV dispersal. Here, we pursue this by first recon-
structing the dispersal history of the Ardennes and Campine
clades using a Bayesian continuous phylogeographic method
(Lemey et al. 2010). In a next step, the SERAPHIM R package
(Dellicour et al. 2016; Dellicour, Rose and Pybus 2016) is used to
investigate the impact of three landscape features (forest areas,
croplands, and primary roads) on the PUUV dispersal velocity.

From the land cover maps with superimposed geo-referenced
phylogenies (Fig. 6), it is clear that PUUV migration involves both
forested and non-forested (mostly croplands in these regions)
areas, and that primary roads form no absolute barriers. When re-
lating landscape features to PUUV virus dispersal velocity, we
find modest Bayes factor support (BF > 3) for forest areas facilitat-
ing PUUV dispersal in the Ardennes clade, while croplands act as
a resistance factor, impeding PUUV dispersal (Fig. 7). For the
Campine region, however, no significant support was obtained
for any of the tested landscape features. Furthermore, primary
roads do not act as a significant resistance factor for PUUV dis-
persal velocities in either clade (Supplementary Tables S2 and S3).
However, the level of statistical support does not quantify the
contribution of landscape factors in explaining differences in mi-
gration rates. For this, we consider the ratio of explained hetero-
geneity of the environmental versus null model (R2

env/R2
null,

Supplementary Tables S2 and S3), that shows that forest and
non-forest cover have a similar added value, with an average in-
crease of R2 of 42.2 and 43.8 per cent above what is captured by

Table 2. Comparing the fit of strict and relaxed molecular clock
models.

Clade Strict
clocka

Relaxed
clocka

log(BF)relaxedb

Ardennes �3,469.8 �3,468.6 0.9
Campine

(w/o monophyly constraint)
�2,626.6 �2,624.6 2.0

Campine
(w/ monophyly constraint)

�2,614.3 �2,610.4 3.9

aNumbers refer to the log likelihood of the data, averaged over the entire param-

eter space (log marginal likelihoods) estimated with the Generalized Stepping

Stone estimator as implemented in BEAST (Baele et al. 2016). Higher values indi-

cate a better model fit.
blog BF support in favor of the relaxed clock model wherein the evolutionary rates

operating on the branches are drawn from a discretized lognormal distribution.
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geographic distances alone. Importantly, the high absolute values
of R2

env when treating cropland as a resistance (median 0.59, 95%
CI: 0.19–0.80) and forest as a conductance factor (median 0.55,
95% CI: 0.16–0.80) testify to the importance of both types of land
cover in shaping PUUV dispersal.

3. Discussion

Collecting genomic data is becoming a routine part of many
hantavirus surveillance programs. Through phylogenetic

analyses, this enables linking virus evolution to migration pro-
cesses as well as statistically identifying correlates of epidemic
spread, without having to rely on time series of incidence rates.
These incidence data are often absent or scarce and can be unpre-
dictable owing to the difficulties in their collection. To reliably
bridge evolutionary information with data on epidemiological
processes, however, it is crucial that the statistical models used
to connect genetic information to time-stamped data—referred to
as ‘molecular clock models’—are accurately calibrated.

Based on a unique sampling effort covering approximately
three decades, we obtained the best-informed short-term
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evolutionary rate estimates of the PUUV nucleocapsid gene (S
segment) to date, and exhaustively tested their reliability. Our
work provides a substantial improvement on previously pub-
lished PUUV substitution rate estimates in three related aspects.
First, by considering PUUV evolution in isolated populations, as
opposed to mixing data from populations that evolved in geo-
graphic isolation over extended periods of time (Ramsden et al.
2008), we avoid the biasing effect of the time-dependent rate de-
cline that is expected to manifest on the long, deep branches
connecting taxa from separated populations (Bennett et al.
2014). Second, our longitudinal sampling covers around three
decades, meaning that the molecular clock can be calibrated
more accurately in comparison to more shallow sampling
schemes (Weber de Melo et al. 2015), in much the same way as
simple regression analyses benefit from measurements that
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cover a long range of the variable under investigation. Third,
the authenticity of the temporal signal was comprehensively
analyzed, which is a prerequisite for reliance on the reported
estimates (Zhang and Holmes 2014).

We demonstrate that the rate estimate for the Ardennes
population is well-informed by the data. Although the temporal
structure in the Campine clade is less pronounced, the esti-
mates for both populations are in close agreement (Fig. 5).
Strikingly, our PUUV evolutionary rate estimates are also highly
similar to substitution rates reported for S segment in other
hantaviruses estimated from datasets with comparable geno-
mic coverage and sampling time frame (Supplementary Fig. S4).
This indicates that, contrary to what is often observed for other
viruses (Streicker et al. 2012; Worobey, Han, and Rambaut 2014),
differences in life-history traits appear to not substantially im-
pact short-term evolutionary rates of these, and perhaps all,
hantaviruses. The high transition/transversion ratios observed
for the Ardennes and Campine datasets (with respective mean
ratios of twelve (95% BCI: 8–16) and seventeen (95% BCI: 9–26))
testify that synonymous mutations are favored over amino acid
changing mutations. Presumably, this is due to a history of
virus-host co-evolution of these hantaviruses being sufficiently
long to have reached a fitness plateau, resulting in strong puri-
fying selection, as was previously reported for PUUV and other
hantaviruses (Razzauti et al. 2013; Laenen et al. 2016).

Bank vole population sizes and PUUV prevalence can be
highly variable (Tersago et al. 2008; Weber de Melo et al. 2015;
Voutilainen et al. 2016). This, however, is not reflected in
changes in the effective number of infections through time
(Fig. 2), what indicates that expanding lineages are usually tran-
sient and have remained unsampled. As a matter of fact, it has
been shown that the temporal distribution of sampling deter-
mines to what extent fluctuations in cyclic growth patterns are
reflected in coalescent-based reconstructions of the demo-
graphic history (Stack et al. 2010). This illustrates the need for
surveillance programs with an improved spacing of sampling
times, preferentially generating long sequences from all three
hantavirus segments to capture the multiannual population dy-
namics in detail. Improved sampling will also allow relating the
periodic virus population growth and decline to the HFRS inci-
dence and its potential drivers, such as host population density
and climatologic factors, while avoiding the problems associated
with post hoc methods (Gill et al. 2016; Volz and Didelot 2018). In
addition, enhanced sampling is needed to assess the importance
of segment reassortment for PUUV emergence dynamics
(Razzauti et al. 2013; Szabo et al. 2017; Laenen et al. 2018).

Persistence of a limited set of lineages can also account for
the absence of a clear imprint of variation in the rate of evolu-
tion between lineages in the virus genome. Specifically, many
evolutionary dead-ends can eliminate the diversifying impact
of lineage-specific differences in transmission dynamics on the
substitution rate when, of the many variants that evolve at dif-
ferent rates at a single moment, only those with similar trans-
mission dynamics survive in the longer-term. Importantly, both
this and the constancy in population size (Fig. 2) align with the
recent observation of long-term shedding of PUUV by bank
voles in natural settings as a means to overcome host popula-
tion bottlenecks (Voutilainen et al. 2015) and support the view
that this hantavirus’ long-term life strategy includes prolonged
periods of replication in chronically infected hosts.

The PUUV and, more generally, the hantavirus emergence
potential is sensitive to changes in environmental factors, and
many modeling efforts have attempted to identify climatic, an-
thropogenic, and other ecological determinants of hantavirus-

associated disease incidence (Linard et al. 2007; Palo 2009;
Barrios et al. 2010, 2013a,b; Tersago et al. 2011; Haredasht et al.
2013a,b; Khalil et al. 2014; Voutilainen et al. 2016; Tian et al.
2017, 2018). To date, conditioning inferences on the spatial and
temporal dynamics of gene flow has been unattainable for these
studies. Thanks to the presence of sufficient temporal signal in
our data, however, we could exploit the concordant timescales of
epidemiological and evolutionary dynamics to evaluate the influ-
ence of environmental variables on PUUV dispersal velocity.

As forests are the preferred, yet not unique, habitat of bank
voles (Gurnell 1985; Canova and Fasola 1991; Van Apeldoorn
et al. 1992; Mazurkiewicz 1994; Wijnhoven et al. 2005; Torre and
Arrizabalaga 2008), and roads can act as barriers to bank vole
migration (Gerlach and Musolf 2000), we opted to investigate
the relevance of forest and non-forest cover, and the presence
of main roads in explaining migration rate heterogeneity. There
was positive support for forest cover to facilitate PUUV dispersal
and, vice versa, for non-forest cover as a resistance factor in the
Ardennes clade. On the other hand, the type of land cover could
not explain the variation in migration rates better than geo-
graphic distance alone in the Campine population. This is not
due to a low amount of dispersal velocity heterogeneity in the
Campine clade (Supplementary Fig. S5), but most likely relates
to the substantial fragmentation of land cover in the Campine
area, leading to less opportunity for a particular land cover type
to leave an imprint on the migration rate. However, it should be
noted that the environmental factors are assumed constant in
time, and our approach currently cannot consider time-variable
predictors. This may be particularly relevant for the Campine
region, which has been subjected to substantial deforestation in
the 20th century (Van der Veken, Verheyen, and Hermy 2004).

Given the impact of landscape structures, in particular forest
fragmentation, on host abundance and spatial behavior (Linard
et al. 2007; Guivier et al. 2011), it is likely that the extent of land
cover fragmentation in the Campine area accounts for the no-
ticeable lower effective number of infections through time
(mean = 43, 95% BCI: 18–72) when compared with the Ardennes
(mean = 100, 95% BCI: 58–153), where PUUV can more rapidly be
reseeded following local extinction (Guivier et al. 2011). The rel-
evance of land cover is further highlighted by historical HFRS in-
cidence data: in the north of Belgium (cf. Campine clade), where
forests are more fragmented, a lower incidence of HFRS is seen,
while for the south of Belgium (cf. Ardennes clade) where for-
ests are more connected, an endemic region with high HFRS in-
cidence rate is present. These results further strengthen the
notion that the type of land cover can be a valuable variable in
predictive models of PUUV spread and infection risk (Linard
et al. 2007; Guivier et al. 2011; Barrios et al. 2013b). Finally, in
line with previous findings that only highways strongly impede
bank vole migration (Gerlach and Musolf 2000), the presence of
primary roads does not seem to affect the migration rate of
PUUV in the Ardennes and Campine regions.

In summary, we demonstrated that PUUV genomic surveil-
lance data are amenable to quantifying the rate of the PUUV dis-
persal dynamics and identifying its drivers. Our results will
assist in identifying intervention points and improve the effi-
ciency of public health resource allocations.

4. Materials and methods
4.1 Sample collection and sequencing

Rodent trappings were conducted on eight different locations in
Belgium from 2006 to 2016. On each location, one hundred
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Longworth or Sherman live traps were placed in a 10 � 10 grid
at 10 m intervals at each location. Captured bank voles were se-
dated with isoflurane followed by a 10 ml blood collection
through the retro-orbital sinus. The collected blood was tested
in the field for the presence of PUUV IgG antibodies using the
ReaScanVR Ab-Dect Puumala IgG kit (Reagena). PUUV antibody-
positive bank voles were sacrificed and immediately stored at
�20�C. Bank vole kidney and lung tissues were dissected and
preserved in RNAlater stabilization solution (Life Technologies).
Kidney and/or lung tissue was homogenized with the Minilys
homogenizer (Bertin Technologies) followed by total RNA ex-
traction with the RNeasy Mini kit (Qiagen), according to the
manufacturer’s instructions. Tissues were screened for the
presence of hantavirus RNA as described previously (Laenen
et al. 2016). In addition, PUUV isolates, obtained from low pas-
saging on VeroE6 cells, from bank voles captured between 1984
and 1986 were included in sequencing. From the positive sam-
ples and cultures, the complete S segment was amplified with
the One-Step RT-PCR kit (Qiagen) using the following condi-
tions: 50�C for 30 min, 95�C for 15 min followed by 40 cycles of
amplification (30 s at 94�C, 30 s at 53�C, 2 min at 72�C) with a fi-
nal extension of 10 min at 72�C. PCR amplicons were purified
using ExoSAP-ITVR PCR Product Cleanup (Affymetrix) and se-
quenced according to the ddNTP chain termination method
with the BigDye Terminator v3.1 cycle sequencing kit (Life
Technologies) on an Applied Biosystems 3130xl Genetic
Analyzer. Primers used to amplify and sequence the S segment
are available in Supplementary Table S1.

4.2 Querying the GenBank sequence database

All available PUUV sequence data were downloaded from NCBI
GenBank. S segment sequences were filtered by aligning all data
to a reference S segment sequence (GenBank accession number
NC_005224) with a pairwise codon-aware alignment tool (http://
regatools.med.kuleuven.be/sequencetool/sequencetool.wt), allow-
ing for at most ten frameshifts.

4.3 Bayesian inference of sequence evolution

For the analyses where no molecular clock was enforced,
MrBayes v.3.2.6 (Ronquist et al. 2012) was used to estimate the
posterior probabilities of trees using Bayesian inference through
MCMC simulation, employing a General Time Reversible (GTR)
substitution model and a discretized C distribution using de-
fault priors (Yang 1994).

For the specific clades where preliminary tests (see below)
indicated the presence of a measurable build-up of genetic
change over the sampling time span (the Ardennes and
Campine clades), timed evolutionary histories were estimated
using BEAST v1.8.4 (Drummond et al. 2012). Here, a strict or
relaxed molecular clock model (Drummond et al. 2006) was
combined with the HKY substitution model (Hasegawa,
Kishino, and Yano 1985) and substitution rate heterogeneity
across positions was again modeled with a discretized C distri-
bution (Yang 1994). After an initial exploration of the demo-
graphic history with a flexible non-parametric coalescent model
(Gill et al. 2013; see Fig. 2), we decided to assume a constant pop-
ulation size for both datasets when estimating clade-specific
substitution rates. The fit of different models to the data was
estimated using the Generalized Stepping Stone marginal likeli-
hood estimator as implemented in BEAST (Baele et al. 2016).

4.4 Evaluating the temporal signal

The initial evaluation of the temporal signal and data quality
with TempEst (Rambaut et al. 2016) was based on a maximum
likelihood tree estimated with PhyML in Seaview (Gouy,
Guindon, and Gascuel 2010), with GTR correction for multiple
hits, C-distributed rate variation among sites (Yang 1994) and
not assuming a molecular clock. A Mantel test (Murray et al.
2016) served to identify whether genetically similar taxa were
more likely to have been sampled around the same time, and
the significance of the correlation between the root-to-tip diver-
gences and sampling times was estimated against a null distri-
bution obtained by 1,000 times randomly reassigning the
sampling dates to the taxa. The significance of the tip-date in-
formed evolutionary rate signal was also determined, while ac-
counting for the genetic relationships. This involved creating
twenty datasets with randomly permuted tip-dates (Murray
et al. 2016) and comparing the mean substitution rate estimate
from the observed data with the 95 per cent BCIs estimated
from the randomized datasets (Firth et al. 2010), assuming the
same evolutionary models as in the tip-date informed analyses.

4.5 Testing the impact of landscape factors on the rate of
geographic spread

The workflow for statistically analyzing the impact of landscape
features (forest areas, croplands, and primary roads) on the rate
of PUUV geographic spread is similar to those previously de-
scribed by Dellicour, Rose and Pybus (2016) and Dellicour et al.
(2017) and is summarized below. All required scripts are avail-
able in the SERAPHIM R package (Dellicour et al. 2016; R Core
Team 2017). A more detailed exposition of this method is avail-
able in Supplementary Appendix S1.

Spatially and temporally referenced phylogenies for the
Ardennes and Campine clades were inferred with the continu-
ous phylogeographic method implemented in BEAST 1.8.4
(Lemey et al. 2010), using the same demographic and substitu-
tion models as those used for estimating the substitution rates
were specified (see above). Because the evolutionary rate esti-
mates largely overlap irrespective of the clock model (Fig. 5) and
a strict clock model is not rejected by the data (Table 2),
we chose the strict clock model for an optimal dating precision
(Ho et al. 2005; Drummond et al. 2006). Information on the timed
history of spread was extracted from a subset of 100 trees sam-
pled at regular intervals from the post burn-in posterior distri-
bution of trees. Specifically, all branches are treated as
movement vectors that represent conditionally independent
viral lineage dispersal events (Pybus et al. 2012) with known
start and end locations (latitude and longitude) and start and
end dates. These vectors are subsequently used to investigate
the impact of landscape features on the PUUV dispersal velocity
by computing ‘environmental distances’ that is spatial
distances that are weighted according to the values of an envi-
ronmental raster mirroring the spatial heterogeneity of the
tested landscape features (Dellicour, Rose and Pybus 2016).
Environmental distance computation was performed using two
different models: 1, the least-cost path model, which uses a
least-cost algorithm to obtain the migration route between the
start and end points (Dijkstra 1959), and 2, the Circuitscape path
model that can accommodate uncertainty in the migration
route (McRae 2006; Mcrae et al. 2008). By correlating environ-
mental distances to the time that was needed by the virus to
migrate from start to end location, one can test the impact of
landscape features on the dispersal velocity. Practically, this is
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done by calculating the statistic R = R2
env/R2

null, where R2
env is

the coefficient of determination obtained by regressing branch
durations against environmental distances computed on the
environmental raster, and R2

null is the coefficient of determina-
tion obtained by regressing branch durations against environ-
mental distances computed on the ‘null’ raster. The R statistic,
therefore, represents how much variation in migration rates,
beyond that explained by geographic distance alone, is
explained by considering the spatial heterogeneity of the envi-
ronmental variable. Note that this statistic R is slightly different
from the statistic Q (= R2

env � R2
null), previously used in

Dellicour et al. (2017).
Because it is a priori unknown to what extent the geographic

variation of the environmental factor affects the level at which
a cell in the raster acts as a conductance/resistance factor rela-
tive to the null raster, the environmental distances were calcu-
lated from several rasters with rescaled cell values (Dellicour
et al. 2017). For this, the original raster cell values were trans-
formed according to vt = 1 þ k*(vo/vmax), where vt and vo are the
transformed and original raster cell values, vmax is the maxi-
mum raster cell value recorded in the raster and k is 10, 100, or
1,000. Also, each landscape feature was tested as a resistance
factor (i.e. impeding virus movement) and as a conductance fac-
tor (i.e. facilitating virus movement). In summary, for each com-
bination of environmental factor, k parameter value and path
model, an R distribution is derived from the 100 sampled
phylogenies.

A landscape factor was considered as potentially explana-
tory, and BF support for the significance of an R distribution was
calculated only when the distribution of regression coefficients
was positive and when p (R > 1) was at least 90 per cent.

Data availability

Sequences generated for this study have been submitted to
NCBI GenBank under accession numbers MG812385-MG812468.

Supplementary data

Supplementary data are available at Virus Evolution online.
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