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Abstract: It is widely accepted that senescent cells accumulate with aging. They are characterized by
replicative arrest and the release of a myriad of factors commonly called the senescence-associated
secretory phenotype. Despite the replicative cell cycle arrest, these cells are metabolically active
and functional. The release of SASP factors is mostly thought to cause tissue dysfunction and to
induce senescence in surrounding cells. As major markers for aging and senescence, p16INK4,
p14ARF/p19ARF, and p21 are established. Importantly, senescence is also implicated in development,
cancer, and tissue homeostasis. While many markers of senescence have been identified, none are
able to unambiguously identify all senescent cells. However, increased levels of the cyclin-dependent
kinase inhibitors p16INK4A and p21 are often used to identify cells with senescence-associated
phenotypes. We review here the knowledge of senescence, p16INK4A, p14ARF/p19ARF, and p21 in
embryonic and postnatal development and potential functions in pathophysiology and homeostasis.
The establishment of senolytic therapies with the ultimate goal to improve healthy aging requires care
and detailed knowledge about the involvement of senescence and senescence-associated proteins
in developmental processes and homeostatic mechanism. The review contributes to these topics,
summarizes open questions, and provides some directions for future research.
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1. Introduction

Senescence was first described by Hayflick in isolated fibroblasts in culture [1,2]. In re-
sponse to repeated replication, DNA damage, metabolic alterations, reactive oxygen species
or cytotoxic drugs, cells enter permanent cell cycle arrest, change their morphology to more
flat and large cells, express and secrete cytokines, chemokines, growth factors, bioactive
lipids, and pro-apoptotic factors—the so-called senescence-associated secretory phenotype
(SASP) and become positive for senescence-associated beta-galactosidase (SAβG) [3–11].
Although the morphological features are easy to follow in cultured cells, the identification
in vivo or on histological sections is more problematic. SAβG staining is also not uniform in
all old cells or in response to typical inducers of senescence, e.g., doxorubicin [12]. During
embryonic development, even some co-localization of SAβG staining with proliferation
markers was detectable [13]. Thus, recently the use of combinations of different markers
and expression of SASP factors was suggested from the International Cell Senescence
Association to correctly identify senescent cells [5]. In addition, the expression of SASP
factors varies depending on different cell types [14]. Whether different cell types are to
the same extent susceptible to age-related senescence is equally unclear. The conventional
view in agreement with the Hayflick experiments would suggest that replicative cells are
prone to senescence with increasing age. Nevertheless, senescence-like features were also
observed in terminally differentiated non-cycling cells [15–18] and in macrophages and T-
cells [19–21]. As typical markers for aging and senescence p16INK4A, p14ARF/p19ARFArf,
and p21 are accepted [3–7,10,11,22–28]. These proteins were originally identified as cell
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cycle inhibitors (for details see below). Thus, senescence could also be viewed as an ex-
treme case of cell cycle inhibition except for the case of postmitotic cells. p16INK4A is
one of the most attractive and intensively investigated marker of aging and senescence as
expression has been initially reported to be absent during embryonic development [29,30]
and it is highly expressed in advanced age and senescence [24–28,31–37]. We and others
provided recent evidence that p16INK4A is expressed during development in several
organs [38]. The elimination of p16INK4A-expressing cells in aged animals did not only
have the expected positive effects, but also negatively impacted the health span, caused
liver fibrosis [39] and interfered with normal wound healing [40,41]. Thus, it seems timely
to review knowledge of senescence, p16INK4A, p14ARF/19ASRF, and p21 in embryonic
and postnatal development, in disease and homeostasis.

2. p16INK4A, p14ARF/p19ARF, and p21—Basic Molecular Mechanisms

p16INK4A was originally identified as a tumor suppressor gene [42,43]. Initially,
different names, i.e., multiple tumor suppressor-1 (MTS-1), inhibitor of cyclin dependent
kinase 4a (INK4a), cyclin dependent kinase inhibitor 2a (CDKN2A), have been used,
CDKN2A now being the official gene symbol. The human p16INK4A gene is located on the
short arm of chromosome 9 (9p21.3) while the mouse gene is located on chromosome 4.
The use of different open reading frames on the locus generates in both species’ alternative
proteins (p14p14ARF in humans and p19ARF in mice). In comparison to p16INK4A, they
differ in the first exon while they share the second exon, resulting in the translation of
different reading frames [44,45] (reviewed in [46]). The p21 gene (CDKN1A) is completely
independent and localized on chromosomes 6 and 17 in humans and mice, respectively.
p16INK4A acts as a specific inhibitor of the cyclin-dependent kinases CDK4 and CDK6 that
is mainly active in the G1 phase of the cell cycle to prevent the cell transition from the G1 to
S phase and subsequent proliferation arrest by rendering retinoblastoma protein (pRB) in
a hypo-phosphorylated state. CDK 4/6 bind cyclin D to form a complex that phosphorylates
retinoblastoma protein. When phosphorylated, pRB dissociates from E2F transcription
factors which translocate to the nucleus and activate transcription of S phase genes which
results in a cellular proliferation [47–49]. p16INK4A expression is tightly regulated via
a negative feedback loop with pRB. pRB phosphorylation promotes E2F translocation
and induces p16INK4A expression, which in turn inhibits CDK 4/6 and increases hypo-
phosphorylated pRB, leading to the downregulation of p16INK4A [50]. Alternatively,
elevated p16INK4A transcription in pRB negative cells has also been reported, indicating
alternative mechanisms for p16INK4A upregulation [25]. Furthermore, differences in
p16INK4A RNA expression did not correlate well with the pRB status of the cells [25].
p16INK4A and p19p14ARF/p19ARF are suppressed by promoter hypermethylation via
PRC1 and PRC2 complexes involving BMI-1, EZH2, ZFP 277, Mel18, CXB7, and CXB8
proteins [51–61]. Interestingly, pRB seems to also be involved in this regulatory loop
as a lack of pRB results in loss of histone H3K27 trimethylation and less recruitment of
BMI-1 and repression of the p16INK4A locus [62]. Activators of the p16INK4A locus
include AP-1 [63], JDP-2 [64–66], CTCF [67], Tcf-1 [68], p300 with Sp-1 [69], Meis1 [70], and
PPAR gamma [71]. These in vitro molecular studies should be interpreted with care. For
example, multiple beneficial effects were attributed to removal of p16INK4A-expressing
senescent cells in mice [17,72–82]. PPAR gamma stimulation induces p16INK4A-expression
and might result in senescent cell-based multi-organ failure. However, glitazones (PPAR
gamma activators, e.g., rosiglitazone) have been in clinical use as antidiabetic drugs for
more than 20 years [83].

Combined in vivo and in vitro studies using knockout mouse models, chromatin
immunoprecipitation (CHIP), and RNA sequencing showed that non-cleaved general tran-
scription factor TFIIA acts as a repressor of the p16INK4A, p14ARF/p19ARF, and p21 loci.
Taspase1-mediated (TASP1-mediated) cleavage of TFIIA ensures rapid cell proliferation
and morphogenesis by reducing transcription of p16INK4A and p14ARF/p19ARF. Conse-
quently, Tasp1 knockout mice showed variable degrees of micro-ophthalmia, anophthalmia,
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agnathia, general growth retardation, and defects of development of forebrain neurons,
which were partially rescued by combined knockout of p16INK4A and p14ARF/p19ARF [84].

Elegant in vivo studies showed that a common variant of a 58 kb non-coding sequence
in humans (70 kb in mice) flanking the p16INK4A/p14ARF/p19ARF locus is associated
with an increased risk of coronary artery disease [85–87]. The removal of this sequence
resulted in a low expression of p16INK4A/p14ARF/p19ARF and excessive proliferation of
aortic smooth muscle cells indicating that this region has a pivotal role in the regulation of
p16INK4A/p14ARF/p19ARF expression and control of cell proliferation [88].

Coordinated suppression/activation of the p16INK4A/p14ARF/p19ARF locus would
further implicate that p16INK4A and p14ARF/p19ARF expression patterns are related.
Our recent study on several organs during development and aging showed that this is
not the case [38]. Moreover, p14ARF/p19ARF shows different downstream signaling
from p16INK4A. p14ARF/p19ARF acts as a cell cycle inhibitor by interfering with the
activation of the P53 pathway, through binding to MDM2 and blocking MDM2-mediated
P53 degradation [89], although p14ARF/p19ARF might also have some P53-independent
actions [90]. p14ARF/p19ARF might induce apoptosis via Bax in a P53 independent
manner [91]. p14ARF/p19ARF is activated by Myc [92] and in a feedback mechanism
seems to physically interact with Myc protein and prevent its function as a transcriptional
activator. In addition, this action is independent of P53 [93,94]. p21 is another cyclin-
dependent kinase inhibitor and has been shown to fulfill anti-proliferative functions in
a mechanism that is P53-dependent. p16INK4A might activate p21, which acts by inhibiting
CDK2-cyclin E active complex formation, such as p16INK4A inhibition of CDK4/6 cyclin D.
The consequence is also hypo-phosphorylation of pRB and cell cycle arrest [95]. Interesting,
low p21 levels promote CDK-cyclin complex formation, while higher expression of p21
inhibits the activity of the complex [96]. This might explain to some extent the diverse
effects of altering the levels in vivo described below.

pRB interacts through various cellular proteins, among which E2F transcription factors
are the best characterized [97–99]. While transient E2F overexpression promotes cell cycle
progression and hyperplasia, sustained E2F3 overexpression promotes a senescence-like
phenotype in a p16INK4A-pRB-p14ARF/p19ARF pathway-dependent manner [100] points
again to the different outcomes dependent on timing and cellular model. E2F3 in addition
occupies the p14ARF/p19ARF promoter in mouse embryonic fibroblasts and E2f3 loss
is sufficient to derepress p14ARF/p19ARF, which in turn triggers activation of p53 and
expression of p21 [101]. The combined loss of all E2F transcription factors also results
in overexpression of p21, leading to a decrease in cyclin-dependent kinase activity and
Rb phosphorylation [98,99]. p21 is furthermore transcriptionally inhibited by a Myc-
Miz complex [102,103] and activated by Smad/FoxO complexes in response to TGF beta
stimulation [104]. The regulation of p16INK4A, p14/p14ARF/p19ARFArf, and p21 are
reviewed in detail elsewhere [105–110].

3. p16INK4A, p14ARF/p19ARF, and p21 in Organ Development

Earlier studies were not able to detect p16INK4A expression during mouse embry-
onic development [29,30]. However, the authors did not exclude the possibility that
p16INK4A might be expressed in different developing organs and time points, but the lack
of p16INK4A detection might rather represent technical limits [29]. We used recently sensi-
tive quantitative RT-PCR and immunohistochemistry techniques [111–115] to re-evaluate
p16INK4A expression during mouse embryonic development, in the adult, and in old
mice [38]. We determined p16INK4A expression between embryonic day (E10) and birth,
at postnatal day seven (P7), postnatal day 21, which corresponds to weaning, in adults, and
16–18-month-old mice. We focused on the heart, brain, liver, and kidney as these organs
or progenitors are already present at the first time point chosen [116–119]. p16INK4A,
p14ARF/p19ARF, and p21 were detectable at all investigated embryonic and postnatal
time points. Compared to p14ARF/p19ARF and p21, p16INK4A expression continued to
increase during development, remained then stable in adulthood and became dramatically
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upregulated in the organs of old animals. This high rise of p16INK4A expression with
old age is in principle in agreement with the literature defining p16INK4A as a marker of
aging and senescence [5,72,120–124]. In agreement with this, we also detected a significant
increase in SASP markers in all investigated organs of old animals. Interestingly, in the
organs of old mice, we observed the highest p16INK4A expression in vascular structures,
especially in the liver and the heart. During embryonic development, high p16INK4A
expression did not correspond with increased SASP expression and was observed in the
respective parenchymal cells and not in vessels, which coincided with the corresponding
time points of differentiation in the organs investigated [38], suggesting that in this instance,
p16INK4A might act in a classical way as cell cycle inhibitor as pre-requisite for differ-
entiation. Although we did not yet identify potential molecular regulators of p16INK4A
expression during embryonic development, it is interesting to note that p16INK4A and
p14ARF/p19ARF displayed a differential developmental expression pattern indicating
that not the genomic locus, but more specific regulatory elements of p16INK4A might
be activated.

In contrast to the early reports of absent p16INK4A expression during mouse de-
velopment [29,30], expression during rat brain development was described only slightly
afterward. In agreement with our results, p16INK4A expression colocalized with p53 in
the ventricular and subventricular zones at embryonic and early postnatal stages and p53
was mainly found in postmitotic cells of the cerebral cortex and hippocampus [125]. In the
olfactory epithelium, p16INK4A and p21 were detectable around birth, with p16INK4A
marking differentiating and p21 mature neurons [126]. p16INK4A expression was also
detected in bone marrow derived hematopoietic progenitor cells of adults [127] and in
epiphyseal growth plate chondrocytes and bone lining osteoblasts in growing mice [128].
In these cases, higher p16INK4A expression was associated with reduced cell prolifera-
tion, but senescence of these cells had not been reported. Increasing p16INK4A and p21
expression has been also observed in male germ cells coinciding with the timing of mitotic
arrest, but not with senescence [129]. These male germ cells enter meiosis during post-natal
life [130]. Increased p16INK4A expression was noted already in the endometrium between
days 2 to 5 of pregnancy in mice. Injection of a p16INK4A antibody decreased the number
of implanted blastocysts compared with that of a saline-injected group suggesting a role
of p16INK4A in blastocyst implantation [131]. This observation seems to be in contrast
to normal Mendelian frequencies of birth in p16INK4A knockout mice [132], but slight
deviations from Mendelian inheritance might become obvious only when analyzing large
numbers of pups [115] and implantation defects would be only detectable if the female
mice in mating are p16INK4A knockout instead of heterozygotes. p16INK4A expression
was also described in human endometrium during pregnancy [133].

During mouse embryonic development, p16INK4A was further detected in the gut in
intestinal stem cells and progenitor compartments. Loss of Bmi1 resulted in accumulation
of p16INK4A and p14ARF/p19ARF and reduced intestinal stem cell proliferation, which
was accompanied by increased differentiation to the post-mitotic goblet cell lineage. Bmi1
expression in intestinal stem cells was co-regulated by Notch and beta-catenin [134]. Bmi1
plays also important roles for maintenance of neural stem cell self-renewal [135–139], for
mesenchymal stem cell renewal and bone formation [140], for immature retinal progeni-
tor/stem cells and retinal development [141], and for hepatic stem cell expansion [142] via
negative regulation of p16INK4A, p14ARF/p19ARF, and p21.

Already in three-month-old mice, a significant number of p16INK4A-expressing
cardiomyocytes, mostly bi- and multinucleated cells, had been described [143]. We in-
vestigated expression much earlier during embryonic development and found increased
expression coinciding with cardiomyocyte differentiation [38]. As isolated cardiomyocytes
were immunostained in the previously mentioned report, potential expression in endothe-
lial cells at this time point was not detected. The authors considered p16INK4A expression
as a marker of senescence without further approaches to identify the cells as senescent [143].
Another study investigated the proliferation of cardiomyocytes by PCNA staining ex vivo
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in p16INK4A/p14ARF/p19ARF knockout mice. Surprisingly, the authors report 70% of
proliferating cardiomyocytes from 8 weeks old mice [144], which is in obvious contrast to
all data in the literature.

Specific p16INK4A knockout mice which retained p14ARF/p19ARF function dis-
played an increased incidence of spontaneous and carcinogen-induced cancers [132] and
melanomas [145] and thymus hyperplasia [132]. Thymus hyperplasia was associated
with increased numbers of CD4 and CD8 lymphocytes, which was surprisingly not due
to increased proliferation, but to reduced apoptosis of lymphocytes [146]. Mice lacking
p16INK4A and p14ARF/p19ARF on an FVBN genetic background develop cataracts and
micro-ophthalmia. They showed beginning from E15.5 defects in the developmental re-
gression of the hyaloid vascular system, retinal dysplasia, abnormal differentiation of the
lens, and cataracts [147]. Interestingly, the micro-ophthalmia phenotype in Task1 knockout
mice was partially rescued by the lack of p16INK4A and p14ARF/p19ARF suggesting
a fine-tuning of neuronal and eye development by the two proteins [84].

In addition, p14ARF/p19ARF knockout mice are prone to spontaneous and carcinogen-
induced cancers [148]. p14ARF/p19ARF is involved in perivascular cell accumulation postna-
tally in the mouse eye before eye development is completed [147,149–151]. p14ARF/p19ARF
decreased Pdgfr beta expression and blocked Pdgf-B-driven proliferation independently of
Mdm2 and p53, which prevents the accumulation of perivascular cells and allows regres-
sion of the hyaloid vascular system of the developing eye [152,153]. Tgfbeta2 is required
for p14ARF/p19ARF transcription in the hyaloid vascular system as well as in the cornea
and the umbilical arteries [154,155].

p14ARF/p19ARF is detectable in developing hepatoblasts [156], which agrees with our
recent report. Lack of the Tbx3 member of the T-box family of transcription factors results
in upregulation of p14ARF/p19ARF and p21 in the developing liver, which is associated
with severe defects in proliferation and in hepatobiliary lineage segregation, including the
promotion of cholangiocyte differentiation and abnormal liver development [156]. Whether
Tbx3 might directly regulate p14ARF/p19ARF and p21 expression was not determined in
this study.

p21 knockout mice were reported initially to develop normally despite defective G1
checkpoint control in isolated knockout embryonic fibroblasts [157]. Interestingly, p21
expression was detected by Western Blot in human fetal atrial tissue, but not in adult
hearts [158]. p21 was also found in developing rat ventricular myocytes [159]. In both
studies, no comparison with old ages was made. Some p21-expressing cardiomyocytes
were detected in E15.5 developing mouse embryos [160] and in trabecular myocardium
at E18.5 [161]. The number was largely increased in Foxm1 knockout embryos as well as
in Tbx20 overexpressing hearts at the early stages of development, which correlated with
reduced proliferation and cardiac hypoplasia [160,162,163]. Fog-2 was described as a direct
transcriptional repressor of p21 in cardiac development. Fog-2 mutant embryos showed
multiple cardiac malformations, upregulation of p21, and thin-walled myocardium [164].
p21 expression had also been described in developing skeletal muscle, bones, lung, and
spinal cord [165–169]. p21 has been also implicated in the mitotic arrest in male mouse
germ cells during embryonic development [170]. An elegant study analyzing p21 and
P57 double-mutant mice showed that both proteins redundantly control differentiation of
skeletal muscle, bones, and alveoli in the lungs. Mice lacking both p21 and p57 failed to
form myotubes, and displayed enhanced proliferation and apoptotic rates of myoblasts
clearly indicating a role of p21 and P57 in normal muscle development [171]. Skeletal
defects were more pronounced in embryos lacking p21 [171]. This report clearly shows the
redundancy of the different proteins in cell cycle control and might explain the only few
phenotypes observed in single knockout animals despite the importance of the cell cycle
regulators for embryonic development.

Besides these studies implicating mostly p21 in embryonic development and differ-
entiation, several reports also pointed to senescence as a potential mechanism for nor-
mal embryonic development. Munoz–Espin and colleagues performed whole-mount
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senescence-associated β-galactosidase SaβG) staining in mouse embryos. They detected
SaβG activity in endolymphatic sacs of the developing ear, in the closing neural tube, the
apical ectodermal ridge (AER) of the limbs, and later in regressing interdigital webs, around
the vibrissae, and in the mesonephros of dissected gonad-mesonephros complexes [13].
However, in the dissected gonad-mesonephros picture of the manuscript, some SAβG
staining also seems to be visible in the gonad and the Wolffian/Muellerian duct system.
In further analyses, the authors focused on the endolymphatic sac and the mesonephros.
SAβG activity in regressing mesonephros had been reported already earlier in chicken
embryos [172]. SAβG activity was also detected in mesonephros and endolymphatic sacs
of human embryos around 9 weeks of development [13]. As a marker of proliferation, they
used Ki67 staining and found low proliferation in cells with SAβG activity. Nevertheless,
during several developmental time points, some Ki67-positive cells were still detectable in
SAbG-positive structures. As a major actor in developmental senescence, the authors sug-
gested p21 based on immunostainings for several markers of senescence in endolymphatic
sacs and mesonephros. Interestingly, the authors detected high p16INK4A expression in
the gonad, which was not further commented upon. SAβG-positive cells were surrounded
by macrophages and disappeared during ongoing development while the macrophage
infiltration persisted longer. The attraction of macrophages was attributed to the SASP of
SAβG-positive cells, which resulted in the now widely accepted concept that senescent cells
secrete a cocktail of molecules, which beside other effects attract macrophages that finally
clear the senescent cells [13,173–176]. A subset of p16INK4A expressing macrophages,
which are SAβG-positive and might mediate this effect was identified recently in mouse
tissues [177]. However, as Munz–Espin and colleagues immunostained the embryos also
for p16INK4A, the macrophages in their model might represent a distinct population. Also,
in tumor-bearing mice, doxorubicin induced senescence and a SASP in the skin, indepen-
dent of macrophages and neutrophils [178], suggesting a certain variability in the events
of senescent cell clearance. Finally, Munz–Espin investigated potential developmental
defects in p21-deficient embryos. p21 knockout embryos had abnormal endolymphatic
sacs with infoldings at late stages of development (E18.5), which disappeared after birth
most likely due to macrophage clearance. Also in this case, the developmental program
to remove the abnormal cells was independent of SAβG-positive cells or p21. In the
uterus, which partially derives from the regressing Wolffian duct, the authors observed
frequent septation and consequently a lower number of pups in p21 knockout mice [13],
a phenotype, which had been missed in the first global analyses of these animals. Storer
et al. used in parallel a similar approach and detected SAβG-positive cells in the AER,
otic vesicle, the eye, branchial arches, gut endoderm, neural tube, tail, gall bladder, and
interdigital tissue [179]. Similarly, in this report, p16INK4A and p14ARF/p19ARF seemed
not to be involved in embryonic senescence, but p21 knockout embryos displayed less
SAβG-positive cells. Instead of becoming senescent, cells underwent apoptotic cell death
and were cleared by macrophages. Interestingly, the mesenchyme directly below the AER
showed reduced proliferation indicating that developmental senescence is directly linked
to cell proliferation and patterning of neighboring structures [179]. As additional sites of
SAβG-staining, the developing bones, placental trophoblast cells [180], and the visceral
endoderm [181] were identified. In the case of the visceral endoderm, SAβG-staining
was not indicative of senescence [181]. Senescent cells have been described in a variety
of developing organisms including birds, zebrafish, axolotl, naked mole rats, xenopus,
mouse, and humans [13,172,179,182–188], mostly on the basis of SAbG-staining. More
recently, the utility of SAβG-staining for the detection of developmental senescence has
been questioned as also apoptotic cells, e.g., in the interdigital tissue and postmitotic neu-
rons are stained independent of senescence [189–191]. Additionally, SAβG and p16INK4A
expression have been shown to be induced in macrophages in response to physiologi-
cal stimuli, without the cells being senescent [192]. Furthermore, we described recently
p16INK4A expression at different developmental time points and several organs, which
did not correspond to the known sites of SAβG expression. Only in old animals, but not
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during development, was a significant correlation between p16INK4A expression and SASP
factors detectable. Of interest is also the detection of senescence cells and significant SASP
activation in the development and response to stress in naked mole rats, which are consid-
ered a model of cancer-free longevity [186]. Reported sites of SAβG-staining, p16INK4A,
p19p14ARF/p19ARF, and p21 expression during development are briefly summarized in
Table 1 and illustrated in Figure 1.

Table 1. Detection of senescence markers during development.

Localization Detected Signal Species Ref.

Heart, kidney, brain, liver

p16INK4A,
p14ARF/p19ARF, p21

mRNA,
p16INK4A protein

mouse [38]

Brain p16INK4A mRNA rat [125]

Olfactory epithelium
p16INK4A,

p14ARF/p19ARF,
p21 protein

mouse [126]

Hematopoietic stem cells p16INK4A,
p14ARF/p19ARF mRNA mouse [127]

Chondrocytes,
osteoblasts p16INK4A, p21 protein mouse [128]

Male germ cells p16INK4A, p21 mRNA mouse [129,170]
Endometrium in
early pregnancy

p16INK4A mRNA,
p16INK4A protein mouse [131]

Endometrium
in pregnancy p16INK4A protein human [133]

Syncytiotrophoblast p16INK4A, p21 protein human [182]
Intestinal stem cells p16INK4A protein mouse [134]

Perivascular ocular cells p14ARF/p19ARF protein mouse [147,149–152]

Hepatoblasts p14ARF/p19ARF,
p21 protein mouse [156]

Heart p21 protein human, rat, mouse [158–161]
Muscle, cartilage, skin,

nasal epithelium,
hair follicles

p21 mRNA,
p21 protein mouse [165–167,171]

Mesonephros SAβG bird [172]
Endolymphatic sacs,

mesonephros SAβG mouse, human [13]

Neural tube,
AER, vibrissae SAβG mouse [193]

AER, otic vesicle, eye,
branchial arches, gut

endoderm, neural tube,
tail, gall bladder, and

interdigital tissue

SAβG mouse [179]

Bones, placenta
trophoblast cells SAβG mouse [180]

Visceral endoderm SAβG mouse [181]
Inner ear SAβG birds [183]

Pronephros, cement
gland, oral cavity,

olfactory epithelium,
lateral organs, gums

SAβG axolotl [184,185]

Yolk sac epithelium,
lower part of the gut SAβG zebrafish [185]

Nail bed, dermis,
hair follicle,

nasopharyngeal cavity
SAβG Naked mole rat [186]

Abbreviations: Ref.—Reference, AER—apical ectodermal ridge, SaβG—senescence-associated beta galactosidase
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Figure 1. Schematic illustration of detection of p16INK4A, p14ARF/p19ARF, p21, and SAβG in se-
lected murine organs during development. P16: p16INK4A; p19: p14ARF/p19ARF. During devel-
opment, p16INK4A, p14ARF/p19ARF, p21, and SAβG not only mark senescent cells. p16INK4A, 
p14ARF/p19ARF, and p21 proteins are expressed in distinct cell types during different developmen-
tal stages. Expression of the individual proteins correlates with lower expression of proliferation 
markers in agreement with their classical function as cell cycle inhibitors, with apoptosis, and cel-
lular differentiation. These fundamental processes contribute dynamically to tissue remodeling and 
morphogenesis during embryonic development. 

4. p16INK4A, p14ARF/p19ARF, and p21 in Homeostasis 

The implications of p16INK4A, p14ARF/p19ARF, and p21 in senescence and aging 

are extensively investigated and reviewed elsewhere [4–6,11,56,194–199]. Senescence has 
long been considered an important mechanism to prevent tumorigenesis, thus acting as a 
guardian of homeostasis, which agrees with p16INK4A, p14ARF/p19ARF, and p21 knock-

out mouse models. However, more recent data allow to draw a more differentiated pic-
ture of senescence and the SASP in tumor initiation and progression (reviewed in [200–

204]). Organ and tissue homeostasis, however, do not only play a role in cancer preven-
tion, but represent the central organizing principle of physiology and pathophysiology 
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ogy/Homeostatic 
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Age-related cardio-

myocyte hypertrophy 
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Figure 1. Schematic illustration of detection of p16INK4A, p14ARF/p19ARF, p21, and SAβG in
selected murine organs during development. P16: p16INK4A; p19: p14ARF/p19ARF. During
development, p16INK4A, p14ARF/p19ARF, p21, and SAβG not only mark senescent cells. p16INK4A,
p14ARF/p19ARF, and p21 proteins are expressed in distinct cell types during different developmental
stages. Expression of the individual proteins correlates with lower expression of proliferation
markers in agreement with their classical function as cell cycle inhibitors, with apoptosis, and cellular
differentiation. These fundamental processes contribute dynamically to tissue remodeling and
morphogenesis during embryonic development.

4. p16INK4A, p14ARF/p19ARF, and p21 in Homeostasis

The implications of p16INK4A, p14ARF/p19ARF, and p21 in senescence and aging
are extensively investigated and reviewed elsewhere [4–6,11,56,194–199]. Senescence has
long been considered an important mechanism to prevent tumorigenesis, thus acting as
a guardian of homeostasis, which agrees with p16INK4A, p14ARF/p19ARF, and p21 knock-
out mouse models. However, more recent data allow to draw a more differentiated picture
of senescence and the SASP in tumor initiation and progression (reviewed in [200–204]).
Organ and tissue homeostasis, however, do not only play a role in cancer prevention, but
represent the central organizing principle of physiology and pathophysiology [205]. Major
homeostatic and pathophysiological processes involving p16INK4A, p14ARF/p19ARF,
and p21 are summarized in Table 2 and described below.

Table 2. Major phenotypes associated with p16INK4A, p14ARF/p19ARF, or p21 modifications in
homeostasis and pathophysiology.

Pathophysiology/Homeostatic
Mechanism Intervention/Model Outcome Ref.

Physiology

Age-related cardiomyocyte
hypertrophy INK-ATTAC mouse Cardiac cell size↓ [73]

Age-related lipodystrophy INK-ATTAC mouse Adipose tissue mass ↑ [73]

Health-span INK-ATTAC mouse Survival ↑ [73]

Health-span p16INK4ACre; DTA Survival ↓ [39]

Age-related bone loss p16INK4A-3MR mouse = [206]
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Table 2. Cont.

Pathophysiology/Homeostatic
Mechanism Intervention/Model Outcome Ref.

Aging-related intervertebral
disc degeneration p16INK4A-3MR mouse

Histological disc
morphology

improved
[23]

Aging features p16INK4A overexpression Accelerated [207]

Adipocyte formation p16INK4A−/− Adipogenesis ↑ [208]

Longevity

p16INK4A−/−,
p14ARF/p19ARF−/−,

P53−/− Lifespan ↑ [209]

Longevity
Male fertility

p16INK4A/p14ARF/p19ARF
overexpression

Lifespan ↑
Absence of sperm [210]

Lifespan
INK-ATTAC mouse,

BubR1H/H background = [72]

Physical fitness
INK-ATTAC mouse

BubR1H/H background Endurance ↑ [72]

Aging-associated
liver fibrosis p16INK4ACre; DTA Fibrosis ↑ [39]

Aging-associated
hepatic steatosis INK-ATACC mouse Fat accumulation ↓ [17]

Wound healing p16INK4A-3MR mouse Wound closure ↓ [41]

Wound healing CCN1-dependent p16INK4A
induction Fibrosis ↓ [211]

Aging-associated
glomerulosclerosis INK-ATTAC mouse Glomerulosclerosis ↓ [73]

Aging-related physical
activity loss p21Cre;DTA Physical fitness ↑ [212]

Sarcopenia INK-ATTAC mouse,
BubR1H/H background Sarcopenia delayed [72]

Glaucoma INK-ATTAC mouse,
BubR1H/H background

Glaucoma
onset delayed [72]

Pathophysiology

Myocardial infarction INK-ATTAC
mouse, senolytics

Cardiomyocyte
proliferation ↑ [78]

Myocardial infarction p16INK4A overexpression Cardiac function ↑
Fibrosis ↓ [213]

Myocardial infarction p16INK4A−/−,
p14ARF/p19ARF−/−

Cardiomyocyte
proliferation ↑

Cardiac function ↑
[144]

Obesity INK-ATACC mouse
Insulin sensitivity ↑

Metabolic
dysfunction ↓

[214]
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Table 2. Cont.

Pathophysiology/Homeostatic
Mechanism Intervention/Model Outcome Ref.

Adipocyte conversion p16INK4A−/− White to brown ↑ [215]

Diabetes p16INK4A overexpression Insulin secretion ↑ [216]

Glucose homeostasis Human p16INK4A
inactivating mutations

Insulin secretion ↑
Insulin sensitivity ↓ [217]

Glucose homeostasis
Insulin sensitivity in

obese mice
p21Cre;DTA GTT ↑

ITT ↑ [218]

Diabetes p16INK4A overexpression
Insulin sensitivity ↑

Metabolic
dysfunction ↓

[219]

Pancreatic beta
cell regeneration p16INK4A overexpression Islet proliferation ↓ [220]

Pancreatic beta
cell regeneration p16INK4A−/− Islet proliferation ↑ [220]

Liver fibrosis
p53−/−;

p16INK4A/p14ARF/
p19ARF−/−

Fibrosis ↑ [221]

Ionizing radiation-induced
reduction of neurogenesis p16INK4A−/− partial restoration [222]

Radiation-induced
impairment of

cognitive function
p16INK4A-3MR mouse Cognitive function ↑ [223]

Cisplatin-induced
peripheral neuropathy

p16INK4A-3MR
mouse, senolytics Neuropathy ↓ [224]

Post-traumatic osteoarthritis p16INK4A-3MR mouse Osteoarthritis ↓ [225]

Radiation-induced
osteoporosis p21INK-ATTAC mouse Osteoporosis ↓ [226]

Macrophage polarization p16INK4A−/− Anti-inflammatory
phenotype ↑

[227]

Macrophage polarization Human p16INK4A silencing Anti-inflammatory
phenotype ↑ [228]

Irradiation-induced
immune dysfunction p16INK4A-3MR mouse

T-cell proliferation ↑
Macrophage

phagocytosis ↑
[229,230]

↑: Higher, ↓: Lower, =: not significantly different, −/−: knockout mouse model, BubR1H/H: mouse model
of accelerated aging with multiple age-related pathologies, INK-ATTAC mouse: allows deletion of p16INK4A
expressing cells, p16INK4ACre;DTA: mouse model allows deletion of p16INK4A expressing cells, p16INK4A-3MR
mouse: allows deletion of p16INK4A expressing cells, GTT: glucose tolerance test, ITT: insulin tolerance test

4.1. p16INK4A

Maintenance of cardiac function during aging and cardiac remodeling had to some
extent been attributed to the expansion and differentiation of cardiac-resident stem cells
(reviewed in [197]). To which extent cardiac stem and progenitor cells contribute to my-
ocytes, endothelium, smooth muscle cells, etc., in cardiac repair is still a matter of de-
bate [111,117,197,231–234]. In contrast to earlier publications, it is now widely accepted
that cardiac, but not hematopoietic-derived progenitor cells are implicated in the cardiac re-
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pair [235]. With increasing age, the fraction of p16INK4A-expressing cardiac stem cells and
expression of SASP factors increased in human biopsies [78]. A fraction of SAβG-negative
cardiac stem cells improved cardiac function after experimental myocardial infarction in
immunosuppressed mice while the fraction of SAβG-positive cells did not [78]. Notably,
injection of the SAβG-positive cells did not worsen cardiac function after experimental my-
ocardial infarction, which contrasts with the title of the manuscript [78]. The combination
of the senolytic drugs dasatinib and quercetin as well as the elimination of p16INK4A-
positive cells in the INK-ATTAC mouse model improved some cardiac parameters [78].
Unfortunately, neither the number of p16INK4A-positive cells nor cardiac function was
determined in this set of experiments. As the values in INK-ATTAC mice and dasatinib and
quercetin-treated animals differed for most parameters, it is possible that the cocktail of
senolytic drugs has additional effects besides the elimination of p16INK4A-expressing cells.
Of note, the original paper describing the generation and characterization of INK-ATTAC
mice [72] reported a lack of INK-ATTAC induction in the heart, liver, and aorta, making it
likely that the observed beneficial effects are due to secondary paracrine (SASP) induced
events. In this original mouse model, time course studies showed that the elimination
of p16INK4A expressing cells reflects the attenuated progression of age-related declines
rather than a reversal of aging [72]. This seems to be somehow in contrast to the study
mentioned before [78]. Most of the original investigations were done in the BubR1H/H

progeroid mouse genetic background, which might be slightly different from aged mice. In
a following manuscript, the same group detected increasing p16INK4A expression in aged
mice in all organs, but induction of the transgene with AP20187 did not affect the colon
or liver expression of senescence markers [73]. However, heart and kidney morphological
and expression parameters were to some extent normalized in aging INK-ATTAC mice
treated with AP20187 and healthy lifespan extended. The shortest survival was measured
in C57 wild-type mice treated with AP20187 [73]. In the heart, cardiomyocyte diameters
were reduced in aging INK-ATTAC mice treated with AP20187, while the left ventricu-
lar wall thickness as an alternative measure of hypertrophy was unaffected suggesting
that the clearance in INK-ATTAC mice is partial and tissue-selective [73]. This transgenic
mouse model under the control of a 2.6 kB p16INK4A-promoter fragment might not com-
pletely reflect endogenous p16INK4A expression and regulation as we detected p16INK4A
expression in the heart and liver [38,39] and elimination of p16INK4A expressing cells
in the p16INK4ACre;DTA model caused cardiac and liver fibrosis and reduced health
span [39], which is in agreement with the notion that senescent cells contribute to tissue
repair and maintenance [211,221].

Elevated expression of endogenous p16INK4A has been recently demonstrated in
a myocardial infarction (MI) model in mice. Forced overexpression of p16INK4A improved
cardiac function while silencing of p16INK4A deteriorated cardiac function. As a possi-
ble underlying mechanism, reduced fibroblast proliferation, and collagen accumulation
and less cardiac fibrosis was attributed to the classical cell-cycle inhibitory function of
p16INK4A [213]. Increased cardiomyocyte proliferation and better functional recovery
after MI has been reported in p16INK4A knockout mice [144]. This discrepancy remains
currently unresolved.

Genome-wide association studies have implicated the human p16INK4AInk4a/Arf locus
in the risk for cardiovascular and metabolic diseases and type 2 diabetes mellitus [236–238].
Deletion of a homologous region in mice caused reduced expression of p16INK4A and
Cdkn2b, increased tumor incidence, and increased body weights and mortality in the
animals [88]. Knockdown of p16INK4A enhanced adipogenesis in vitro, and adipose tissue
formation especially in the pericardial fat was enhanced in p16INK4A knockout mice [208].
The role of p16INK4A in adipogenesis seems to be related via several molecular mechanisms
to PPAR gamma (reviewed in [214]). Senolytic drug treatment or the use of INK-ATACC
mice has been shown to alleviate metabolic and adipose tissue dysfunction, improve
glucose tolerance, enhance insulin sensitivity, lower circulating inflammatory mediators,
and promote adipogenesis in obese mice [239]. p16INK4A regulates adipogenesis and
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adipose tissue insulin sensitivity mainly via CDK4 [208,240,241]. Part of the action of
p16INK4A in adipose tissue is related to obesity-induced inflammation and immune cell
polarization [228,242]. Bone marrow-derived macrophages from p16INK4A knockout
mice show polarization towards an anti-inflammatory M2 phenotype and silencing of
p16INK4A in macrophages from obese patients equally shifts the phenotype towards
M2 macrophages [227,228]. These effects seem to be independent of proliferation and
senescence [214], although earlier data indicated a critical role of the p16INK4A locus in
proliferation and programming of progenitor cell populations [243]. Besides the effects of
p16INK4A on macrophage polarization in adipose tissue, also increased white-to-brown
adipocyte conversion associated with enhanced energy expenditure and insulin sensitivity
has been reported in p16INK4A knockout mice [215]. Whether this is due to enhanced direct
conversion from white to brown adipocytes or it results from enhanced differentiation of
progenitor cells remains an open question.

In contrast to the results described above for the INK-ATACC model, which eliminates
p16INK4A expressing cells, a transgenic “Super-Ink4/Arf” mouse model with slightly
increased p16INK4A RNA expression in the liver has been described [219]. Despite one ex-
tra copy of p16INK4A, the animals showed no significant increase in p16INK4A protein
expression in the liver, heart, muscle, or pancreatic islets. Nevertheless, they did not de-
velop glucose intolerance with age and showed a higher insulin sensitivity. The authors
argued that the small increases in p16INK4A are causing this protective effect against the
development of age-related diabetes mellitus [219]. Increasing p16INK4A expression with
age in pancreatic islets has been described. Forced overexpression of p16INK4A reduced
islet proliferation, while old mice lacking p16INK4A in pancreatic islets demonstrated
enhanced islet proliferation and survival after beta-cell ablation, which agrees with the
“classical” antiproliferative effect of p16INK4A [220]. Several additional publications impli-
cated p16INK4A in insulin secretion and beta-cell proliferation [79,216,244,245]. In addition,
p16INK4A deficiency enhances fasting-induced hepatic glucose production via activation
of PKA-CREB-PGC1α signaling [246]. Accumulation of senescent cells during aging pro-
motes hepatic fat accumulation and steatosis via reduced capabilities of mitochondria to
metabolize fatty acids. Elimination of senescent cells in INK-ATTAC mice or by treatment
with a combination of the senolytic drugs dasatinib and quercetin reduces hepatic steato-
sis [17], while specific elimination of p16INK4A-expressing liver sinusoidal endothelial
cells induces hepatic fibrosis and premature death [39]. In humans with loss-of-function
mutations in CDKN2A encoding p16INK4A and p14ARF, carriers showed increased insulin
secretion, impaired insulin sensitivity, and reduced hepatic insulin clearance. There were
no significant differences between patients with mutations affecting both p16INK4A and
p14ARF and subjects with mutations affecting p16INK4A only suggesting that these effects
are indeed due to the p16INK4A loss of function [217]. Taken together, the different reports
from mice and humans suggest that p16INK4A acts at multiple levels of glucose homeosta-
sis and metabolism especially in older individuals. Potential developments of therapeutic
strategies for type 2 diabetes mellitus by modifying p16INK4A should be considered with
care given the potential cancer risk.

Besides the described implications of p16INK4A in the cardiovascular system, adi-
pose tissue, and metabolism, several publications also identified potential functions in
the circadian clock [247], neurogenesis, neuronal trans-differentiation, and axon regenera-
tion [222,248–250], most of them in agreement with cell cycle control by p16INK4A.

In an elegant study, Demaria and colleagues identified senescence as a potential
adaptative mechanism for tissue repair. They generated a bacterial artificial chromosome
(BAC)-transgenic mouse line containing 50 kb of the genomic region of the p16INK4A locus,
a luciferase and red fluorescent protein (RFP) reporter, and a truncated herpes simplex
virus 1 (HSV-1) thymidine kinase (HSV-TK) cassette allowing the elimination of cells with
activated p16INK4A locus upon treatment with ganciclovir [41]. RFP-positive cells showed
increased SAβG staining and increased levels of mRNAs encoding p16INK4A, p21, and the
SASP factors IL-6, MMP-3, and VEGF, but not IL-5, suggesting that the RFP-marked cells are
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indeed senescent. The elimination of these cells caused delayed cutaneous wound healing.
A similar phenomenon was also observed in p16INK4A/p21 double knockout mice, which
do not show senescence [251] but not in single p16INK4A or p21 knockout animals, which
are able to compensate the lack of one protein by the other in terms of senescence [41,251].
As major p16INK4A-positive cell types in the cutaneous injury model, endothelial cells
and fibroblasts were identified [41], which agrees with our recent observations [38,39].
Senescent endothelial cells and fibroblasts appear early after injury and accelerate wound
closure by inducing myofibroblast differentiation through the secretion of platelet-derived
growth factor AA [41]. Using the same mouse model, several reports indicated that
the removal of p16INK4A-expressing cells attenuated post-traumatic osteoarthritis [225],
had no effect on age-related bone loss [206], prevented age-related intervertebral disc
degeneration [23], improved irradiation-induced immune cell functional decline [229,230],
protected cognitive function [223], and alleviated cisplatin-induced peripheral neuropathy
in mice [224]. Senescent cells might also contribute to the release of hemostasis-related
factors, which in excess might contribute to thromboembolic events in the old [252]. Most
recently, the mouse model was used to study cellular senescence in cigarette smoke-induced
lung injuries in adult and old mice [253]. Cigarette smoke induced senescence, p16INK4A,
and p21 expression in adult animals, though surprisingly the opposite was observed in
old animals [253].

In line with the role of p16INK4A in cardiovascular progenitor cells mentioned
above, a potential function was postulated in skin stem and progenitor cells [254] and
a higher colony-forming ability and replating efficiency measured in bone marrow-derived
progenitor cells from p16INK4A knockout mice [255], which has been reviewed else-
where [105,256,257]. In aged p16INK4A knockout mice, superior repopulating ability in
bone marrow transplantation experiments compared with wild-type animals was noted,
while only tiny differences were detectable under baseline conditions [258]. In mice with
tetracycline-inducible overexpression of a human p16INK4A transgene, proliferation of
intestinal stem cells was diminished, and animals showed signs of accelerated aging, which
were mostly reversible upon withdrawal of tetracycline [207]. In this model, p16INK4A
overexpression was not associated with senescence as evidenced by lack of SAβG stain-
ing. In contrast to these mouse models, to the best of our knowledge, neither major skin
nor hematopoietic nor intestinal stem cell abnormalities were reported in patients with
p16INK4A mutations.

4.2. p14ARF/p19ARF

Although p16INK4A and p14ARF/p19ARFArf are transcribed from the same locus,
the proteins have some overlapping as well as distinct functions. Mice with an extra copy of
Ink4/Arf or the downstream effector P53 showed resistance against cancer, which is in line
with the general cell cycle and tumor suppressor function [259–262]. Intercrosses of both
mouse lines showed additional resistance to cancer and extended longevity [209]. It is likely
that the extended longevity in this model is at least in part due to the preservation of the
stem cell pool in different organs [209,263–266]. Extra copies of Ink4/Arf in homozygous
mice induced delayed aging, reduced the cancer incidence, improved longevity, diminished
kidney lesions, and DNA damage, but also caused male infertility [210]. Different mouse
models with activated P53 signaling also showed resistance to cancer development, but
decreased the lifespan and premature onset of age-related diseases such as osteoporosis
and tissue atrophy [267,268]. In line with this, these mouse models present reduced
hematopoietic, mammary gland, neuronal, and pancreatic stem and progenitor cells with
impaired hematopoiesis, mammary atrophy, decreased olfaction, and disturbed glucose
homeostasis [269–272]. Whether the discrepancies in the longevity of the various mouse
models are due to different levels of activation of the Arf-P53 pathway remains elusive.
Taken together, the p14ARF/p19ARFArf-p53 pathway seems to be mostly responsible
to maintain the stem cell pool and promote homeostasis, while data mostly from the
transgenic p16INK4A-INK-ATTAC and p16INK4A-3MR [41,239] mouse models suggest
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that elimination of p16INK4A might be beneficial for homeostasis and healthy aging
although this view was challenged recently [39].

4.3. p21

Recently, two mouse models were established to specifically address the role of p21
in senescence and tissue homeostasis. The first consists of an inducible p21-Cre model
(CreERT2), which allows after crossing with different floxed mice monitoring or elimination
of p21 expressing cells [212]. The second mouse strain is comparable to the p16INK4A-
INK-ATTAC mouse model but uses a 3.2 kb p21 promoter fragment driving expression
of the FKBP–Caspase-8 fusion suicide protein. The construct was inserted in the Rosa26
locus [226]. The p21-CreERT2 mice were crossed with a luciferase reporter, and lumi-
nescence was measured in vivo after doxorubicin treatment or a high-fat diet as known
inducers of senescence. Next, p21-CreERT2 animals were crossed with floxed knock-in
tdTomato mice confirming the expected increase in fluorescent cells in several organs
in old mice. Finally, the p21-CreERT2 line was crossed with a DTA ablator line, and
physical fitness was measured in old mice treated with Tamoxifen and controls. The elim-
ination of p21-positive senescent cells increased walking speed, grip strength, hanging
endurance, daily food intake, and daily activity indicating a rejuvenation phenotype in
response to the elimination of p21-expressing cells [212]. Surprisingly, p16INK4A- and
p21-expressing cell populations seem to be different [212], which is contrasting with the
lack of senescence in p16INK4A/p21 double knockout animals [251]. Also in the p21–
ATTAC model, the clearance of p21- but not p16INK4A-positive senescent cells prevented
radiation-induced osteoporosis and bone marrow adiposity [226], supporting the view
that p16INK4A- and p21-dependent senescence comprise different and independent path-
ways [3,5,22,273]. A high number of p21- but not p16INK4A-expressing cells was detected
in visceral adipose tissue of obese mice, mostly preadipocytes, endothelial cells, and
macrophages [218]. In contrast to visceral adipose tissue, the heart, kidney, liver, and brain
of old mice express high levels of p16INK4A in endothelial cells [38,39]. Elimination of
p21-expressing cells using the p21-CreERT2 line crossed with the DTA ablator line worked
in preadipocytes, macrophages, and leukocytes, but not in the endothelial compartment.
Functionally, it improved glucose homeostasis and insulin sensitivity in obese mice. Inter-
estingly, the removal of p21-positive cells had less metabolic benefits in female than male
mice [218] adding one more layer of complexity to potential translational approaches. Of
note, the senolytic cocktail of dasatinib plus quercetin was able to remove p21-positive
senescent adipocytes but not endothelial cells and macrophages [218]. Nevertheless, it
improved glucose homeostasis and insulin sensitivity and reduced pro-inflammatory SASP
secretion [218]. Although this elegant study clearly supports the idea of senolytic drugs as a
therapeutic strategy for obesity-induced metabolic dysfunction, it also raises new questions
about the mode of action of the senolytic drug cocktail, which seems to target one specific
senescent cell type.

A recent elegant study showed that in response to cellular stress, p21 and p16INK4A
are upregulated. Both induce cell cycle arrest and SASP expression, but the SASPs are
different [274]. The p21-induced secretome is characterized by the release of additional
immunosurveillance factors, in particular Cxcl14, which are lacking in the p16INK4A-
induced SASP. Consequently, the p21-induced secretome attracts macrophages. At later
stages, the macrophages polarize into a M1 phenotype, and the p21-exressing cells are
cleared via T cells. Most importantly, the authors showed that the p21-induced SASP places
the cells under immunosurveillance and establishes a timer mechanism for the cell fate. In
the case of p21, the expression normalizes within 4 days in mice, macrophages withdraw,
and the cells are not cleared. Thus, the specific p21-induced SASP sets the time frame
for the switch between surveillance and cell clearance mode of the immune system [274].
This mechanism might contribute to the developmental decisions described above, where
individual cells are mostly characterized by transient expression of p21.
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5. Open Questions and Perspectives

The establishment of several p16INK4A- and p21-deleter mouse lines mentioned
above contributes largely to our understanding of senescence and aging phenotypes.
As both proteins are expressed in different cell types and ablation has diverse effects,
senescence is not one biological entity, but comprises different cellular events and divergent
SASPs. The picture might be even more complex considering that in a given cell type
aging is heterogenous [275] and tissues are in different stages of senescence [276,277].
The observation of beneficial effects in organs where the transgene is not expressed in
p16INK4A-INK-ATTAC mice suggests a major role of SASP normalization instead of
direct elimination of senescent cells. This is further supported by the recent p21-Cre line
data [218] and the fact that the SASP from a small number of cells is sufficient to induce
senescence in young mice and senolytic drugs induced a rejuvenation phenotype [278].
The next complicating issue is that the SASP is also not a homogenous cocktail of released
factors but might highly differ in the composition of immunomodulatory factors and thus
determine more physiological aging versus pro-inflammatory deteriorating phenotype
(reviewed in [3,279]). Interestingly, different p16INK4A-positive cell elimination mouse
models showed diverse phenotypes with the p16INK4A-INK-ATTAC model delaying aging
phenotypes and increasing lifespan [72], while in the p16INK4A-3MR model wound healing
was disturbed [41], and in p16INK4ACre;DTA mice liver fibrosis and reduced health-
span were observed [39]. Thus, it would be important to determine whether p16INK4A-
expressing cells are the same in the three models under baseline conditions. For this
purpose, our recently established and knockout-validated immunohistochemistry protocol
could be a useful tool [38]. As p16INK4A expression is not an off–on phenomenon, but
increases from embryonic stages until old age [38], in the next step it would be interesting
to determine whether p16INK4A-expressing cells in the mouse models are eliminated
at different levels of p16INK4A expression. If this is the case, sorting of the cells and
secretome analysis could define the secretory phenotype of protective versus detrimental
p16INK4A expressing cells which finally may serve as a rejuvenation approach in aged
patients without the need and limitations of overexpression of reprogramming factors [279].
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